Safety
HySafe European Network of Excellence on Hydrogen Safety
Sep 2005
Publication
Introduction and commercialisation of hydrogen as an energy carrier of the future make great demands on all aspects of safety. Safety is a critical issue for innovations as it influences the economic attractiveness and public acceptance of any new idea or product. However research and safety expertise related to hydrogen is quite fragmented in Europe. The vision of a significant increased use of hydrogen as an energy carrier in Europe could not go ahead without strengthening and merging this expertise. This was the reason for the European Commission to support the launch on the first of March 2004 of a so-called Network of Excellence (NoE) on hydrogen safety: HySafe.
An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage
Sep 2007
Publication
Alexandros G. Venetsanos,
E. Papanikolaou,
J. García,
Olav Roald Hansen,
Matthias Heitsch,
Asmund Huser,
Wilfried Jahn,
Jean-Marc Lacome,
Thomas Jordan,
H. S. Ledin,
Dmitry Makarov,
Prankul Middha,
Etienne Studer,
Andrei V. Tchouvelev,
Franck Verbecke,
M. M. Voort,
Andrzej Teodorczyk and
M. A. Delichatsios
The paper presents the results of the CFD inter-comparison exercise SBEP-V3 performed within the activity InsHyde internal project of the HYSAFE network of excellence in the framework of evaluating the capability of various CFD tools and modelling approaches in predicting the physical phenomena associated to the short and long term mixing and distribution of hydrogen releases in confined spaces. The experiment simulated was INERIS-TEST-6C performed within the InsHyde project by INERIS consisting of a 1 g/s vertical hydrogen release for 240 s from an orifice of 20 mm diameter into a rectangular room (garage) of dimensions 3.78x7.2x2.88 m in width length and height respectively. Two small openings at the front and bottom side of the room assured constant pressure conditions. During the test hydrogen concentration time histories were measured at 12 positions in the room for a period up to 5160 s after the end of release covering both the release and the subsequent diffusion phases. The benchmark was organized in two phases. The first phase consisted of blind simulations performed prior to the execution of the tests. The second phase consisted of post calculations performed after the tests were concluded and the experimental results made available. The participation in the benchmark was high: 12 different organizations (2 non-HYSAFE partners) 10 different CFD codes and 8 different turbulence models. Large variation in predicted results was found in the first phase of the benchmark between the various modelling approaches. This was attributed mainly to differences in turbulence models and numerical accuracy options (time/space resolution and discretization schemes). During the second phase of the benchmark the variation between predicted results was reduced.
Compatibility of Metallic Materials with Hydrogen Review of the Present Knowledge
Sep 2007
Publication
In this document after a review of the accidents/incidents are described the different interactions between hydrogen gas and the most commonly used materials including the influence of "internal" and "external" hydrogen the phenomena occurring in all ranges of temperatures and pressures and Hydrogen Embrittlement (HE) created by gaseous hydrogen. The principle of all the test methods used to investigate this phenomenon are presented and discussed. The advantages and disadvantages of each method will be explained. The document also covers the influence of all the parameters related to HE including the ones related to the material itself the ones related to the design and manufacture of the equipment and the ones related to the hydrogen itself (pressure temperature purity etc). Finally recommendations to avoid repetition of accidents/incidents mentioned before are proposed.
The Safe Use of the Existing Natural Gas System for Hydrogen (Overview of the NATURALHY-Project)
Sep 2005
Publication
The transition period towards the situation in which hydrogen will become an important energy carrier will be lengthy (decades) costly and needs a significant R&D effort. It’s clear therefore that the development of a hydrogen system requires a practical strategy within the context of the existing assets. Examining the potential of the existing extensive natural gas chain (transmission - distribution - end user infrastructures and appliances) is a logical first step towards the widespread delivery of hydrogen.
The project will define the conditions under which hydrogen can be mixed with natural gas for delivery by the existing natural gas system and later withdrawn selectively from the pipeline system by advanced separation technologies. Membranes will be developed to enable this separation. The socio-economic and life cycle consequences of this hydrogen delivery approach will be mapped out. By adding hydrogen to natural gas the physical and chemical properties of the mixture will differ from “pure” natural gas. As this may have a major effect on safety issues and durability issues (which also have a safety component) related to the gas delivery and the performance of end use appliances these issues are particularly addressed in the project.
The project is executed by a European consortium of 39 partners (including 15 from the gas industry). In this project set up under the auspices of GERG The European Gas Research Group there are leading roles for N.V. Nederlandse Gasunie (NL) Gaz de France (F) TNO (NL) ISQ (P) the Universities of Loughborough and Warwick (UK) and Exergia (GR). Guidance will be provided by a Strategic Advisory Committee consisting of representatives from relevant (inter)national organizations.
The project started on 1st May 2004 and will run for 5 years. The European Commission has selected the Integrated Project NATURALHY for financial support within the Sixth Framework Programme.
The project will define the conditions under which hydrogen can be mixed with natural gas for delivery by the existing natural gas system and later withdrawn selectively from the pipeline system by advanced separation technologies. Membranes will be developed to enable this separation. The socio-economic and life cycle consequences of this hydrogen delivery approach will be mapped out. By adding hydrogen to natural gas the physical and chemical properties of the mixture will differ from “pure” natural gas. As this may have a major effect on safety issues and durability issues (which also have a safety component) related to the gas delivery and the performance of end use appliances these issues are particularly addressed in the project.
The project is executed by a European consortium of 39 partners (including 15 from the gas industry). In this project set up under the auspices of GERG The European Gas Research Group there are leading roles for N.V. Nederlandse Gasunie (NL) Gaz de France (F) TNO (NL) ISQ (P) the Universities of Loughborough and Warwick (UK) and Exergia (GR). Guidance will be provided by a Strategic Advisory Committee consisting of representatives from relevant (inter)national organizations.
The project started on 1st May 2004 and will run for 5 years. The European Commission has selected the Integrated Project NATURALHY for financial support within the Sixth Framework Programme.
Hydrogen Transport Safety: Case of Compressed Gaseous Tube Trailer
Sep 2005
Publication
The following paper describes researches to evaluate the behaviour under various accidental conditions of systems of transport compressed hydrogen. Particularly have been considered gaseous tube trailer and the packages cylinders employed for the road transport which have an internal gas pressures up to 200 barg.<br/>Further to a verification of the actual safety conditions this analysis intends to propose a theme that in the next future if confirmed projects around the employment of hydrogen as possible source energetic alternative could become quite important. The general increase of the consumptions of hydrogen and the consequently probable increase of the transports of gaseous hydrogen in pressure they will make the problem of the safety of the gaseous tube trail particularly important. Gaseous tube trailers will also use as components of plant. for versatility easy availability' and inexpensiveness.<br/>The first part of the memory is related to the analysis of the accidents happened in the last year in Italy with compressed hydrogen transports and particularly an accurate study has been made on the behaviour of a gaseous tube trailer involved in fire following a motorway accident in March 2003. In the central part of the job has been done a safety analysis of the described events trying to make to also emerge the most critical elements towards the activities developed by the teams of help intervened.<br/>Finally in the last part you are been listed on the base of the picked data a series of proposals and indications of the possible structural and procedural changes that could be suggested with the purpose to guarantee more elevated safety levels.
Fundamental Safety Testing and Analysis of Solid State Hydrogen Storage Materials and Systems
Sep 2007
Publication
Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH4 a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.
Fire Prevention Technical Rule for Gaseous Hydrogen Transport in Pipelines
Sep 2007
Publication
This paper presents the current results of the theoretical and experimental activity carried out by the Italian Working Group on the fire prevention safety issues in the field of the hydrogen transport in pipelines. From the theoretical point of view a draft document has been produced beginning from the regulations in force on the natural gas pipelines; these have been reviewed corrected and integrated with the instructions suitable to the use with hydrogen gas. From the experimental point of view a suitable apparatus has been designed and installed at the University of Pisa; this apparatus will allow the simulation of hydrogen releases from a pipeline with or without ignition of the hydrogen-air mixture. The experimental data will help the completion of the above-mentioned draft document with the instructions about the safety distances. However in the opinion of the Group the work on the text contents is concluded and the document is ready to be discussed with the Italian stakeholders involved in the hydrogen applications.
Compatibility of Materials with Hydrogen Particular Case- Hydrogen Assisted Stress Cracking of Titanium Alloys
Sep 2007
Publication
A review of the effect of hydrogen on materials is addressed in this paper. General aspects of the interaction of hydrogen and materials hydrogen embrittlement low temperature effects material suitability for hydrogen service and materials testing are the main subjects considered in the first part of the paper. As a particular case of the effect of hydrogen in materials the hydride formation of titanium alloys is considered. Alpha titanium alloys are considered corrosion resistant materials in a wide range of environments. However hydrogen absorption and the possible associated problems must be taken into account when considering titanium as a candidate material for high responsibility applications. The sensitivity of three different titanium alloys Ti Gr-2 Ti Gr-5 and Ti Gr-12 to the Hydrogen Assisted Stress Cracking phenomena has been studied by means of the Slow Strain Rate Technique (SSRT). The testing media has been sea water and hydrogen has been produced on the specimen surface during the test by cathodic polarization. Tested specimens have been characterized by metallography and scanning electron microscopy. Results obtained show that the microstructure of the materials particularly the β phase content plays an important role on the sensitivity of the studied alloys to the Hydrogen Assisted Stress Cracking Phenomena.
Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident Initiated by SBLOCA in the APR1400 Containment
Jan 2022
Publication
We performed a hydrogen combustion analysis in the Advanced Power Reactor 1400 MWe (APR1400) containment during a severe accident initiated by a small break loss of coolant accident (SBLOCA) which occurred at a lower part of the cold leg using a multi-dimensional hydrogen analysis system (MHAS) to confirm the integrity of the APR1400 containment. The MHAS was developed by combining MAAP GASFLOW and COM3D to simulate hydrogen release distribution and combustion in the containment of a nuclear power plant during the severe accidents in the containment of a nuclear power reactor. The calculated peak pressure due to the flame acceleration by the COM3D using the GASFLOW results as an initial condition of the hydrogen distribution was approximately 555 kPa which is lower than the fracture pressure 1223 kPa of the APR1400 containment. To induce a higher peak pressure resulted from a strong flame acceleration in the containment we intentionally assumed several things in developing an accident scenario of the SBLOCA. Therefore we may judge that the integrity of the APR1400 containment can be maintained even though the hydrogen combustion occurs during the severe accident initiated by the SBLOCA.
Hydrogen Refueling Stations: Safe Filling Procedures
Sep 2005
Publication
Safety is a high priority for a hydrogen refueling station. Here we propose a method to safely refuel a vehicle at optimised speed of filling with minimum information about it. Actually we identify two major risks during a vehicle refuelling: over filling and overheating. These two risks depend on the temperature increase in the tank during refuelling. But the inside temperature is a difficult information to get from the station point of view. It assumes a temperature sensor in a representative place of the tank and an additional connection between the vehicle and the station for data exchange. The refuelling control may not depend on this parameter only. Therefore out objective was to effectively control the filling particularly to avoid the two identified risks independently of optional and safety redundant information from the vehicle. For that purpose we defined a maximum filling pressure which corresponds to the most severe following conditions: if the maximum temperature is reached in the tank or if the maximum capacity is reached in the tank. This maximum pressure depends on a few filling parameters which are easily available. The method and its practical applications are depicted.
CFD Simulations of Hydrogen Release and Dispersion Inside the Storage Room of a Hydrogen Refuelling Station Using the ADREA-HF Code
Sep 2007
Publication
The paper presents CFD simulations of high pressure hydrogen release and dispersion inside the storage room of realistic hydrogen refuelling station and comparison to experimental data. The experiments were those reported by Tanaka et al. (2005) carried out inside an enclosure 5 m wide 6 m long and 4 m high having 1 m high ventilation opening on all sidewalls (half or fully open) containing an array of 35 x 250 L cylinders. The scenarios investigated were 40 MPa storage pressure horizontal releases from the center of the room from one cylinder with orifices of diameters 0.8 1.6 and 8 mm. The release calculations were performed using GAJET integral code. The CFD dispersion simulations were performed using the ADREA-HF CFD code. The structure of the flow and the mixing patterns were also investigated by presenting the predicted hydrogen concentration field. Finally the effects of release parameters natural ventilation and wind conditions were analyzed too.
Modelling of Lean Uniform and Non-Uniform Hydrogen-Air Mixture Explosions in a Closed Vessel
Sep 2009
Publication
Simulation of hydrogen-air mixture explosions in a closed large-scale vessel with uniform and nonuniform mixture compositions was performed by the group of partners within the EC funded project “Hydrogen Safety as an Energy Carrier” (HySafe). Several experiments were conducted previously by Whitehouse et al. in a 10.7 m3 vertically oriented (5.7-m high) cylindrical facility with different hydrogen-air mixture compositions. Two particular experiments were selected for simulation and comparison as a Standard Benchmark Exercise (SBEP) problem: combustion of uniform 12.8% (vol.) hydrogen-air mixture and combustion of non-uniform hydrogen-air mixture with average 12.6% (vol.) hydrogen concentration across the vessel (vertical stratification 27% vol. hydrogen at the top of the vessel 2.5% vol. hydrogen at the bottom of the vessel); both mixtures were ignited at the top of the vessel. The paper presents modelling approaches used by the partners comparison of simulation results against the experiment data and conclusions regarding the non-uniform mixture combustion modelling in real-life applications.
Agent-Based as an Alternative to Prognostic Modelling of Safety Risks in Hydrogen Energy Scenarios
Sep 2005
Publication
Interest in the future is not new. Economic constraints and acceptability considerations of today compel decision-makers from industry and authorities to speculate on possible safety risks originating from a hydrogen economy developed in the future. Tools that support thinking about the long-term consequences of today's actions and resulting technical systems are usually prognostic based on data from past performance of past or current systems. It has become convention to assume that the performance of future systems in future environments can be accommodated in the uncertainties of such prognostic models resulting from sensitivity studies. This paper presents an alternative approach to modelling future systems based on narratives about the future. Such narratives based on the actions and interactions of individual "agents" are powerful means for addressing anxiety about engaging the imagination in order to prepare for events that are likely to occur detect critical conditions and to thus achieve desirable outcomes. This is the methodological base of Agent-Based Models (ABM) and this paper will present the approach discuss its strengths and weaknesses and present a preliminary application to modelling safety risks related to energy scenarios in a possible future hydrogen economy.
Addressing Hydrogen Embrittlement of Metals in the Sae J2579 Fuel Cell Vehicle Tank Standard
Sep 2013
Publication
The SAE Technical Information Report (TIR) J2579 (Technical Information Report for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles) has been created to address the safety performance of hydrogen storage and handling systems on vehicles. Safety qualification of the compressed hydrogen storage system is demonstrated through performance testing on prototype containment vessels. The two performance tests currently included in the SAE J2579 for evaluating unacceptable leakage and burst do not account for the potential effects of hydrogen embrittlement on structural integrity. This report describes efforts to address hydrogen embrittlement of structural metals in the framework of performance-based safety qualification. New safety qualification pathways that account for hydrogen embrittlement in the SAE J2579 include an additional pneumatic performance test using hydrogen gas or materials tests that demonstrate acceptable hydrogen embrittlement resistance of candidate structural metals.
Safety-Barrier Diagrams for Documenting Safety of Hydrogen Applications
Sep 2007
Publication
Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. In Denmark they are used to inform the authorities and the nonexperts on safety relevant issues as safety-barrier diagrams are less complex compared to fault trees and are easy to understand. Internationally there is a growing interest in this concept with the use of so-called “bowtie” diagrams which are a special case of safety-barrier diagrams. Especially during the on-going introduction of new hydrogen technologies or applications as e.g. hydrogen refueling stations this technique is considered a valuable tool to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that there is a direct focus on those system elements that need to be subject to safety management in terms of design and installation operational use inspection and monitoring and maintenance. Safety-barrier diagrams support both quantitative and qualitative or deterministic approaches. The paper will describe the background and syntax of the methodology and thereafter the use of such diagrams for hydrogen technologies are demonstrated.
Experimental and Numerical Investigation of Hydrogen Gas Auto-ignition
Sep 2007
Publication
This paper describes hydrogen self-ignition as a result of the formation of a shock wave in front of a high-pressure hydrogen gas propagating in the tube and the semi-confined space for which the numerical and experimental investigation was done. An increase in the temperature behind the shock wave leads to the ignition on the contact surface of the mixture of combustible gas with air. The required condition of combustible self-ignition is to maintain the high temperature in the mixture for a time long enough for inflammation to take place. Experimental technique was based on a high-pressure chamber inflating with hydrogen burst disk failure and pressurized hydrogen discharge into tube of round or rectangular cross section filled with air. A physicochemical model involving the gas dynamic transport of a viscous gas the detailed kinetics of hydrogen oxidation k-ω differential turbulence model and the heat exchange was used for calculations of the self-ignition of high-pressure hydrogen. The results of our experiments and model calculations show that self-ignition in the emitted jet takes place. The stable development of self-ignition naturally depends on the orifice size and the pressure in the vessel a decrease in which leads to the collapse of the ignition process. The critical conditions are obtained.
The Hydrogen Executive Leadership Panel (HELP) Initiative for Emergency Responder Training
Sep 2007
Publication
In close cooperation with their Canadian counterparts United States public safety authorities are taking the first steps towards creating a proper infrastructure to ensure the safe use of the new hydrogen fuel cells now being introduced commercially. Currently public safety officials are being asked to permit hydrogen fuel cells for stationary power and as emergency power backups for the telecommunications towers that exist everywhere. Consistent application of the safety codes is difficult – in part because it is new – yet it is far more complex to train emergency responders to deal safely with the inevitable hydrogen incidents. The US and Canadian building and fire codes and standards are similar but not identical. The US and Canadian rules are unlikely to be useful to other nations without modification to suit different regulatory systems. However emergency responder safety training is potentially more universal. The risks strategies and tactics are unlikely to differ much by region. The Hydrogen Executive Leadership Panel (HELP) made emergency responder safety training its first priority because the transition to hydrogen depends on keeping incidents small and inoffensive and the public and responders safe from harm. One might think that advising 1.2 million firefighters and 800000 law enforcement officers about hydrogen risks is no more complicated than adding guidance to a website. One would be wrong. The term “training” has specific legal implications which may vary by state. For hazardous materials federal requirements apply. Insurance companies place training requirements on the policies they sell to fire departments including the thousands of small all-volunteer departments which may operate as private corporations. Union contracts may define training and promotions may be based on satisfactorily completed certain levels of training. Emergency responders could no sooner learn how to extinguish a<br/>hydrogen fire by reading a webpage than a person could learn to ride a bicycle by reading a book. Procedures must be learned by listening reading and then doing. Regular practice is necessary. As new hydrogen applications are commercialized additional responder training may be necessary. This highlights another obstacle emergency responders’ ability to travel distances and take the time to undergo training. Historically fire academies established adjunct instructor programs and satellite academies to bring the training to firefighters. The large well-equipped academies are typically used for specialized training. States rarely have enough instructors and instructors often must take the time to create a course outline research each point and produce a program that is informative useful and holds the attention of responders. The challenge of training emergency responders seems next to impossible but public safety authorities are asked to tackle the impossible every day and a model exists to move forward in the U.S. Over the past few years the National Association of State Fire Marshals and U.S. Department of Transportation enlisted the help of emergency responders and industry to create a standardized approach to train emergency responders to deal with pipeline incidents. A curriculum and training materials were created and more than 26000 sets have been distributed for free to public safety agencies nationwide. More than 8000 instructors have been trained to use these materials that are now part of the regular training in 23 states. Using this model HELP intends to ensure that all emergency responders are trained to address hydrogen risks. The model and the rigorous scenario analysis and review used to developing the operational and technical training is addressed in this paper.
Incident Reporting- Learning from Experience
Sep 2007
Publication
Experience makes a superior teacher. Sharing the details surrounding safety events is one of the best ways to help prevent their recurrence elsewhere. This approach requires an open non-punitive environment to achieve broad benefits. The Hydrogen Incident Reporting Tool (www.h2incidents.org) is intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen and hydrogen systems. Its intended audience includes those involved in virtually any aspect of hydrogen technology systems and use with an emphasis towards energy and transportation applications. The database contains records of safety events both publicly available and/or voluntarily submitted. Typical records contain a general description of the occurrence contributing factors equipment involved and some detailing of consequences and changes that have been subsequently implemented to prevent recurrence of similar events in the future. The voluntary and confidential nature and other characteristics surrounding the database mean that any analysis of apparent trends in its contents cannot be considered statistically valid for a universal population. A large portion of reported incidents have occurred in a laboratory setting due to the typical background of the reporting projects for example. Yet some interesting trends are becoming apparent even at this early stage of the database’s existence and general lessons can already be taken away from these experiences. This paper discusses the database and a few trends that have already become apparent for the reported incidents. Anticipated future uses of this information are also described. This paper is intended to encourage wider participation and usage of the incidents reporting database and to promote the safety benefits offered by its contents.
Risk-Informed Process and Tools for Permitting Hydrogen Fueling Stations
Sep 2007
Publication
The permitting process for hydrogen fueling stations varies from country to country. However a common step in the permitting process is the demonstration that the proposed fueling station meets certain safety requirements. Currently many permitting authorities rely on compliance with well known codes and standards as a means to permit a facility. Current codes and standards for hydrogen facilities require certain safety features specify equipment made of material suitable for hydrogen environment and include separation or safety distances. Thus compliance with the code and standard requirements is widely accepted as evidence of a safe design. However to ensure that a hydrogen facility is indeed safe the code and standard requirements should be identified using a risk-informed process that utilizes an acceptable level of risk. When compliance with one or more code or standard requirements is not possible an evaluation of the risk associated with the exemptions to the requirements should be understood and conveyed to the Authority Having Jurisdiction (AHJ). Establishment of a consistent risk assessment toolset and associated data is essential to performing these risk evaluations. This paper describes an approach for risk-informing the permitting process for hydrogen fueling stations that relies primarily on the establishment of risk-informed codes and standards. The proposed risk-informed process begins with the establishment of acceptable risk criteria associated with the operation of hydrogen fueling stations. Using accepted Quantitative Risk Assessment (QRA) techniques and the established risk criteria the minimum code and standard requirements necessary to ensure the safe operation of hydrogen facilities can be identified. Risk informed permitting processes exist in some countries and are being developed in others. To facilitate consistent risk-informed approaches the participants in the International Energy Agency (IEA) Task 19 on hydrogen safety are working to identify acceptable risk criteria QRA models and supporting data.
Processes of the Formation of Large Unconfined Clouds Following a Massive Spillage of Liquid Hydrogen on the Ground
Sep 2007
Publication
Because of hydrogen low volumetric energy content under its gaseous form transport and storage of liquid hydrogen will certainly play a major role in any future hydrogen economy. One of the obstacles to the expected development use of hydrogen is the poor state of knowledge on explosion risks in the event of an extensive spillage. INERIS set up a large-scale experiment to study the mechanisms of the formation of the gas cloud resulting from such a spillage and the associated mixing process and turbulence effects. Dispersion tests have been performed with cryogenic helium presenting similar dispersion characteristics than liquid hydrogen (buoyancy). Flowrates up to 3 kg/s have been investigated and the instrumentation allowed the observation and quantification of bouyancy effects including internal turbulence. Those results constitute an originals et of data which can be used as a basis for the development of dispersion software and reinterpretation of other existing databases ([10 11])
No more items...