Safety
Investigation into the Cross-sensitivity of Domestic Carbon Monoxide Alarms to Hydrogen
Sep 2021
Publication
Preliminary research suggests domestic carbon monoxide detectors with an electrochemical sensor are approximately 10 -20% sensitive to hydrogen atmospheres in their factory configuration. That is the display on a carbon monoxide detector would give a carbon monoxide reading of approximately 10-20% of the concentration of hydrogen it is exposed to. Current British standards require detectors to sound an alarm within three minutes when subjected to a continuous concentration of ≥ 300 ppm CO. This would equate to a concentration of 1500-3000 ppm hydrogen in air or approximately 3.75 – 7% %LEL. The current evacuation criteria for a natural gas leak in a domestic property is 20 %LEL indicating that standard carbon monoxide detectors could be used as cheap and reliable early warning systems for hydrogen leaks. Given the wide use of carbon monoxide detectors and the affordability of the devices the use of carbon monoxide detectors for hydrogen detection is of particular interest as the UK drives towards energy decarbonisation. Experiments to determine the exact sensitivity of a range of the most common domestic carbon monoxide detectors have been completed by DNV Spadeadam Research & Testing. Determining the effects of repeated exposure to varying concentrations of hydrogen in air on the sensitivity of electrochemical sensors allows recommendations to be made on their adoption as hydrogen detectors. Changing the catalysts used within the electrochemical cell would improve the sensitivity to hydrogen however simply calibrating the sensor to report a concentration of hydrogen rather than carbon monoxide would represent no additional costs to manufacturers. Having determined the suitability of such sensors at an early stage; the technology can then be linked with other technological developments required for the change to hydrogen for domestic heating (e.g. change in metering equipment and appliances). This report finds that from five simple and widely available carbon monoxide detectors the lowest sensitivity to hydrogen measured at the concentration required to sound an alarm within three minutes was approximately 10%. It was also discovered that as the hydrogen concentration was increased over the range tested the sensitivity to hydrogen also increased. It is proposed that coupling these devices with other elements of the domestic gas system would allow actions such as remote meter isolation or automatic warning signals sent to response services would provide a reliable and inherently safe system for protecting occupants as gas networks transition to net-zero greenhouse gas emissions. In this respect it is noted that wireless linking of smoke and heat detectors for domestic application is already widely available in low-cost devices. This could be extended to CO detectors adapted for hydrogen use.
Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators
Jul 2021
Publication
Transformers are generally considered to be the costliest assets in a power network. The lifetime of a transformer is mainly attributable to the condition of its solid insulation which in turn is measured and described according to the degree of polymerization (DP) of the cellulose. Since the determination of the DP index is complex and time-consuming and requires the transformer to be taken out of service utilities prefer indirect and non-invasive methods of determining the DP based on the byproduct of cellulose aging. This paper analyzes solid insulation degradation by measuring the furan concentration recently introduced methanol and dissolved gases like carbon oxides and hydrogen in the insulating oil. A group of service-aged distribution transformers were selected for practical investigation based on oil samples and different kinds of tests. Based on the maintenance and planning strategy of the power utility and a weighted combination of measured chemical indicators a neural network was also developed to categorize the state of the transformer in certain classes. The method proved to be able to improve the diagnostic capability of chemical indicators thus providing power utilities with more reliable maintenance tools and avoiding catastrophic failure of transformers.
Review of the Durability of Polymer Electrolyte Membrane Fuel Cell in Long-Term Operation: Main Influencing Parameters and Testing Protocols
Jul 2021
Publication
Durability is the most pressing issue preventing the efficient commercialization of polymer electrolyte membrane fuel cell (PEMFC) stationary and transportation applications. A big barrier to overcoming the durability limitations is gaining a better understanding of failure modes for user profiles. In addition durability test protocols for determining the lifetime of PEMFCs are important factors in the development of the technology. These methods are designed to gather enough data about the cell/stack to understand its efficiency and durability without causing it to fail. They also provide some indication of the cell/stack’s age in terms of changes in performance over time. Based on a study of the literature the fundamental factors influencing PEMFC long-term durability and the durability test protocols for both PEMFC stationary and transportation applications were discussed and outlined in depth in this review. This brief analysis should provide engineers and researchers with a fast overview as well as a useful toolbox for investigating PEMFC durability issues.
Evaluation of Safety Measures of a Hydrogen Fueling Station Using Physical Modeling
Oct 2018
Publication
Hydrogen fueling stations are essential for operating fuel cell vehicles. If multiple safety measures in a hydrogen fueling station fail simultaneously it could lead to severe consequences. To analyze the risk of such a situation we developed a physical model of a hydrogen fueling station which when using the temperature pressure and flow rate of hydrogen could be simulated under normal and abnormal operating states. The physical model was validated by comparing the analytical results with the experimental results of an actual hydrogen fueling station. By combining the physical model with a statistical method we evaluated the significance of the safety measures in the event wherein multiple safety measures fail simultaneously. We determined the combinations of failures of safety measures that could lead to accidents and suggested a measure for preventing and mitigating the accident scenario.
Hydrogen Dispersion and Ventilation Effects in Enclosures under Different Release Conditions
Apr 2021
Publication
Hydrogen is an explosive gas which could create extremely hazardous conditions when released into an enclosure. Full-scale experiments of hydrogen release and dispersion in the confined space were conducted. The experiments were performed for hydrogen release outflow of 63 × 10−3 m3/s through a single nozzle and multi-point release way optionally. It was found that the hydrogen dispersion in an enclosure strongly depends on the gas release way. Significantly higher hydrogen stratification is observed in a single nozzle release than in the case of the multi-point release when the gas concentration becomes more uniform in the entire enclosure volume. The experimental results were confirmed on the basis of Froud number analysis. The CFD simulations realized with the FDS code by NIST allowed visualization of the experimental hydrogen dispersion phenomenon and confirmed that the varied distribution of hydrogen did not affect the effectiveness of the accidental mechanical ventilation system applied in the tested room.
Hy4Heat Safety Assessment: Conclusions Report (Incorporating Quantitative Risk Assessment) - Work Package 7
May 2021
Publication
The Hy4Heat Safety Assessment has focused on assessing the safe use of hydrogen gas in certain types of domestic properties and buildings. The summary reports (the Precis and the Safety Assessment Conclusions Report) bring together all the findings of the work and should be looked to for context by all readers. The technical reports should be read in conjunction with the summary reports. While the summary reports are made as accessible as possible for general readers the technical reports may be most accessible for readers with a degree of technical subject matter understanding. All of the safety assessment reports have now been reviewed by the HSE.<br/><br/>A comparative risk assessment of natural gas versus hydrogen gas including a quantitative risk assessment; and identification of control measures to reduce risk and manage hydrogen gas safety for a community demonstration.
Large-eddy Simulation of Tri-fuel Combustion: Diesel Spray Assisted Ignition of Methanol-hydrogen Blends
May 2021
Publication
Development of marine engines could largely benefit from the broader usage of methanol and hydrogen which are both potential energy carriers. Here numerical results are presented on tri-fuel (TF) ignition using large-eddy simulation (LES) and finite-rate chemistry. Zero-dimensional (0D) and three-dimensional (3D) simulations for n-dodecane spray ignition of methanol/hydrogen blends are performed. 0D results reveal the beneficial role of hydrogen addition in facilitating methanol ignition. Based on LES the following findings are reported: 1) Hydrogen promotes TF ignition significantly for molar blending ratios βX = [H2]/([H2]+[CH3OH]) ≥0.8. 2) For βX = 0 unfavorable heat generation in ambient methanol is noted. We provide evidence that excessive hydrogen enrichment (βX ≥ 0.94) potentially avoids this behavior consistent with 0D results. 3) Ignition delay time is advanced by 23–26% with shorter spray vapor penetrations (10–15%) through hydrogen mass blending ratios 0.25/0.5/1.0. 4) Last adding hydrogen increases shares of lower and higher temperature chemistry modes to total heat release.
Hy4Heat Hydrogen Colourant Report
May 2021
Publication
As part of Work Package 2 (WP2) of the Hy4Heat programme DNV produced a substantive report regarding colourant within a potential hydrogen gas network within the UK. Considering the advances within the hydrogen industry over the past year this covering document provides an update to the results as presented by DNV based on current industry progress and research.
The Hydrogen Colourant report was a study to determine if there is a requirement for adding a colourant to hydrogen to ensure that safe burning and user acceptance is achieved and to investigate the optimum solution if a colourant is required. The recommendation is that adding colourant to a future hydrogen gas network for use within buildings is not necessary if engineering measures are put in place to enable safe appliance operation."
- Advancements have been made in the understanding of key topics:
- Flame visibility and supervision
- Health and safety of colourant additives
- Production of Nitrogen Oxides (NOx)
- Likelihood of ignition from domestic electrical installations
- Nature of gas escapes
The Hydrogen Colourant report was a study to determine if there is a requirement for adding a colourant to hydrogen to ensure that safe burning and user acceptance is achieved and to investigate the optimum solution if a colourant is required. The recommendation is that adding colourant to a future hydrogen gas network for use within buildings is not necessary if engineering measures are put in place to enable safe appliance operation."
Combustion Characteristics of Premixed Hydrogen/Air in an Undulate Microchannel
Jan 2022
Publication
This work reports a numerical investigation of microcombustion in an undulate microchannel using premixed hydrogen and air to understand the effect of the burner design on the flame in order to obtain stability of the flame. The simulations were performed for a fixed equivalence ratio and a hyperbolic temperature profile imposed at the microchannel walls in order to mimic the heat external losses occurred in experimental setups. Due to the complexity of the flow dynamics combined with the combustion behavior the present study focuses on understanding the effect of the fuel inlet rate on the flame characteristics keeping other parameters constant. The results presented stable flame structure regardless of the inlet velocity for this type of design meaning that a significant reduction in the heat flux losses through the walls occurred allowing the design of new simpler systems. The increase in inlet velocity increased the flame extension with the flame being stretched along the microchannel. For higher velocities flame separation was observed with two detected different combustion zones and the temperature profiles along the burner centerline presented a non-monotonic decrease due to the dynamics of the vortices observed in the convex regions of the undulated geometry walls. The geometry effects on the flame structure flow field thermal evolution and species distribution for different inlet velocities are reported and discussed.
Cold Hydrogen Blowdown Release: An Inter-comparison Study
Sep 2021
Publication
Hydrogen dispersion in stagnant environment resulting from blowdown of a vessel storing the gas at cryogenic temperature is simulated using different CFD codes and modelling strategies. The simulations are based on the DISCHA experiments that were carried out by Karlsruhe Institute of Technology (KIT) and Pro-Science (PS). The selected test for the current study involves hydrogen release from a 2.815 dm3 volume tank with an initial pressure of 200 barg and temperature 80 K. During the release the hydrogen pressure in the tank gradually decreased. A total of about 139 gr hydrogen is released through a 4 mm diameter. The temperature time series and the temperature decay rate of the minimum value predicted by the different codes are compared with each other and with the experimentally measured ones. Recommendations for future experimental setup and for modeling approaches for similar releases are provided based on the present analysis. The work is carried out within the EU-funded project PRESLHY.
Hydrogen Safety Prediction and Analysis of Hydrogen Refueling Station Leakage Accidents and Process Using Multi-Relevance Machine Learning
Oct 2021
Publication
Hydrogen energy vehicles are being increasingly widely used. To ensure the safety of hydrogenation stations research into the detection of hydrogen leaks is required. Offline analysis using data machine learning is achieved using Spark SQL and Spark MLlib technology. In this study to determine the safety status of a hydrogen refueling station we used multiple algorithm models to perform calculation and analysis: a multi-source data association prediction algorithm a random gradient descent algorithm a deep neural network optimization algorithm and other algorithm models. We successfully analyzed the data including the potential relationships internal relationships and operation laws between the data to detect the safety statuses of hydrogen refueling stations.
Some Fundamental Combustion Properties of "Cryogenic" Premixed Hydrogen Air Flames
Sep 2021
Publication
Because of the emergence of the U.E. “green deal” and because of the significant implication of national and regional authorities throughout Europe the “hydrogen” economy is emerging. And with it numerous questions and experimentations. One of them perhaps a key point is the storage and transport of hydrogen. Liquid hydrogen in cryogenic conditions is a possibility already used in the space industry but under a lot of constrains. What may be acceptable in a well-controlled and restrained domain may not be realistic in a wider application closer to the public. Safety should be ensured and there is a need for a better knowledge of the flammable and ignition properties of the “cold” hydrogen mixtures following a cryogenic spillage for instance to select adequate ATEX equipment. The purpose of PRESLHY project [4] is to investigate the ignition fire and explosion characteristics of cryogenic hydrogen spillages and to propose safety engineering methods. The present work is part of it and addresses the measurement of the laminar burning velocity (Sl) flammability limits (FL) minimum ignition energy (MIE)… of hydrogen air mixtures at atmospheric pressure but down to -150°C. To do this a special burner was designed with details given inside this paper together with the experimental results. It is found that the FL domain is reduced when the temperature drops that MIE increases slightly and Sl decreases.
Flame Characteristics of Ignited under-expanded Cryogenic Hydrogen Jets
Sep 2021
Publication
The anticipated upscaling of hydrogen energy applications will involve the storage and transport of hydrogen in a cryogenic state. Understanding the potential hazard arising from small leaks in pressurized storage and transport systems is needed to assist safety analysis and development of mitigation measures. The current knowledge of the ignited pressurized cryogenic hydrogen jet flame is limited. Large eddy simulation (LES) with detailed hydrogen chemistry is applied for the reacting flow. The effects of ignition locations are considered and the initial development of the transient flame kernel from the ignition hot spots is analysed. The flame structures namely side flames and envelop flames are observed in the study which are due to the complex interactions between turbulence fuel-air mixing at cryogenic temperature and chemical reactions.
Study of the Effects of Changes in Gas Composition as Well as Ambient and Gas Temperature on Errors of Indications of Thermal Gas Meters
Oct 2020
Publication
Thermal gas meters represent a promising technology for billing customers for gaseous fuels however it is essential to ensure that measurement accuracy is maintained in the long term and in a broad range of operating conditions. The effect of hydrogen addition to natural gas will change the physicochemical properties of the mixture of natural gas and hydrogen. Such a mixture will be supplied through the gas system to consumers including households where the amounts of received gas will be metered. The physicochemical properties of hydrogen including the specific density or viscosity differ significantly from those of the natural gas components such as methane ethane propane nitrogen etc. Therefore it is of utmost importance to establish the impact of the changes in the gas composition caused by the addition of hydrogen to natural gas on the metrological properties of household gas meters including thermal gas meters. Furthermore since household gas meters can be installed outdoors and taking into account the fact that household gas meters are good heat exchangers the influence of ambient and gas temperature on the metrological properties of those meters should be investigated. This article reviews a test bench and a testing method concerning errors of thermal gas meter indicators using air and natural gas including the type containing hydrogen. The indication errors for thermal gas meters using air natural gas and natural gas with an addition of 2% 4% 5% 10% and 15% hydrogen were determined and then subjected to metrological analysis. Moreover the test method and test bench are discussed and the results of tests on the impact of ambient and gas temperatures (-25 ◦C and 55 ◦C respectively) on the errors of indications of thermal gas meters are presented. Conclusions for distribution system operators in terms of gas meter selection were drawn based on the test results.
Hy4Heat Domestic Hydrogen Purge Procedures - Work Package 4
Jun 2021
Publication
The aim of this project was to review the current purge standards for UK domestic installations in particular IGEM/UP/1B and carry out experiments to assess the validity of those standards for use in hydrogen in order to understand and recommend safe purge practices for hydrogen in a domestic environment.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
- changeover to hydrogen will result in an increased risk of flammability inside the installation pipework
- changeover to hydrogen will result in a reduced risk of a build-up of flammable gas in any room where purging occurs.
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
Establishing the State of the Art for the Definition of Safety Distances for Hydrogen Refuelling Stations
Sep 2021
Publication
Hydrogen is widely considered a clean source of energy from the viewpoint of reduction in carbon dioxide emissions as a countermeasure against global warming and air pollution. Various efforts have been made to develop hydrogen as a viable energy carrier including the implementation of fuel cell vehicles (FCVs) and hydrogen refuelling stations (HRSs). A good network of hydrogen refuelling stations is essential for operating FCVs and several hydrogen refuelling stations have been constructed and are in operation worldwide [1]. However despite the potential benefits of hydrogen its flammability creates significant safety concerns. Furthermore even though the energy density of hydrogen is lower than that of gasoline and there is no carbon present which means the amount of radiant heat flux released during combustion is relatively small hydrogen must be handled at high pressure in order to make the cruising range of a fuel cell vehicle (FCV) equal to that of gasoline-powered vehicles. Therefore it is essential to properly evaluate these safety concerns and take reasonable and effective countermeasures. Approximately 50 accidents and incidents involving HRSs have been reported globally [2]. Sakamoto et al. [2] analysed accidents and incidents at HRSs in Japan and the USA to identify the safety issues. Most types of accidents and incidents are small leakages of hydrogen but some have led to serious consequences such as fire and explosion. Recently there was a serious incident in Norway at Kjørbo where a strong explosion was observed [3] – indeed this was within a short time of two other serious incidents in the USA and South Korea showing that the frequency of such incidents may be higher as deployments increase. Use of hydrogen forklifts (and the associated refuelling infrastructure) is another challenge to consider. Hydrogen refuelling stations are often installed in urban areas facing roads and are readily accessible to everyone. Therefore a key measure to approve the hydrogen refuelling stations is safety distances between the hydrogen infrastructure and the surrounding structures such as office buildings or residential dwellings. Whilst a lot of work has been carried out on safety distances (see e.g. [4-6) the accident scenario assumptions and safety distances varied widely in those studies. As a result no consensus has yet emerged on the safety distances to be used and efforts are still needed to bridge the gap between international standards and local regulations (see e.g. [7-8]). The paper analyses this issue and provides guidance on the way forward.
Experimental Investigation on the Burning Behavior of Homogenous H2-CO-Air Mixtures in an Obstructed Semi-confined Channel
Sep 2021
Publication
In the current work the combustion behavior of hydrogen-carbon monoxide-air mixtures in semiconfined geometries is investigated in a large horizontal channel facility (dimensions 9 m x 3 m x 0.6 m (L x W x H)) as a part of a joint German nuclear safety project. In the channel with evenly distributed obstacles (blockage ratio 50%) and an open to air ground face homogeneous H2-CO-air mixtures are ignited at one end. The combustion behavior of the mixture is analyzed using the signals of pressure sensors modified thermocouples and ionization probes for flame front detection that are distributed along the channel ceiling. In the experiments various fuel concentrations (cH2 + cCO = 14 to 22 Vol%) with different H2:CO ratios (75:25 50:50 and 25:75) are used and the transition regions for a significant flame acceleration to sonic speed (FA) as well as to a detonation (DDT) are investigated. The conditions for the onset of these transitions are compared with earlier experiments performed in the same facility with H2-air mixtures. The results of this work will help to allow a more realistic estimation of the pressure loads generated by the combustion of H2-CO-air mixtures in obstructed semi-confined geometries.
Hazards Assessment and Technical Actions Due to the Production of Pressured Hydrogen within a Pilot Photovoltaic-electrolyser-fuel Cell Power System for Agricultural Equipment
Jun 2016
Publication
A pilot power system formed by photovoltaic panels alkaline electrolyser and fuel cell stacks was designed and set up to supply the heating system of an experimental greenhouse. The aim of this paper is to analyse the main safety aspects of this power system connected to the management of the pressured hydrogen such as the explosion limits of the mixture hydrogen-oxygen the extension of the danger zone the protection pressure vessels and the system to make unreactive the plant. The electrolyser unit is the core of this plant and from the safety point of view has been equipped with devices able to highlight the mal-functions before they cause damages. Alarm situations are highlighted and the production process is cut off in safe conditions in the event that the operational parameters have an abnormal deviation from the design values. Also the entire power system has been designed so that any failure to its components does not compromise the workers’ safety even if the risk analysis is in progress because technical operation are being carried out for enhancing the plant functionality making it more suitable to the designed task of supplying electrically the green-house heating system during cold periods. Some experimental data pertinent to the solar radiation and the corresponding hydrogen pro-duction rate are also reported. At present it does not exist a well-established safety reference protocol to design the reliability of these types of power plants and then the assumed safety measures even if related to the achieved pilot installation can represent an original base of reference to set up guidelines for designing the safety of power plants in the future available for agricultural purposes.
Safety and Other Considerations in the Development of a Hydrogen Fueling Protocol for Heavy-duty Vehicles
Sep 2021
Publication
Several manufacturers are developing heavy duty (HD) hydrogen stations and vehicles as zeroemissions alternatives to diesel and gasoline. In order to meet customer demands the new technology must be comparable to conventional approaches including safety reliability fueling times and final fill levels. For a large HD vehicle with a storage rated to 70 MPa nominal working pressure the goal to meet liquid fuel parity means providing 100 kg of hydrogen in 10 minutes. This paper summarizes the results to date of the PRHYDE project efforts to define the concepts of HD fueling which thereby lays the groundwork for the development of the safe and effective approach to filling these large vehicles. The project starts by evaluating the impact of several different assumptions such as the availability of static vehicle data (e.g. vehicle tank type and volume) and station data (e.g. expected station precooling capability) but also considers using real time dynamic data (e.g. vehicle tank gas temperature and pressure station gas temperature etc.) for optimisation to achieve safety and efficiency improvements. With this information the vehicle or station can develop multiple maps of fill time versus the hydrogen delivery temperature which are used to determine the speed of fueling. This will also allow the station or vehicle to adjust the rate of fueling as the station pre-cooling levels and other conditions change. The project also examines different steps for future protocol development such as communication of data between the vehicle and station and if the vehicle or station is controlling the fueling.
Hydrogen Blowdown Release Experiments at Different Temperatures in the Discha-facility
Sep 2021
Publication
In this work experiments on horizontal hydrogen jet releases from a 2.815 dm³ volume tank to the ambience are described. For the main experimental series tank valve and release line were cooled down to a temperature of approx. 80 K in a bath of liquid nitrogen. As a reference similar experiments were also performed with the uncooled tank at ambient temperature. The releases were carried out through four nozzles with different circular orifice diameters from 0.5 to 4 mm and started from initial tank pressures from 0.5 to 20 MPa (rel.). During the releases pressures and temperatures inside the vessel as well as inside the release line were measured. Outside the nozzle further temperature and hydrogen concentration measurements were performed along and besides the jet axis. The electrostatic field builtup in the jet was monitored using two field meters in different distances from the release nozzle and optical observation via photo and video-cameras was performed for the visualization of the H2-jet via the BOS-method. The experiments were performed in the frame of the EU-funded project PRESHLY in which several tests of this program were selected for a comparative computational study the results of which will also be presented at this conference. So on the one hand the paper gives a comprehensive description of the facility on the other hands it also describes the experimental procedure and the main findings.
No more items...