Transmission, Distribution & Storage
Energy Transition: Measurement Needs for Carbon Capture, Usage and Storage
Jan 2021
Publication
This latest report describes the potential for CCUS as an important technology during the UK’s energy transition and focuses on the role that metrology (the science of measurement) could play in supporting its deployment. High priority measurement needs and challenges identified within this report include:
- Measuring and comparing the efficiency of different capture techniques and configurations to provide confidence in investments into technologies;
- Improving equations of state to support the development of accurate models used for controlling operational conditions;
- Improving CO2 flow measurement to support fiscal and financial metering as well as process control and;
- Improving the understanding and validation of dispersion models for emitted CO2 including plume migration to support safety assessment.
Combined Cooling and Power Management Strategy for a Standalone House Using Hydrogen and Solar Energy
May 2021
Publication
Tropical climate is characterized by hot temperatures throughout the year. In areas subject to this climate air conditioning represents an important share of total energy consumption. In some tropical islands there is no electric grid; in these cases electricity is often provided by diesel generators. In this study in order to decarbonize electricity and cooling production and to improve autonomy in a standalone application a microgrid producing combined cooling and electrical power was proposed. The presented system was composed of photovoltaic panels a battery an electrolyzer a hydrogen tank a fuel cell power converters a heat pump electrical loads and an adsorption cooling system. Electricity production and storage were provided by photovoltaic panels and a hydrogen storage system respectively while cooling production and storage were achieved using a heat pump and an adsorption cooling system respectively. The standalone application presented was a single house located in Tahiti French Polynesia. In this paper the system as a whole is presented. Then the interaction between each element is described and a model of the system is presented. Thirdly the energy and power management required in order to meet electrical and thermal needs are presented. Then the results of the control strategy are presented. The results showed that the adsorption cooling system provided 53% of the cooling demand. The use of the adsorption cooling system reduced the needed photovoltaic panel area the use of the electrolyzer and the use of the fuel cell by more than 60% and reduced energy losses by 7% (compared to a classic heat pump) for air conditioning.
Critical Review of Models for H2-permeation Through Polymers with Focus on the Differential Pressure Method
May 2021
Publication
To reduce loss of hydrogen in storage vessels with high energy-to-weight-ratio new materials especially polymers have to be developed as barrier materials. Very established methods for characterization of barrier materials with permeation measurements are the time-lag and flow rate method along with the differential pressure method which resembles the nature of hydrogen vessel systems very well. Long measurement durations are necessary to gain suitable measurement data for these evaluation methods and often restrictive conditions have to be fulfilled. For these reasons common models for hydrogen permeation through single-layer and multi-layer membranes as well as models for hydrogen gas properties were collected and reviewed. Using current computer power together with these models can reduce measurement time for characterization of the barrier properties of materials while additional information about the quality of the measurement results is obtained.
European Hydrogen Backbone
Jul 2020
Publication
This paper authored by eleven gas infrastructure companies and supported by Guidehouse describes how a dedicated hydrogen infrastructure can be created in
a significant part of the EU between 2030 and 2040 requiring work to start during the 2020s. The hydrogen infrastructure as proposed in this paper fits well with the ambitions of the EU Hydrogen Strategy and the Energy System Integration Strategy plus it aligns well with the goals of the recently announced Clean Hydrogen Alliance to scale up hydrogen enabled by hydrogen transport. Hydrogen clearly gains momentum and this paper aims to provide a contribution towards accelerating a large scale-up of hydrogen by enabling its transport from supply to demand across Europe.
This paper analyses the likely routes across Europe by 2030 2035 and 2040. The included maps show the suggested topology of hydrogen pipelines in ten European countries: Germany France Italy Spain the Netherlands Belgium Czech Republic Denmark Sweden and Switzerland.
You can download the whole report by clicking this link
a significant part of the EU between 2030 and 2040 requiring work to start during the 2020s. The hydrogen infrastructure as proposed in this paper fits well with the ambitions of the EU Hydrogen Strategy and the Energy System Integration Strategy plus it aligns well with the goals of the recently announced Clean Hydrogen Alliance to scale up hydrogen enabled by hydrogen transport. Hydrogen clearly gains momentum and this paper aims to provide a contribution towards accelerating a large scale-up of hydrogen by enabling its transport from supply to demand across Europe.
This paper analyses the likely routes across Europe by 2030 2035 and 2040. The included maps show the suggested topology of hydrogen pipelines in ten European countries: Germany France Italy Spain the Netherlands Belgium Czech Republic Denmark Sweden and Switzerland.
You can download the whole report by clicking this link
Geomechanical Simulation of Energy Storage in Salt Formations
Oct 2021
Publication
A promising option for storing large-scale quantities of green gases (e.g. hydrogen) is in subsurface rock salt caverns. The mechanical performance of salt caverns utilized for long-term subsurface energy storage plays a signifcant role in long-term stability and serviceability. However rock salt undergoes non-linear creep deformation due to long-term loading caused by subsurface storage. Salt caverns have complex geometries and the geological domain surrounding salt caverns has a vast amount of material heterogeneity. To safely store gases in caverns a thorough analysis of the geological domain becomes crucial. To date few studies have attempted to analyze the infuence of geometrical and material heterogeneity on the state of stress in salt caverns subjected to long-term loading. In this work we present a rigorous and systematic modeling study to quantify the impact of heterogeneity on the deformation of salt caverns and quantify the state of stress around the caverns. A 2D fnite element simulator was developed to consistently account for the non-linear creep deformation and also to model tertiary creep. The computational scheme was benchmarked with the already existing experimental study. The impact of cyclic loading on the cavern was studied considering maximum and minimum pressure that depends on lithostatic pressure. The infuence of geometric heterogeneity such as irregularly-shaped caverns and material heterogeneity which involves diferent elastic and creep properties of the diferent materials in the geological domain is rigorously studied and quantifed. Moreover multi-cavern simulations are conducted to investigate the infuence of a cavern on the adjacent caverns. An elaborate sensitivity analysis of parameters involved with creep and damage constitutive laws is performed to understand the infuence of creep and damage on deformation and stress evolution around the salt cavern confgurations.
Power to Hydrogen and Power to Water Using Wind Energy
May 2022
Publication
The need for energy and water security on islands has led to an increase in the use of wind power. However the intermittent nature of wind generation means it needs to be coupled with a storage system. Motivated by this two different models of surplus energy storage systems are investigated in this paper. In both models renewable wind energy is provided by a wind farm. In the first model a pumped hydro storage system (PHS) is used for surplus energy storage while in the second scenario a hybrid pumped hydrogen storage system (HPHS) is applied consisting of a PHS and a hydrogen storage system. The goal of this study is to compare the single and the hybrid storage system to fulfill the energy requirements of the island’s electricity load and desalination demands for domestic and irrigation water. The cost of energy (COE) is 0.287 EUR/kWh for PHS and 0.360 EUR/kWh for HPHS while the loss of load probability (LOLP) is 22.65% for PHS and 19.47% for HPHS. Sensitivity analysis shows that wind speed is the key parameter that most affects COE cost of water (COW) and LOLP indices while temperature affects the results the least.
Mechanical Spectroscopy Investigation of Point Defect-Driven Phenomena in a Cr Martensitic Steel
Oct 2018
Publication
The paper presents and discusses results of mechanical spectroscopy (MS) tests carried out on a Cr martensitic steel. The study regards the following topics: (i) embrittlement induced by Cr segregation; (ii) interaction of hydrogen with C–Cr associates; (iii) nucleation of Cr carbides. The MS technique permitted characterising of the specific role played by point defects in the investigated phenomena: (i) Cr segregation depends on C–Cr associates distribution in as-quenched material in particular a slow cooling rate (~150 K/min) from austenitic field involves an unstable distribution which leads to Cr concentration fluctuations after tempering at 973 K; (ii) hydrogen interacts with C–Cr associates and the phenomenon hinders hydrogen attack (HA) because hydrogen atoms bound by C–Cr associates are not able to diffuse towards grain boundaries and dislocation where CH4 bubbles may nucleate grow and merge to form the typical HA cracks; (iii) C–Cr associates take part in the nucleation mechanism of Cr7C3 carbides and specifically these carbides form by the aggregation of C–Cr associates with 1 Cr atom.
Multiscale Modelling of Hydrogen Transport and Segregation in Polycrystalline Steels
Jun 2018
Publication
A key issue in understanding and effectively managing hydrogen embrittlement in complex alloys is identifying and exploiting the critical role of the various defects involved. A chemo-mechanical model for hydrogen diffusion is developed taking into account stress gradients in the material as well as microstructural trapping sites such as grain boundaries and dislocations. In particular the energetic parameters used in this coupled approach are determined from ab initio calculations. Complementary experimental investigations that are presented show that a numerical approach capable of massive scale-bridging up to the macroscale is required. Due to the wide range of length scales accounted for we apply homogenisation schemes for the hydrogen concentration to reach simulation dimensions comparable to metallurgical process scales. Via a representative volume element approach an ab initio based scale bridging description of dislocation-induced hydrogen aggregation is easily accessible. When we extend the representative volume approach to also include an analytical approximation for the ab initio based description of grain boundaries we find conceptual limitations that hinder a quantitative comparison to experimental data in the current stage. Based on this understanding the development of improved strategies for further efficient scale bridging approaches is foreseen.
The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminium Alloy
Oct 2017
Publication
This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process until the average thickness of the specimens was reduced by 7% and 15% respectively. A study of the structure microhardness and tensile properties of the hydrogen charged aluminium specimens with and without cold rolling indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.
Hydrogen Impacts on Downstream Installation and Appliances
Nov 2019
Publication
The report analyses the technical impacts to end-users of natural gas in Australian distribution networks when up to 10% hydrogen (by volume) is mixed with natural gas.
The full report can be found at this link.
The full report can be found at this link.
Formation Criterion of Hydrogen-Induced Cracking in Steel Based on Fracture Mechanics
Nov 2018
Publication
A new criterion for hydrogen-induced cracking (HIC) that includes both the embrittlement effect and the loading effect of hydrogen was obtained theoretically. The surface cohesive energy and plastic deformation energy are reduced by hydrogen atoms at the interface; thus the fracture toughness is reduced according to fracture mechanics theory. Both the pressure effect and the embrittlement effect mitigate the critical condition required for crack instability extension. During the crack instability expansion the hydrogen in the material can be divided into two categories: hydrogen atoms surrounding the crack and hydrogen molecules in the crack cavity. The loading effect of hydrogen was verified by experiments and the characterization methods for the stress intensity factor under hydrogen pressure in a linear elastic model and an elastoplastic model were analyzed using the finite-element simulation method. The hydrogen pressure due to the aggregation of hydrogen molecules inside the crack cavity regularly contributed to the stress intensity factor. The embrittlement of hydrogen was verified by electrolytic charging hydrogen experiments. According to the change in the atomic distribution during crack propagation in a molecular dynamics simulation the transition from ductile to brittle fracture and the reduction in the fracture toughness were due to the formation of crack tip dislocation regions suppressed by hydrogen. The HIC formation mechanism is both the driving force of crack propagation due to the hydrogen gas pressure and the resisting force reduced by hydrogen atoms.
Prospecting Stress Formed by Hydrogen or Isotope Diffused in Palladium Alloy Cathode
Oct 2018
Publication
The objective of this project is to take into account the mechanical constraints formed by diffusion of hydrogen or tritium in watertight palladium alloy cathode. To know the origin of these it was necessary to discriminating the damaging effects encountered. Effectively hydrogen and isotope induce deformation embrittlement stress corrosion cracking and cathodic corrosion in different regions of cathode. Palladium can be alloyed with silver or yttrium to favourably increase diffusion and reduce these constraints. Effects of electrochemical factors temperature cathode structure adsorbed transient complex of palladium and porous material support are given to estimate and to limit possible damage.
The Microstructure Study of the Hydrogenated Titanium Specimens Tested at High Temperature Creep for Long-term Tensile Strength
Feb 2020
Publication
Experimental tests of flat titanium samples at a temperature of 450 °C stretched with a constant force up to destruction were carried out. Titanium samples were hydrogenated in the Moscow Aviation Institute laboratory to a hydrogen content of 0.1 % 0.3 % and 0.6 % by weight of the specimen and then tested in the laboratory of Lomonosov Moscow State University. From the experiments the time to failure the localization time of the deformations and the stress distribution along the longitudinal coordinate of the sample over time were obtained. A metallographic study was conducted and the phase composition was investigated in Moscow Aviation Institute. The effect of hydrogen on long-term strength mechanical characteristics and phase composition has been elucidated.
Metastable Metal Hydrides for Hydrogen Storage
Oct 2012
Publication
The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. On the other hand the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.
The Role of CCS in Meeting Climate Policy Targets
Oct 2017
Publication
Carbon capture and storage (CCS) refers to a set of technologies that may offer the potential for large-scale removal of CO2 emissions from a range of processes – potentially including the generation of electricity and heat industrial processes and the production of hydrogen and synthetic fuels. CCS has both proponents and opponents. Like other emerging low carbon technologies CCS is not without risks or uncertainties and there are various challenges that would need to be overcome if it were to be widely deployed. Policy makers’ decisions as to whether to pursue CCS should be based on a judgement as to whether the risks and uncertainties associated with attempting to deploy CCS outweigh the risks of not having it available as part of a portfolio of mitigation options in future years.
The full report can be found on the Global CSS Institute website at this link
The full report can be found on the Global CSS Institute website at this link
Effect of Cementite on the Hydrogen Diffusion/Trap Characteristics of 2.25Cr-1Mo-0.25V Steel with and without Annealing
May 2018
Publication
Hydrogen embrittlement (HE) is a critical issue that affects the reliability of hydrogenation reactors. The hydrogen diffusivity/trap characteristics of 2.25Cr-1Mo-0.25V steel are important parameters mainly used to study the HE mechanism of steel alloys. In this work the hydrogen diffusivity/trap characteristics of heat-treated (annealed) and untreated 2.25Cr-1Mo-0.25V steel were studied using an electrochemical permeation method. The microstructures of both 2.25Cr-1Mo-0.25V steels were investigated by metallurgical microscopy. The effect of cementite on the hydrogen diffusivity/trap mechanisms was studied using thermodynamics-based and Lennard–Jones potential theories. The results revealed that the cementite located at the grain boundaries and at the interfaces of lath ferrite served as a kind of hydrogen trap (i.e. an irreversible hydrogen trap). In addition hydrogen was transported from ferrite to cementite via up-hill diffusion thereby supporting the hypothesis of cementite acting as a hydrogen trap.
Hydrogen Assisted Macrodelamination in Gas Lateral Pipe
Jul 2016
Publication
Hydrogen assisted macrodelamination in the pipe elbows of 40-year exploited lateral pipelines located behind the compressor station was studied. The crack on the external surface of the pipe elbow was revealed. Macrodelamination was occurred in the steel being influenced by the joined action of working loads and hydrogen absorbed by metal during long-term operation. The causes of the material degradation were investigated by non-destructive testing using ultrasound thickness meter observing microstructure hydrostatic pressure testing and mechanical properties testing of pipe steel.<br/>Intensive degradation of steel primarily essential reduction of plasticity was revealed. The degradation degree of the pipe elbow steel was higher than of the straight pipe steel regardless of a section was tensioned or compressed. Basing on the tensile tests carried out on cylindrical smooth and notched specimens from the pipe elbow steel it was established that the plasticity of the damaged steel could be measured correctly only on the specimens with a circular notch due to concentration of deformation in the cross section location only. The limitations in using elongation and reduction in area for characterisation of plasticity of the pipe steel with extensive delamination were defined. The diagnostic features of macrodelamination namely an abnormal thickness meter readings and a sharp decrease in hardness and plasticity of the pipe elbow steel were established.
Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities
Jun 2018
Publication
In this study electrochemical measurements immersion tests and slow strain rate tensile (SSRT) tests were applied to investigate the electrochemical and stress corrosion cracking (SCC) behavior of X70 steel in simulated seawater with the interference of different alternating current (AC) densities. The results indicate that AC significantly strengthens the cathodic reaction especially the oxygen reduction reaction. Simultaneously hydrogen evolution reaction occurs when the limiting diffusion current density of oxygen reaches and thus icorr sharply increases with the increase in AC density. Additionally when AC is imposed the X70 steel exhibits higher SCC susceptibility in the simulated seawater and the susceptibility increases with the increasing AC density. The SCC mechanism is controlled by both anodic dissolution (AD) and hydrogen embrittlement (HE) with the interference of AC.
Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels
May 2018
Publication
In the present study the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition simulations were carried out on the short fatigue crack growth in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition crack propagation and crack path could be simulated well with the simulation model.
Study on Flake Formation Behavior and Its Influence Factors in Cr5 Steel
Apr 2018
Publication
A flake is a crack that is induced by trapped hydrogen within steel. To study its formation mechanism previous studies mostly focused on the formation process and magnitude of hydrogen pressure in hydrogen traps such as cavities and cracks. However according to recent studies the hydrogen leads to the decline of the mechanical properties of steel which is known as hydrogen embrittlement is another reason for flake formation. In addition the phenomenon of stress induced hydrogen uphill diffusion should not be neglected. All of the three behaviors are at work simultaneously. In order to further explore the formation mechanism of flakes in steel the process of flake initiation and growth were studied with the following three coupling factors: trap hydrogen pressure hydrogen embrittlement and stress induced hydrogen re-distribution. The analysis model was established using the finite element method and a crack whose radius is 0.5 mm was set in its center. The cohesive method and Bilinear Traction Separate Law (BTSL) were used to address the coupling effect. The results show that trap hydrogen pressure is the main driving force for flake formation. After the high hydrogen pressure was generated around the trap a stress field formed. In addition the trap is the center of stress concentration. Then hydrogen is concentrated in a distribution around this trap and most of the steel mechanical properties are reduced. The trap size is a key factor for defining the critical hydrogen content for flake formation and propagation. However when the trap size exceeds the specified value the critical hydrogen content does not change any more. As for the crack whose radius is 0.5 mm the critical hydrogen content of Cr5VMo steel is 2.2 ppm which is much closer to the maximum safe hydrogen concentration of 2.0 ppm used in China. The work presented in this article increases our understanding of flake formation and propagation mechanisms in steel.
No more items...