Safety
Hydrogen Non-premixed Combustion in Enclosure with One Vent and Sustained Release: Numerical Experiments
Sep 2013
Publication
Numerical experiments are performed to understand different regimes of hydrogen non-premixed combustion in an enclosure with passive ventilation through one horizontal or vertical vent located at the top of a wall. The Reynolds averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) model with a reduced chemical reaction mechanism is described in detail. The model is based on the renormalization group (RNG) k-ε turbulence model the eddy dissipation concept (EDC) model for simulation of combustion coupled with the 18-step reduced chemical mechanism (8 species) and the in-situ adaptive tabulation (ISAT) algorithm that accelerates the reacting flow calculations by two to three orders of magnitude. The analysis of temperature and species (hydroxyl hydrogen oxygen water) concentrations in time as well as the velocity through the vent shed a light on regimes and dynamics of indoor hydrogen fires. A well-ventilated fire is simulated in the enclosure at a lower release flow rate and complete combustion of hydrogen within the enclosure. Fire becomes under-ventilated at higher release flow rates with two different modes observed. The first mode is the external flame stabilised at the enclosure vent at moderate release rates and the second mode is the self-extinction of combustion inside and outside the enclosure at higher hydrogen release rates. The simulations demonstrated a complex reacting flow dynamics in the enclosure that leads to formation of the external flame or the self-extinction. The air intake into the enclosure at later stages of the process through the whole vent area is a characteristic feature of the self-extinction regime. This air intake is due to faster cooling of hot combustion products by sustained colder hydrogen leak compared to the generation of hot products by the ceasing chemical reactions inside the enclosure and hydrogen supply. In general an increase of hydrogen sustained release flow rate will change fire regime from the well-ventilated combustion within the enclosure through the external flame stabilised at the vent and finally to the self-extinction of combustion throughout the domain.
Nanotechnology Enabled Hydrogen Gas Sensing
Sep 2019
Publication
An important contribution to industry standards and to effective installation of hybrid renewable energy systems is evaluation of hydrogen (H2) monitoring techniques under pilot-scale and/or real-world conditions. We have designed a hybrid system to integrate solar power electrolysis and hydrogen fuel cell components in a DC micro-grid with capacity to evaluate novel nanomaterials for enhanced H2 gas sensing performance. In general enhanced hydrogen sensing performance is evaluated by high sensitivity selectivity and stability as well as low power consumption. Unique properties such as high surface area to volume ratio a large number of surface active sites high specific surface area and reactivity are key attributes of nanomaterials used for gas sensing. These attributes enable sensors to be embedded in Internet-of-Things applications or in mobile systems. With rapid development of hydrogen-based technologies for clean energy applications there remains a requirement for faster accurate and selective H2 sensors with low cost and low power consumption. Operating principles for these sensors include catalytic thermal conductivity electrochemical resistance based optical and acoustic methods. In this paper we review performance of H2 gas sensors based on conductometric devices operating at room temperature up to 200 °C. The focus of this work includes nanostructured metal oxides graphene materials and transition metal dichalcogenides employed as sensing materials.
Ignition of Hydrogen-air Mixtures Under Volumetric Expansion Conditions
Sep 2017
Publication
A better understanding of chemical kinetics under volumetric expansion is important for a number of situations relevant to industrial safety including detonation diffraction and direct initiation reflected shock-ignition at obstacles ignition behind a decaying shock among others. The ignition of stoichiometric hydrogen-air mixtures was studied using 0D numerical simulations with time-dependent specific volume variations. The competition between chemical energy release and expansion-induced cooling was characterized for different cooling rates and mathematical forms describing the shock decay rate. The critical conditions for reaction quenching were systematically determined and the thermo-chemistry dynamics were analyzed near the critical conditions.
Towards Unified Protocol for Par's Performance Rating and Safety Margins Assessment: Par Life-cycle Systemic Model
Sep 2021
Publication
Passive Autocatalytic Recombiners (PAR) is one of the important technical mitigation means for hydrogen combustion in the NPP containments under accident conditions. For the PWR/VVER/CANDU units the PARs execute functions important for safety - reduce the local hydrogen concentration to an acceptable level and provide the homogenization of gas composition and of temperature fields in the containment. Certification and licensing of PAR technology have been accepted for the different NPP types and in the different countries on the case-by-case basement. But a comprehensive and generally accepted terminology and procedures for PAR characterization and its performance and safety rating are still absent. As a next step in PAR's technology improvement and maturity it would be logical a development of their unified technical standardization and certification. Report is aimed to - 2) justify need in standardization of the PARs in the nuclear industry and in the hydrogen energy applications 2) define a minimal set of the notions which can be used for quantitative characterization of the of PARs throughout its life-cycle 3) formulate a systemic (generic state-machine or automata) model of PAR's states under the normal and accident conditions. After verification and validation of proposed PAR systemic model it can be used as one of ints for the development of an international standard for PAR performance and safety.
A CFD Analysis of Liquid Hydrogen Vessel Explosions using the ADREA-HF Code
Sep 2021
Publication
Despite hydrogen is one of the most suitable candidates in replacing fossil fuels its very low densityrepresents a drawback when it is stored. The liquefaction process can increase the hydrogen densityand therefore enhance its storage capacity. The boiling liquid expanding vapour explosion (BLEVE) isa typical accident scenario that must be always considered when liquefied gases are stored. Inparticular BLEVE is a physical explosion with low probabilities and high consequences which mayoccur after the catastrophic rupture of a vessel containing a liquid with a temperature above its boilingpoint at atmospheric pressure. In this paper a parametric CFD analysis of the BLEVE phenomenonwas conducted by means of the CFD code ADREA-HF for liquid hydrogen (LH2) vessels. Firstly theCFD model is validated against a well-documented CO2 BLEVE experiment. Next hydrogen BLEVEcases are examined. The physical parameters were chosen based on the BMW tests carried out in the1990s on LH2 tanks designed for automotive purposes. Different filling degrees initial pressures andtemperatures of the tank content are simulated to comprehend how the blast wave is influenced by theinitial conditions. The aim of this study is twofold: provide new insights and observations on theBLEVE dynamics and demonstrate the CFD tool effectiveness for conducting the consequenceanalysis and thus aiding the risk assessment of liquefied gas vessel explosion. Good agreement wasshown between the simulation outcomes and the experimental results.
Fracture Properties of Welded 304L in Hydrogen Environments
Sep 2021
Publication
Austenitic stainless steels are used for hydrogen containment of high-pressure hydrogen gas due to their ability to retain high fracture properties despite the degradation due to hydrogen. Forging and other strain-hardening processes are desirable for austenitic stainless steels to increase the material strength and thus accommodate higher stresses and reduce material costs. Welding is often necessary for assembling components but it represents an area of concern in pressure containment structures due to the potential for defects more environmentally susceptible microstructure and reduced strength. Electron beam (EB) welding represent an advanced joining process which has advantages over traditional arc welding techniques through reduced input heat and reduced heat-affected zone (HAZ) microstructure and thus present a means to maintain high strength and improve weld performance in hydrogen gas containment. In this study fracture coupons were extracted from EB welds in forged 304L and subjected to thermal gaseous hydrogen precharging at select pressures to introduce different levels of internal hydrogen content. Fracture tests were then performed on hydrogen precharged coupons at temperatures of both 293 K and 223 K. It was observed that fracture resistance (JH) was dependent on internal hydrogen concentration; higher hydrogen concentrations resulted in lower fracture resistance in both the forged 304L base material and the 304L EB welds. This trend was also apparent at both temperatures: 293 K and 223 K. EB weld samples however maintain high fracture resistance comparable to the forged 304L base material. The role of weld microstructure solidification on fracture is discussed.
A Simple and Low-cost Integrative Sensor System for Methane and Hydrogen Measurement
Sep 2020
Publication
Energy production by methanization or gasification of biomass is dependant on the chemical composition of the gas generated. The resistive sensors based on semiconductor metal oxides like the MQ series sensors are inexpensive and frequently used in gas detection. These sensors initially dedicated to detecting gas leaks in safety systems have relatively small measurement ranges (i.e. limited to concentrations below 10000 ppm). It is therefore necessary to find solutions to adapt these categories of sensors for gas measurements in the energy sector where the gas concentration is much more significant. In this article we propose a protocol using an adaptable capsule for MQ-4 and MQ-8 sensors to measure high concentrations of CH4 and H2 respectively. The technique consists of diluting the gas to be studied in a known volume of air. Three methods are proposed and compared regarding the linearity and the repeatability of the measurements. The first method was done in an airtight enclosed chamber the second method consists of directly injecting the gas on the sensor placed in an open environment and the final method was accomplished by direct injection of the gas on the sensor placed in a partially closed capsule. Comparisons show that the first technique provides the best repeatability with a maximum standard deviation of 13.88% for CH4 measurement and 5.1% for H2. However its linearity is weak (i.e. R2 ¼ 0.8637 for CH4 and R2 ¼ 0.5756 for H2). The second technique has better linearity but bad repeatability. The third technique presents the best results with R2 values of 0.9973 for the CH4 measurement and 0.9472 for H2. The use of the partially closed capsule resulted in an acceptable linear response of the sensors by up to 20% concentration of CH4 and until 13.33% concentration of H2 in the studied gas. The use of this simple and low-cost technique facilitates the characterization of combustible gases in isolated areas. It allows local operators of biomass valorization systems to control and improve their installations while avoiding the high costs of conventional measurement devices. This study hence contributes to the development of rural electrification projects in remote areas.
Effects of Hydrogen and Carbon Dioxide on the Laminar Burning Velocities of Methane-air Mixtures
Sep 2021
Publication
The effects of different mole fractions of hydrogen and carbon dioxide on the combustion characteristics of a premixed methane–air mixture are experimentally and numerically investigated. The laminar burning velocity of hydrogen-methane-carbon dioxide-air mixture was measured using the spherically expanding flame method at the initial temperature and pressure of 283 K and 0.1 MPa respectively. Additionally numerical analysis is conducted under steady 1D laminar flow conditions to investigate the adiabatic flame temperature and dominant elementary reactions. The measured velocities correspond with those estimated numerically. The results show that increasing the carbon dioxide mole fraction decreases the laminar burning velocity attributed to the carbon dioxide dilution which decreases the thermal diffusivity and flame temperature. Conversely the velocity increases with the thermal diffusivity as the hydrogen mole fraction increases. Moreover the hydrogen addition leads to chain-branching reactions that produce active H O and OH radicals via the oxidation of hydrocarbons which is the rate-determining reaction.
Experimental Study of the Explosion Severity of Vented Methane/Hydrogen Deflagrations
Sep 2021
Publication
Adding hydrogen to mains natural gas has been identified as one of the main strategies to reduce CO2 emissions in the United Kingdom. This work aims to characterise the explosion severity of 80:20 v./v. methane/hydrogen blends (‘a blend’) and methane vented deflagrations. The explosion severity of homogenous mixtures was measured in a 15 m3 cubic steel chamber in which the relief area was provided by four windows and a door covered with polypropylene sheet. The pressure increase over time was characterised using piezo-resistive pressure transducers and the flame speed was estimated using ionisation probes installed in the walls of the enclosure. The explosion severity of both mixtures was determined for different equivalence ratios from lean to rich mixtures. The pressure over time presented very similar behaviour for both mixtures comprising multiple peaks divided into three main stages: a first stage related to a spherical confined explosion until the opening of the vent a second stage generated by increased combustion during venting and an oscillatory peak generated by acoustic disturbances with the enclosure. A slight increase in the first stage overpressure was observed for the blend in comparison with methane regardless of the equivalence ratio but no general trend in pressure was observed for other stages of the propagation. The effect of the blockage ratio on explosion severity was studied by adding metallic elements representing furniture in a room.
Simulation of a Hydrogen-Air Diffusion Flame under Consideration of Component-Specific Diffusivities
Mar 2022
Publication
This work deals with the numerical investigation of a three-dimensional laminar hydrogenair diffusion flame in which a cylindrical fuel jet is surrounded by in-flowing air. To calculate the distribution of gas molecules the model solves the species conservation equation for N-1 components using infinity fast chemistry and irreversible chemical reaction. The consideration of the component-specific diffusion has a strong influence on the position of the high-temperature zone as well as on the concentration distribution of the individual gas molecules. The calculations of the developed model predict the radial and axial species and temperature distribution in the combustion chamber comparable to those from previous publications. Deviations due to a changed burner geometry and air supply narrow the flame structure by up to 50% and the high-temperature zones merge toward the central axis. Due to the reduced inflow velocity of the hydrogen the high-temperature zones develop closer to the nozzle inlet of the combustion chamber. As the power increases the length of the cold hydrogen jet increases. Furthermore the results show that the axial profiles of temperature and mass fractions scale quantitatively with the power input by the fuel.
Laminar Burning Velocity, Markstein Length and Cellular Instability of Spherically Propagating NH2/H2/Air Premixed Flames at Various Pressures
Sep 2021
Publication
Blending hydrogen into ammonia can I mprove the burning intensity of ammonia and the safety of hydrogen and it is important to understand the flames of NH3/H2/air mixtures. In this work lamiar flame characteristics of 50-50 (vol%) ammonia-hydrogen mixtures in air were studied using the spherical flame propagation method in a constant-volume bom at initital temperature Tu = 298K and different pressures.
Discharge Modeling of Large Scale LH2 Experiments with an Engineering Tool
Sep 2021
Publication
Accurate estimation of mass flow rate and release conditions is important for the design of dispersion and combustion experiments for the subsequent validation of CFD codes/models for consequence assessment analysis within related risk assessment studies and for associated Regulation Codes and Standards development. This work focuses on the modelling of the discharge phase of the recent large scale LH2 release and dispersion experiments performed by HSE within the framework of PRESLHY project. The experimental conditions covered sub-cooled liquid stagnation conditions at two pressures (2 and 6 bara) and 3 release nozzle diameters (1 ½ and ¼ inches). The simulations were performed using a 1d engineering tool which accounts for discharge line effects due to friction extra resistance due to fittings and area change. The engineering tool uses the Possible Impossible Flow (PIF) algorithm for choked flow calculations and the Helmholtz Free Energy (HFE) EoS formulation. Three different phase distribution models were applied. The predictions are compared against measured and derived data from the experiments and recommendations are given both regarding engineering tool applicability and future experimental design.
Hydrogen Jet Fire from a Thermally Activated Pressure Relief Device (TPRD) from Onboard Storage in a Naturally Ventilated Covered Car Park
Aug 2021
Publication
Hydrogen jet fires from a thermally activated pressure relief device (TPRD) on onboard storage are considered for a vehicle in a naturally ventilated covered car park. Computational Fluid Dynamics was used to predict behaviour of ignited releases from a 70 MPa tank into a naturally ventilated covered car park. Releases through TPRD diameters 3.34 2 and 0.5 mm were studied to understand effect on hazard distances from the vehicle. A vertical release and downward releases at 0° 30° and 45° for TPRD diameters 2 and 0.5 mm were considered accounting for tank blowdown. direction of a downward release was found to significantly contribute to decrease of temperature in a hot cloud under the ceiling. Whilst the ceiling is reached by a jet exceeding 300 °C for a release through a TPRD of 2 mm for inclinations of either 0° 30° or 45° an ignited release through a TPRD of 0.5 mm and angle of 45° did not produce a cloud with a temperature above 300 °C at the ceiling during blowdown. The research findings specifically regarding the extent of the cloud of hot gasses have implications for the design of mechanical ventilation systems.
Characterization of the Hazards from Jet Releases of Hydrogen
Sep 2005
Publication
Hydrogen is a convenient energy storage medium; it can be produced from fossil fuels and biomass via chemical conversion processes or from intermittent renewable sources like wind and solar via electrolysis. It is the fuel of choice for the clean fuel-cell vehicles of the future. If the general public are to use hydrogen as a vehicle fuel customers must be able to handle hydrogen with the same degree of confidence and with comparable risk as conventional liquid and gaseous fuels. For the safe design of retail facilities through the development of appropriate codes and standards it is essential to understand all the hazards that could arise following an accidental release of hydrogen. If it is to be stored and used as a high-pressure gas the hazards associated with jet releases from accidental leaks must be considered. This paper describes work by Shell and the Health and Safety Laboratory to characterise the hazards from jet releases of hydrogen. Jet release experiments have been carried out using small leaks (circular holes ranging from 1 mm to 12 mm diameter) at system pressures up to 150 barg. Concentration measurements were made in the unignited free jets to determine the extent of the flammable cloud generated. Ignited jets were observed both in the visible and infrared to determine the flame size and shape. The experimental results for the extent of the flammable cloud and jet flame length were found to be in good agreement with model predictions.
The Challenges of Hydrogen Storage on a Large Scale
Sep 2021
Publication
With the growing success of green hydrogen the general trend is for increased hydrogen production and large quantities of storage. Engie’s projects have grown from a few kilos of hydrogen to the quest for large scale production and associated storage – e.g. several tons or tens of tons. Although a positive sign for Engie’s projects it does inevitably result in challenges in new storage methods and in risks management related to such facilities; particularly with hydrogen facilities being increasingly placed in the vicinity of general public sites. For example a leak on hydrogen storage can generate significant thermal and overpressure effects on surrounding people/facilities in the event of ignition. Firewalls can be installed to protect individuals / infrastructure from thermal effects but the adverse result is that this solution can increase the violence of an explosion in case of delayed ignition or confinement. The manner of emergency intervention on a pool fire of hydrogen is also totally different from intervention on compressed gaseous hydrogen. The first part of this presentation will explain different means to store hydrogen in large quantities. The second part will present for each storage the specific risks generated. The third and final part will explain how these risks can be addressed on a technical point of view by safety devices or by other solutions (separation distance passive/active means …).
Study of Hydrogen Enriched Premixed Flames
Sep 2005
Publication
In the present paper the theoretical study of the un-stretched laminar premixed flames of hydrogen-methane mixtures is carried out by using the detailed reaction mechanism GRI-Mech 3.0 implemented in the CHEMKIN software to find out the effect of hydrogen addition on the hybrid fuel burning velocity. The model results show that the laminar burning velocity of the hydrogen-methane mixtures is not the linear regression of those of the pure fuels since it results substantially less than the proportional averaging of the values for the fuel constituents. Moreover the effect of hydrogen addition in terms of enhancement of the mixture laminar burning velocity with respect to the methane is relevant only at very high values of the hydrogen content in the hybrid mixtures (> 70 % mol.). The performed sensitivity analysis shows that these results can be attributed to kinetics and in particular to the concentration of H radicals: depending on the hydrogen content in the fuels mixture the production of the H radicals can affect the limiting reaction step for methane combustion. Two regimes are identified in the hydrogen-methane combustion. The first regime is controlled by the methane reactivity the hydrogen being not able to significantly affect the laminar burning velocity (< 70 % mol.). In the second regime the hydrogen combustion has a relevant role as its high content in the hybrid fuel leads to a significant H radicals pool thus enhancing the reaction rate of the more slowly combusting methane.
Fire Safety of Hydrogen-Fuelled Vehicles- System-Level Bonfire Test
Sep 2005
Publication
The European Community requires a vehicle-level bonfire test for vehicles using plastic fuel tanks for conventional fuels (ECE R-34 Annex 5). A similar test could be applied to hydrogen-fuelled vehicles. It would test a realistic vehicle with its complete fuel and safety systems. An advantage of such a test is that the same test could be applied independent of the hydrogen storage technology (compressed gas liquid or hydride). There are currently standards for bonfire testing of a bare Compressed Natural Gas (CNG) tank and its Pressure Relief Device (PRD). This standard is FMVSS 304 in the U.S. and ISO 15869-1 in Europe. Japan has a similar standard. It requires that a bare tank and its associated PRD be subjected to a propane flame for 20 minutes. The tank must either survive or safely vent its contents. No modern composite wound tank is expected to survive for 20 minutes – so this is not a tank test but really a PRD test. The test procedure requires the PRD to be shielded from direct impingement of the flames – but the shield is not well specified. If it shields the PRD too well the PRD will not activate and the tank will burst. This paper describes the results of a CNG and a hydrogen tank burst from such tests. The mechanical energy released is enormous. It is simply unacceptable to allow the tank to burst – the PRD and venting system must work. Organizations in the U.S Europe and Japan are in the process of modifying the CNG tank bonfire test for compressed hydrogen storage. A bare tank with a single PRD is not a good simulation of a hydrogen fuel system installed in an actual vehicle. There will usually be multiple tanks plumbed together at either the tank pressure or at the intermediate pressure (after the pressure regulator). There may be more than one PRD. The tank may be shielded (from debris) or insulated to protect it from an underbody pool fire. Also the heat transfer from the simulated pool fire (propane flame) will be very different when mounted in a vehicle versus the bare tank test. A vehicle-level pool fire test will alleviate these problems. It is therefore recommended that the bare tank test be replaced by or augmented with a vehicle-level bonfire test similar to ECE R-34 Annex 5.
The Pressure Peaking Phenomenon for Ignited Under-Expanded Hydrogen Jets in the Storage Enclosure: Experiments and Simulations for Release Rates of up to 11.5 g/s
Dec 2021
Publication
This work focuses on the experimental and numerical investigation of maximum overpressure and pressure dynamics during ignited hydrogen releases in a storage enclosure e.g. in marine vessel or rail carriage with limited vent size area i.e. the pressure peaking phenomenon (PPP) revealed theoretically at Ulster University in 2010. The CFD model previously validated against small scale experiments in a 1 m3 enclosure is employed here to simulate real-scale tests performed by the University of South-Eastern Norway (USN) in a chamber with a volume of 15 m3 . The numerical study compares two approaches on how to model the ignited hydrogen release conditions for under-expanded jets: (1) notional nozzle concept model with inflow boundary condition and (2) volumetric source model in the governing conservation equations. For the test with storage pressure of 11.78 MPa both approaches reproduce the experimental pressure dynamics and the pressure peak with a maximum 3% deviation. However the volumetric source approach reduces significantly the computational time by approximately 3 times (CFL = 0.75). The sensitivity analysis is performed to study the effect of CFL number the size of the volumetric source and number of iterations per time step. An approach based on the use of a larger size volumetric source and uniform coarser grid with a mesh size of a vent of square size is demonstrated to reduce the duration of simulations by a factor of 7.5 compared to the approach with inflow boundary at the notional nozzle exit. The volumetric source model demonstrates good engineering accuracy in predicting experimental pressure peaks with deviation from −14% to +11% for various release and ventilation scenarios as well as different volumetric source sizes. After validation against experiments the CFD model is employed to investigate the effect of cryogenic temperature in the storage on the overpressure dynamics in the enclosure. For a storage pressure equal to 11.78 MPa it is found that a decrease of storage temperature from 277 K to 100 K causes a twice larger pressure peak in the enclosure due to the pressure peaking phenomenon.
A Catalyst Fusible Link for Hydrogen Detection and Activation of Passive Ventilation Systems
Sep 2021
Publication
This paper presents an experimental study of a hydrogen fusible link developed for use in the detection of hydrogen and in the activation of passive ventilation or other safety systems. Fusible links are commonly used to passively close fire dampers in the event of a fire; they generally consist of two pieces of metal joined together by a low temperature alloy to form a single device. When exposed to fire the link will heat up and eventually melt the alloy causing the metal pieces to separate. The same principle has been adopted for the hydrogen fusible link in which hydrogen recombiner catalyst was coated onto small rectangular brass plates. These plates were then soldered together to create prototypes of the hydrogen fusible link. When the resulting link is exposed to a hydrogen-air mixture an exothermic reaction occurs on the catalyst surface that will heat up the link and melt the solder separating the two sections of the hydrogen fusible link. A series of experiments was performed to characterize the thermal response of the hydrogen fusible links to various hydrogen-air mixtures. The effect of both hydrogen concentration and its rate of accumulation on the increase of catalyst temperature was examined. This study demonstrated the applicability of the hydrogen fusible link for managing hydrogen risk.
Numerical Modeling of a Moderate Hydrogen Leakage in a Typical Two-vented Fuel Cell Configuration
Sep 2021
Publication
Numerical results are presented from two direct numerical simulations (DNS) where a moderate hydrogen leakage is modeled in a typical two-vented fuel cell configuration. The study mimics one of the experimental investigations carried out on the 1 m3 enclosure with a leak flow rate of 10.4 Nl.min−1 [1]. The injection dimensionless Richardson number is at the order of unity and thus characterizes a plume flow which becomes turbulent due to gravitational accelerations. Two large exterior regions are added to the computational domain to model correctly the exchange between the in/out flows at both vents and the outer environment. Two meshes are used in this study; a first consisting of 250 million cells while the second has 2 billion cells to ensure the fine DNS resolution at the level of Kolmogorov and Batchelor length scales. The high performance computation (HPC) platform TRUST is employed where the computational domain is distributed up to 5.104 central processing unit (CPU) cores. A detailed description of the flow structure and the hydrogen dispersion is provided where the sharp effect of the cross-flow on the plume is analyzed. Comparisons versus the experimental measurements show a very good agreement where both the bi-layer Linden regime and the maximal concentration in the top homogeneous layer are correctly reproduced by the DNS. This result is extremely important and breaks the limitations shown previously with statistical RANS approaches and LES models. This study can be considered as a good candidate for any further improvements of the theoretical industrial plume models in general and for the estimation of the non-constant entrainment coefficient in particular.
No more items...