Transmission, Distribution & Storage
Synthesis of Spherical V-Nb-Mo-Ta-W High-Entropy Alloy Powder Using Hydrogen Embrittlement and Spheroidization by Thermal Plasma
Dec 2019
Publication
V-Nb-Mo-Ta-W high-entropy alloy (HEA) one of the refractory HEAs is considered as a next-generation structural material for ultra-high temperature uses. Refractory HEAs have low castability and machinability due to their high melting temperature and low thermal conductivity. Thus powder metallurgy becomes a promising method for fabricating components with refractory HEAs. Therefore in this study we fabricated spherical V-Nb-Mo-Ta-W HEA powder using hydrogen embrittlement and spheroidization by thermal plasma. The HEA ingot was prepared by vacuum arc melting and revealed to have a single body-centered cubic phase. Hydrogen embrittlement which could be achieved by annealing in a hydrogen atmosphere was introduced to get the ingot pulverized easily to a fine powder having an angular shape. Then the powder was annealed in a vacuum atmosphere to eliminate the hydrogen from the hydrogenated HEA resulting in a decrease in the hydrogen concentration from 0.1033 wt% to 0.0003 wt%. The angular shape of the HEA powder was turned into a spherical one by inductively-coupled thermal plasma allowing to fabricate spherical V-Nb-Mo-Ta-W HEA powder with a d50 value of 28.0 μm.
Insight into Anomalous Hydrogen Adsorption on Rare Earth Metal Decorated on 2 Dimensional Hexagonal Boron Nitride a Density Functional Theory Study
Mar 2020
Publication
Hydrogen interaction with metal atoms is of prime focus for many energy related applications like hydrogen storage hydrogen evolution using catalysis etc. Although hydrogen binding with many main group alkaline and transition metals is quite well understood its binding properties with lanthanides are not well reported. In this article by density functional theory studies we show how a rare earth metal cerium binds with hydrogen when decorated over a heteropolar 2D material hexagonal boron nitride. Each cerium adatom is found to bind eight hydrogen molecules which is a much higher number than has been reported for transition metal atoms. However the highest binding energy occurs at four hydrogen molecules. This anomaly therefore is investigated in the present article using first-principles calculations. The number density of hydrogen molecules adsorbed over the cerium adatom is explained by investigating the electronic charge volume interactions owing to a unique geometrical arrangement of the guest hydrogen molecules. The importance of geometrical encapsulation in enhancing electronic interactions is explained.
Critical Assessment of the Effect of Atmospheric Corrosion Induced Hydrogen on Mechanical Properties of Advanced High Strength Steel
Dec 2020
Publication
Hydrogen absorption into steel during atmospheric corrosion has been of a strong concern during last decades. It is technically important to investigate if hydrogen absorbed under atmospheric exposure conditions can significantly affect mechanical properties of steels. The present work studies changes of mechanical properties of dual phase (DP) advanced high strength steel specimens with sodium chloride deposits during corrosion in humid air using Slow Strain Rate Test (SSRT). Additional annealed specimens were used as reference in order to separate the possible effect of absorbed hydrogen from that of corrosion deterioration. Hydrogen entry was monitored in parallel experiments using hydrogen electric resistance sensor (HERS) and thermal desorption mass spectrometry (TDMS). SSRT results showed a drop in elongation and tensile strength by 42% and 6% respectively in 27 days of atmospheric exposure. However this decrease cannot be attributed to the effect of absorbed hydrogen despite the increase in hydrogen content with time of exposure. Cross-cut analysis revealed considerable pitting which was suggested to be the main reason for the degradation of mechanical properties
Seasonal Energy Storage in Aluminium for 100 Percent Solar Heat and Electricity Supply
Sep 2019
Publication
In order to reduce anthropogenic global warming governments around the world have decided to reduce CO2 emissions from fossil fuels dramatically within the next decades. In moderate and cold climates large amounts of fossil fuels are used for space heating and domestic hot water production in winter. Although on an annual base solar energy is available in large quantities in these regions least of the solar resource is available in winter when most of the energy is needed. Therefore solutions are needed to store and transfer renewable energy from summer to winter. In this paper a seasonal energy storage based on the aluminium redox cycle (Al3+→Al→ Al3+) is proposed. For charging electricity from solar or other renewable sources is used to convert aluminium oxide or aluminium hydroxide to elementary aluminium (Al3+→Al). In the discharging process aluminium is oxidized (Al→Al3+) releasing hydrogen heat and aluminium hydroxide or aluminium oxide as a by-product. Hydrogen is used in a fuel cell to produce electricity. Heat produced from the aluminium oxidation process and by the fuel cell is used for domestic hot water production and space heating. The chemical reactions and energy balances are presented and simulation results are shown for a system that covers the entire energy demand for electricity space heating and domestic hot water of a new multi-family building with rooftop photovoltaic energy in combination with the seasonal Al energy storage cycle. It shows that 7–11 kWp of photovoltaic installations and 350–530 kg Al would be needed per apartment for different Swiss climates. Environmental life cycle data shows that the global warming potential and non-renewable primary energy consumption can be reduced significantly compared to today's common practice of heating with natural gas and using electricity from the ENTSO-E network. The presumptive cost were estimated and indicate a possible cost-competitiveness for this system in the near future.
Highly Porous Organic Polymers for Hydrogen Fuel Storage
Apr 2019
Publication
Hydrogen (H2) is one of the best candidates to replace current petroleum energy resources due to its rich abundance and clean combustion. However the storage of H2presents a major challenge. There are two methods for storing H2 fuel chemical and physical both of which have some advantages and disadvantages. In physical storage highly porous organic polymers are of particular interest since they are low cost easy to scale up metal-free and environmentally friendly.
In this review highly porous polymers for H2 fuel storage are examined from five perspectives:
(a) brief comparison of H2 storage in highly porous polymers and other storage media;
(b) theoretical considerations of the physical storage of H2 molecules in porous polymers;
(c) H2 storage in different classes of highly porous organic polymers;
(d) characterization of microporosity in these polymers; and
(e) future developments for highly porous organic polymers for H2 fuel storage. These topics will provide an introductory overview of highly porous organic polymers in H2 fuel storage.
In this review highly porous polymers for H2 fuel storage are examined from five perspectives:
(a) brief comparison of H2 storage in highly porous polymers and other storage media;
(b) theoretical considerations of the physical storage of H2 molecules in porous polymers;
(c) H2 storage in different classes of highly porous organic polymers;
(d) characterization of microporosity in these polymers; and
(e) future developments for highly porous organic polymers for H2 fuel storage. These topics will provide an introductory overview of highly porous organic polymers in H2 fuel storage.
Freeze-dried Ammonia Borane-polyethylene Oxide Composites: Phase Behaviour and Hydrogen Release
Feb 2018
Publication
A solid-state hydrogen storage material comprising ammonia borane (AB) and polyethylene oxide (PEO) has been produced by freeze-drying from aqueous solutions from 0% to 100% AB by mass. The phase mixing behaviour of AB and PEO has been investigated using X-ray diffraction which shows that a new ‘intermediate’ crystalline phase exists different from both AB and PEO as observed in our previous work (Nathanson et al. 2015). It is suggested that hydrogen bonding interactions between the ethereal oxygen atom (–O–) in the PEO backbone and the protic hydrogen atoms attached to the nitrogen atom (N–H) of AB molecules promote the formation of a reaction intermediate leading to lowered hydrogen release temperatures in the composites compared to neat AB. PEO also acts to significantly reduce the foaming of AB during hydrogen release. A temperature-composition phase diagram has been produced for the AB-PEO system to show the relationship between phase mixing and hydrogen release.
Flexible Power and Hydrogen Production: Finding Synergy Between CCS and Variable Renewables
Dec 2019
Publication
The expansion of wind and solar power is creating a growing need for power system flexibility. Dispatchable power plants with CO2 capture and storage (CCS) offer flexibility with low CO2 emissions but these plants become uneconomical at the low running hours implied by renewables-based power systems. To address this challenge the novel gas switching reforming (GSR) plant was recently proposed. GSR can alternate between electricity and hydrogen production from natural gas offering flexibility to the power system without reducing the utilization rate of the capital stock embodied in CCS infrastructure. This study assesses the interplay between GSR and variable renewables using a power system model which optimizes investment and hourly dispatch of 13 different technologies. Results show that GSR brings substantial benefits relative to conventional CCS. At a CO2 price of V100/ton inclusion of GSR increases the optimal wind and solar share by 50% lowers total system costs by 8% and reduces system emissions from 45 to 4 kgCO2/MWh. In addition GSR produces clean hydrogen equivalent to about 90% of total electricity demand which can be used to decarbonize transport and industry. GSR could therefore become a key enabling technology for a decarbonization effort led by wind and solar power.
Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe
Nov 2016
Publication
Among the several typologies of storage technologies mainly on different physical principles (mechanical electrical and chemical) hydrogen produced by power to gas (P2G) from renewable energy sources complies with chemical storage principle and is based on the conversion of electrical energy into chemical energy by means of the electrolysis of water which does not produce any toxic or climate-relevant emission. This paper aims to pinpoint the potential uses of renewable hydrogen storage systems in Europe analysing current and potential locations regulatory framework governments’ outlooks economic issues and available renewable energy amounts. The expert opinion survey already used in many research articles on different topics including energy has been selected as an effective method to produce realistic results. The obtained results highlight strategies and actions to optimize the storage of hydrogen produced by renewables to face varying electricity demand and generation-driven fluctuations reducing the negative effects of the increasing share of renewables in the energy mix of European Countries.
Study on Early Business Cases for H2 In Energy Storage and More Broadly Power to H2 Applications
Jun 2017
Publication
Hydrogen is widely recognised as a promising option for storing large quantities of renewable electricity over longer periods. For that reason in an energy future where renewables are a dominant power source opportunities for Power to- Hydrogen in the long-term appear to be generally acknowledged. The key challenge today is to identify concrete short-term investment opportunities based on sound economics and robust business cases. The focus of this study is to identify these early business cases and to assess their potential replicability within the EU from now until 2025. An essential part and innovative approach of this study is the detailed analysis of the power sector including its transmission grid constraints.
Metal Hydride Hydrogen Compressors
Feb 2014
Publication
Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage hydrogen sorption kinetics and effective thermal conductivity) the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors reduction of slope of the isotherms and hysteresis increase of cycling stability and life time together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.<br/>The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal–hydrogen systems suitable for the hydrogen compression; and (b) applied aspects including their consideration from the applied thermodynamic viewpoint system design features and performances of the metal hydride compressors and major applications.
Aging Effects on Modelling and Operation of a Photovoltaic System with Hydrogen Storage
Jun 2021
Publication
In this work the aging effects on modelling and operation of a photovoltaic system with hydrogen storage in terms of energy production decrease and demand for additional hydrogen during 10 years of the system operation was analysed for the entire energy system for the first time. The analyses were performed with the support of experimental data for the renewable energy system composed of photovoltaic modules fuel cell electrolysers hydrogen storage and hydrogen backup.<br/>It has been found that the total degradation of the analysed system can be described by the proposed parameter – unit additional hydrogen consumption ratio. The results reveal a 33.2–36.2% increase of the unit fuel requirement from an external source after 10 years in reference to the initial condition. Degradation of the components can on the other hand be well described with the unit hydrogen consumption ratio by fuel cell for electricity or the unit electricity consumption ratio by electrolyser for hydrogen production which has been found to vary for the electrolyser in the range of 4.6–4.9% and for the fuel cell stack in the range of 13.4–15.1% during the 10 years of the system operation. The analyses indicate that this value depends on the load profile and PV module types and the system performance decline is non-linear."
Balancing Wind-power Fluctuation Via Onsite Storage Under Uncertainty Power-to-hydrogen-to-power Versus Lithium Battery
Oct 2019
Publication
Imbalance costs caused by forecasting errors are considerable for grid-connected wind farms. In order to reduce such costs two onsite storage technologies i.e. power-to-hydrogen-to-power and lithium battery are investigated considering 14 uncertain technological and economic parameters. Probability density distributions of wind forecasting errors and power level are first considered to quantify the imbalance and excess wind power. Then robust optimal sizing of the onsite storage is performed under uncertainty to maximize wind-farm profit (the net present value). Global sensitivity analysis is further carried out for parameters prioritization to highlight the key influential parameters. The results show that the profit of power-to-hydrogen-to-power case is sensitive to the hydrogen price wind forecasting accuracy and hydrogen storage price. When hydrogen price ranges in (2 6) €/kg installing only electrolyzer can earn profits over 100 k€/MWWP in 9% scenarios with capacity below 250 kW/MWWP under high hydrogen price (over 4 €/kg); while installing only fuel cell can achieve such high profits only in 1.3% scenarios with capacity below 180 kW/MWWP. Installing both electrolyzer and fuel cell (only suggested in 22% scenarios) results in profits below 160 k€/MWWP and particularly 20% scenarios allow for a profit below 50 k€/MWWP due to the contradictory effects of wind forecasting error hydrogen and electricity price. For lithium battery investment cost is the single highly influential factor which should be reduced to 760 €/kWh. The battery capacity is limited to 88 kW h/MWWP. For profits over 100 k€/MWWP (in 3% scenarios) the battery should be with an investment cost below 510 €/kWh and a depth of discharge over 63%. The power-to-hydrogen-to-power case is more advantageous in terms of profitability reliability and utilization factor (full-load operating hours) while lithium battery is more helpful to reduce the lost wind and has less environmental impact considering current hydrogen market.
Location-dependent Effect of Nickel on Hydrogen Dissociation and Diffusion on Mg (0001) Surface: Insights into Hydrogen Storage Material Design
Apr 2021
Publication
Density functional theory (DFT) calculations have been performed to investigate the hydrogen dissociation and diffusion on Mg (0001) surface with Ni incorporating at various locations. The results show that Ni atom is preferentially located inside Mg matrix rather than in/over the topmost surface. Further calculations reveal that Ni atom locating in/over the topmost Mg (0001) surface exhibits excellent catalytic effect on hydrogen dissociation with an energy barrier of less than 0.05 eV. In these cases the rate-limiting step has been converted from hydrogen dissociation to surface diffusion. In contrast Ni doping inside Mg bulk not only does little help to hydrogen dissociation but also exhibits detrimental effect on hydrogen diffusion. Therefore it is crucial to stabilize the Ni atom on the surface or in the topmost layer of Mg (0001) surface to maintain its catalytic effect. For all the case of Ni-incorporated Mg (0001) surfaces the hydrogen atom prefers firstly immigrate along the surface and then penetrate into the bulk. It is expected that the theoretical findings in the present study could offer fundamental guidance to future designing on efficient Mg-based hydrogen storage materials.
Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
Jun 2021
Publication
Renewable methanol obtained from CO2 and hydrogen provided from renewable energy was proposed to close the CO2 loop. In industry methanol synthesis using the catalyst CuO/ZnO/Al2O3 occurs at a high pressure. We intend to make certain modification on the traditional catalyst to work at lower pressure maintaining high selectivity. Therefore three heterogeneous catalysts were synthesized by coprecipitation to improve the activity and the selectivity to methanol under mild conditions of temperature and pressure. Certain modifications on the traditional catalyst Cu/Zn/Al2O3 were employed such as the modification of the synthesis time and the addition of Pd as a dopant agent. The most efficient catalyst among those tested was a palladium-doped catalyst 5% Pd/Cu/Zn/Al2O3. This had a selectivity of 64% at 210 °C and 5 bar.
Seasonal and Multi-Seasonal Energy Storage by Power-to-Methane Technology
Jun 2021
Publication
The time-range of applicability of various energy-storage technologies are limited by self-discharge and other inevitable losses. While batteries and hydrogen are useful for storage in a time-span ranging from hours to several days or even weeks for seasonal or multi-seasonal storage only some traditional and quite costly methods can be used (like pumped-storage plants Compressed Air Energy Storage or energy tower). In this paper we aim to show that while the efficiency of energy recovery of Power-to-Methane technology is lower than for several other methods due to the low self-discharge and negligible standby losses it can be a suitable and cost-effective solution for seasonal and multi-seasonal energy storage.
Molecular Dynamics Studies of Hydrogen Effect on Intergranular Fracture in α-Iron
Nov 2020
Publication
In the current study the effect of hydrogen atoms on the intergranular failure of α-iron is examined by a molecular dynamics (MD) simulation. The effect of hydrogen embrittlement on the grain boundary (GB) is investigated by diffusing hydrogen atoms into the grain boundaries using a bicrystal body-centered cubic (BCC) model and then deforming the model with a uniaxial tension. The Debye Waller factors are applied to illustrate the volume change of GBs and the simulation results suggest that the trapped hydrogen atoms in GBs can therefore increase the excess volume of GBs thus enhancing intergranular failure. When a constant displacement loading is applied to the bicrystal model the increased strain energy can barely be released via dislocation emission when H is present. The hydrogen pinning effect occurs in the current dislocation slip system <111>{112}. The hydrogen atoms facilitate cracking via a decrease of the free surface energy and enhance the phase transition via an increase in the local pressure. Hence the failure mechanism is prone to intergranular failure so as to release excessive pressure and energy near GBs. This study provides a mechanistic framework of intergranular failure and a theoretical model is then developed to predict the intergranular cracking rate
Research on the Concept of Hydrogen Supply Chains and Power Grids Powered by Renewable Energy Sources: A Scoping Review with the Use of Text Mining
Jan 2022
Publication
The key direction of political actions in the field of sustainable development of the energy sector and economy is the process of energy transformation (decarbonization) and increasing the share of renewable energy sources (RES) in the supply of primary energy. Regardless of the indisputable advantages RES are referred to as unstable energy sources. A possible solution might be the development of the concept of hydrogen supply chains especially the so-called green hydrogen obtained in the process of electrolysis from electricity produced from RES. The aim of the research undertaken in the article is to identify the scope of research carried out in the area of hydrogen supply chains and to link this research with the issues of the operation of electricity distribution networks powered by RES. As a result of the scoping review and the application of the text-mining method using the IRaMuTeQ tool which includes the analysis of the content of 12 review articles presenting the current research achievements in this field over the last three years (2016–2020) it was established that the issues related to hydrogen supply chains including green hydrogen are still not significantly associated with the problem of the operation of power grids. The results of the conducted research allow formulating recommendations for further research areas.
Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure
Dec 2021
Publication
In the research the corrosion and mechanical properties as well as susceptibility to hydrogen embrittlement of two casing pipe steels were investigated in order to assess their serviceability in corrosive and hydrogenating environments under operation in oil and gas wells. Two carbon steels with different microstructures were tested: the medium carbon steel (MCS) with bainitic microstructure and the medium-high carbon steel (MHCS) with ferrite–pearlite microstructure. The results showed that the corrosion resistance of the MHCS in CO2-containing acid chloride solution simulating formation water was significantly lower than that of the MCS which was associated with microstructure features. The higher strength MCS with the dispersed microstructure was less susceptible to hydrogen embrittlement under preliminary electrolytic hydrogenation than the lower strength MHCS with the coarse-grained microstructure. To estimate the embrittlement of steels the method of the FEM load simulation of the specimens with cracks was used. The constitutive relations of the true stress–strain of the tested steels were defined. The stress and strain dependences in the crack tip were calculated. It was found that the MHCS was characterized by the lower plasticity on the stage of the neck formation of the specimen and the lower fracture toughness than the other one. The obtained results demonstrating the limitations of the usage of casing pipes made of the MHCS with the coarse-grained ferrite/pearlite microstructure in corrosive and hydrogenating environments were discussed.
Prospects of Enhancing the Understanding of Material-hydrogen Interaction by Novel In-situ and In-operando Methods
Jan 2022
Publication
A main scientific and technical challenge facing the implementation of new and sustainable energy sources is the development and improvement of materials and components. In order to provide commercial viability of these applications an intensive research in material-hydrogen (H) interaction is required. This work provides an overview of recently developed in-situ and in-operando H-charging methods and their applicability to investigate mechanical properties H-absorption characteristics and H embrittlement (HE) susceptibility of a wide range of materials employed in H-related technologies such as subsea oil and gas applications nuclear fusion and fuel cells.
Influence of Pressure, Temperature and Organic Surface Concentration on Hydrogen Wettability of Caprock; Implications for Hydrogen Geo-storage
Sep 2021
Publication
Hydrogen (H2) as a cleaner fuel has been suggested as a viable method of achieving the decarbonization objectives and meeting increasing global energy demand. However successful implementation of a full-scale hydrogen economy requires large-scale hydrogen storage (as hydrogen is highly compressible). A potential solution to this challenge is injecting hydrogen into geologic formations from where it can be withdrawn again at later stages for utilization purposes. The geostorage capacity of a porous formation is a function of its wetting characteristics which strongly influence residual saturations fluid flow rate of injection rate of withdrawal and containment security. However literature severely lacks information on hydrogen wettability in realistic geological and caprock formations which contain organic matter (due to the prevailing reducing atmosphere). We therefore measured advancing (θa) and receding (θr) contact angles of mica substrates at various representative thermo-physical conditions (pressures 0.1-25 MPa temperatures 308–343 K and stearic acid concentrations of 10−9 - 10−2 mol/L). The mica exhibited an increasing tendency to become weakly water-wet at higher temperatures lower pressures and very low stearic acid concentration. However it turned intermediate-wet at higher pressures lower temperatures and increasing stearic acid concentrations. The study suggests that the structural H2 trapping capacities in geological formations and sealing potentials of caprock highly depend on the specific thermo-physical condition. Thus this novel data provides a significant advancement in literature and will aid in the implementation of hydrogen geo-storage at an industrial scale.
No more items...