Australia
Utilization and Recycling of End of Life Plastics for Sustainable and Clean Industrial Processes Including the Iron and Steel Industry
Aug 2019
Publication
About 400 million tonnes of plastics are produced per annum worldwide. End-of-life of plastics disposal contaminates the waterways aquifers and limits the landfill areas. Options for recycling plastic wastes include feedstock recycling mechanical /material recycling industrial energy recovery municipal solid waste incineration. Incineration of plastics containing E-Wastes releases noxious odours harmful gases dioxins HBr polybrominated diphenylethers and other hydrocarbons. This study focusses on recycling options in particular feedstock recycling of plastics in high-temperature materials processing for a sustainable solution to the plastic wastes not suitable for recycling. Of the 7% CO2 emissions attributed to the iron and steel industry worldwide ∼30% of the carbon footprint is reduced using the waste plastics compared to other carbon sources in addition to energy savings. Plastics have higher H2 content than the coal. Hydrogen evolved from the plastics acts as the reductant alongside the carbon monoxide. Hydrogen reduction of iron ore in presence of plastics increases the reaction rates due to higher diffusion of H2 compared to CO. Plastic replacement reduces the process temperature by at least 100–200 °C due to the reducing gases (hydrogen) which enhance the energy efficiency of the process. Similarly plastics greatly reduce the emissions in other high carbon footprint process such as magnesia production while contributing to energy.
Decarbonising UK Transport: Implications for Electricity Generation, Land Use and Policy
Dec 2022
Publication
To ensure the UK’s net zero targets are met the transition from conventionally fueled transport to low emission alternatives is necessary. The impact from increased decarbonised electricity generation on ecosystem services (ES) and natural capital (NC) are not currently quantified with decarbonisation required to minimise impacts from climate change. This study aims to project the future electric and hydrogen energy demand between 2020 and 2050 for car bus and train to better understand the land/sea area that would be required to support energy generation. In this work predictions of the geospatial impact of renewable energy (onshore/offshore wind and solar) nuclear and fossil fuels on ES and NC were made considering generation mix number of generation installations and energy density. Results show that electric transport will require ~136599 GWh for all vehicle types analysed in 2050 much less than hydrogen transport at ~425532 GWh. We estimate that to power electric transport at least 1515 km2 will be required for solar 1672 km2 for wind and 5 km2 for nuclear. Hydrogen approximately doubles this requirement. Results provide an approximation of the future demands from the transport sector on land and sea area use indicating that a combined electric and hydrogen network will be needed to accommodate a range of socio-economic requirements. While robust assessments of ES and NC impacts are critical in future policies and planning significant reductions in energy demands through a modal shift to (low emission) public transport will be most effective in ensuring a sustainable transport future.
Recent Advances in Seawater Electrolysis
Jan 2022
Publication
Hydrogen energy as a clean and renewable energy has attracted much attention in recent years. Water electrolysis via the hydrogen evolution reaction at the cathode coupled with the oxygen evolution reaction at the anode is a promising method to produce hydrogen. Given the shortage of freshwater resources on the planet the direct use of seawater as an electrolyte for hydrogen production has become a hot research topic. Direct use of seawater as the electrolyte for water electrolysis can reduce the cost of hydrogen production due to the great abundance and wide availability. In recent years various high-efficiency electrocatalysts have made great progress in seawater splitting and have shown great potential. This review introduces the mechanisms and challenges of seawater splitting and summarizes the recent progress of various electrocatalysts used for hydrogen and oxygen evolution reaction in seawater electrolysis in recent years. Finally the challenges and future opportunities of seawater electrolysis for hydrogen and oxygen production are presented.
Mapping Australia's Hydrogen Future and release of the Hydrogen Economic Fairways Tool
Apr 2021
Publication
Hydrogen can be used for a variety of domestic and industrial purposes such as heating and cooking (as a replacement for natural gas) transportation (replacing petrol and diesel) and energy storage (by converting intermittent renewable energy into hydrogen). The key benefit of using hydrogen is that it is a clean fuel that emits only water vapour and heat when combusted.
To support implementation of the National Hydrogen Strategy Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage.
This seminar demonstrates HEFT’s capabilities its potential to attract worldwide investment into Australia’s hydrogen industry and what’s up next for hydrogen at Geoscience Australia.
You can use the Hydrogen Economic Fairways Tool (HEFT) on the Website of the Australian government at the link here
To support implementation of the National Hydrogen Strategy Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage.
This seminar demonstrates HEFT’s capabilities its potential to attract worldwide investment into Australia’s hydrogen industry and what’s up next for hydrogen at Geoscience Australia.
You can use the Hydrogen Economic Fairways Tool (HEFT) on the Website of the Australian government at the link here
Hydrogen in the Gas Distribution Networks: A Kickstart Project as an Input into the Development of a National Hydrogen Strategy for Australia
Nov 2019
Publication
The report investigates a kickstart project that allows up to 10% hydrogen into gas distribution networks. It reviews the technical impacts and standards to identify barriers and develop recommendations.
You can see the full report on the Australian Government website here
This report is developed in support of Australia's National Hydrogen Strategy
You can see the full report on the Australian Government website here
This report is developed in support of Australia's National Hydrogen Strategy
Lessons Learned from Australian Infrastructure Upgrades
Feb 2020
Publication
This report fulfils Deliverable Five for Research Project 2.1-01 of the Future Fuels CRC. The aims of this project Crystallising lessons learned from major infrastructure upgrades are to provide a report on lessons learned from earlier infrastructure upgrades and fuel transitions and identify tools that can be used to develop consistent messaging around the proposed transition to hydrogen and/or other low-carbon fuels. In both the report and the toolkit there are recommendations on how to apply lessons learned and shape messaging throughout the value chain based on prior infrastructure upgrades.
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
Developing Community Trust in Hydrogen
Oct 2019
Publication
The report documents current knowledge of the social issues surrounding hydrogen projects. It reviews leading practice stakeholder engagement and communication strategies and findings from focus groups and research activities across Australia.
The full report can be found at this link.
The full report can be found at this link.
Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation
Jul 2017
Publication
Photocatalytic water splitting which directly converts solar energy into hydrogen is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration and encouraging progress has been achieved over the past years. However the solar-to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water-splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.
EU Carbon Diplomacy: Assessing Hydrogen Security and Policy Impact in Australia and Germany
Dec 2021
Publication
Hydrogen is fast becoming a new international “super fuel” to accelerate global climate change ambitions. This paper has two inter-weaving themes. Contextually it focuses on the potential impact of the EU’s new Carbon Border Adjustment Mechanism (CBAM) on fossil fuel-generated as opposed to green hydrogen imports. The CBAM as a transnational carbon adjustment mechanism has the potential to impact international trade in energy. It seeks both a level playing field between imports and EU internal markets (subject to ambitious EU climate change policies) and to encourage emissions reduction laggards through its “carbon diplomacy”. Countries without a price on carbon will be charged for embodied carbon in their supply chains when they export to the EU. Empirically we focus on two hydrogen export/import case studies: Australia as a non-EU state with ambitions to export hydrogen and Germany as an EU Member State reliant on energy imports. Energy security is central to energy trade debates but needs to be conceptualized beyond supply and demand economics to include geopolitics just transitions and the impacts of border carbon taxes and EU carbon diplomacy. Accordingly we apply and further develop a seven-dimension energy security-justice framework to the examples of brown blue and green hydrogen export/import hydrogen operations with varying carbon-intensity supply chains in Australia and Germany. Applying the framework we identify potential impact—risks and opportunities—associated with identified brown blue and green hydrogen export/import projects in the two countries. This research contributes to the emerging fields of international hydrogen trade supply chains and international carbon diplomacy and develops a potentially useful seven-dimension energy security-justice framework for energy researchers and policy analysts.
A Comprehensive Review on the Recent Development of Ammonia as a Renewable Energy Carrier
Jun 2021
Publication
Global energy sources are being transformed from hydrocarbon-based energy sources to renewable and carbon-free energy sources such as wind solar and hydrogen. The biggest challenge with hydrogen as a renewable energy carrier is the storage and delivery system’s complexity. Therefore other media such as ammonia for indirect storage are now being considered. Research has shown that at reasonable pressures ammonia is easily contained as a liquid. In this form energy density is approximately half of that of gasoline and ten times more than batteries. Ammonia can provide effective storage of renewable energy through its existing storage and distribution network. In this article we aimed to analyse the previous studies and the current research on the preparation of ammonia as a next-generation renewable energy carrier. The study focuses on technical advances emerging in ammonia synthesis technologies such as photocatalysis electrocatalysis and plasmacatalysis. Ammonia is now also strongly regarded as fuel in the transport industrial and power sectors and is relatively more versatile in reducing CO2 emissions. Therefore the utilisation of ammonia as a renewable energy carrier plays a significant role in reducing GHG emissions. Finally the simplicity of ammonia processing transport and use makes it an appealing choice for the link between the development of renewable energy and demand.
Shipping Australian Sunshine: Liquid Renewable Green Fuel Export
Dec 2022
Publication
Renewable green fuels (RGF) such as hydrogen are the global energy future. Air pollution is compounded with climate change as the emissions driving both development problems come largely from the same source of fossil fuel burning. As an energy exporter Australian energy export dominates the total energy production and the RGF has become central to the current proposal of Australian government to reach net zero emission. The hydrogen production from solar panels only on 3% of Australia's land area could compensate 10 times of Germany's non-electricity energy consumption. In the unique geographic position Australia's RGF export attracts significant costs for long distance onboard storage and shipping. While the cost reduction of RGF production relies on technological advancement which needs a long time the storage and shipping costs must be minimised for Australia to remain competitive in the global energy market. The present review concentrates on Australian export pathways of lifecycles of liquid renewable green fuels including renewable liquified hydrogen (LH2) liquified methane (LCH4) ammonia (NH3) and methanol (CH3OH) as liquid RGF have the advantages of adopting the existing infrastructure. This review compares the advantages and disadvantages of discussed renewable energy carriers. It is found that the cost of LH2 pathway can be acceptable for shipping distance of up to 7000 km (Asian countries such as Japan) but ammonia (NH3) or methanol (CH3OH) pathways may be more cost effective for shipping distance above 7000 km for European counties such as Germany. These observations suggest the proper fuel forms to fulfill the requirements to different customers and hence will highlight Australia's position as one of major exporters of renewable energy in the future. Detailed techno-economic analysis is worth to be done for supplying more quantitative results.
How Green Are the National Hydrogen Strategies?
Feb 2022
Publication
Since Japan promulgated the world’s first national hydrogen strategy in 2017 28 national (or regional in the case of the EU) hydrogen strategies have been issued by major world economies. As carbon emissions vary with different types of hydrogen and only green hydrogen produced from renewable energy can be zero-emissions fuel this paper interrogates the commitment of the national hydrogen strategies to achieve decarbonization objectives focusing on the question “how green are the national hydrogen strategies?” We create a typology of regulatory stringency for green hydrogen in national hydrogen strategies analyzing the text of these strategies and their supporting policies and evaluating their regulatory stringency toward decarbonization. Our typology includes four parameters fossil fuel penalties hydrogen certifications innovation enablement and the temporal dimension of coal phasing out. Following the typology we categorize the national hydrogen strategies into three groups: zero regulatory stringency scale first and clean later and green hydrogen now. We find that most national strategies are of the type “scale first and clean later” with one or more regulatory measures in place. This article identifies further challenges to enhancing regulatory stringency for green hydrogen at both national and international levels.
Delivering an Energy Export Transition: Impact of Conflicting and Competing Informational Contexts on Public Acceptance of Australia's Hydrogen Export Industry
Mar 2024
Publication
This study uses an online quasi-experiment with a national sample from Australia to evaluate public acceptance of hydrogen exports. It explores the complex communications environment that messaging about hydrogen exports is typically encountered in. We find that acceptance of green hydrogen exports is significantly higher than blue or brown hydrogen exports and acceptance of blue hydrogen exports higher than brown hydrogen exports. Additionally results show economic-framed benefit messages are associated with lesser public acceptance when encountered in communication contexts that outline differently-focused environmental downsides (competing contexts) but not same-focused economic downsides (conflicting contexts). In contrast environment-framed benefit messages are associated with lesser public acceptance when presented in communication contexts that outline same-focused environmental downsides (conflicting contexts) but not differentlyfocused economic downsides (competing contexts). Overall the study indicates message framing can impact acceptance of hydrogen exports and that organisations should consider the informational context within which their communications will be received.
Cross-regional Drivers for CCUS Deployment
Jul 2020
Publication
CO2 capture utilization and storage (CCUS) is recognized as a uniquely important option in global efforts to control anthropogenic greenhouse-gas (GHG) emissions. Despite significant progress globally in advancing the maturity of the various component technologies and their assembly into full-chain demonstrations a gap remains on the path to widespread deployment in many countries. In this paper we focus on the importance of business models adapted to the unique technical features and sociopolitical drivers in different regions as a necessary component of commercial scale-up and how lessons might be shared across borders. We identify three archetypes for CCUS development—resource recovery green growth and low-carbon grids—each with different near-term issues that if addressed will enhance the prospect of successful commercial deployment. These archetypes provide a framing mechanism that can help to translate experience in one region or context to other locations by clarifying the most important technical issues and policy requirements. Going forward the archetype framework also provides guidance on how different regions can converge on the most effective use of CCUS as part of global deep-decarbonization efforts over the long term.
Magneto-Electronic Hydrogen Gas Sensors: A Critical Review
Jan 2022
Publication
Devices enabling early detection of low concentrations of leaking hydrogen and precision measurements in a wide range of hydrogen concentrations in hydrogen storage systems are essential for the mass-production of fuel-cell vehicles and more broadly for the transition to the hydrogen economy. Whereas several competing sensor technologies are potentially suitable for this role ultralow fire-hazard contactless and technically simple magneto-electronic sensors stand apart because they have been able to detect the presence of hydrogen gas in a range of hydrogen concentrations from 0.06% to 100% at atmospheric pressure with the response time approaching the industry gold standard of one second. This new kind of hydrogen sensors is the subject of this review article where we inform academic physics chemistry material science and engineering communities as well as industry researchers about the recent developments in the field of magneto-electronic hydrogen sensors including those based on magneto-optical Kerr effect anomalous Hall effect and Ferromagnetic Resonance with a special focus on Ferromagnetic Resonance (FMR)-based devices. In particular we present the physical foundations of magneto-electronic hydrogen sensors and we critically overview their advantages and disadvantages for applications in the vital areas of the safety of hydrogen-powered cars and hydrogen fuelling stations as well as hydrogen concentration meters including those operating directly inside hydrogen-fuelled fuel cells. We believe that this review will be of interest to a broad readership also facilitating the translation of research results into policy and practice.
Sizing of Hybrid Supercapacitors and Lithium-Ion Batteries for Green Hydrogen Production from PV in the Australian Climate
Feb 2023
Publication
Instead of storing the energy produced by photovoltaic panels in batteries for later use to power electric loads green hydrogen can also be produced and used in transportation heating and as a natural gas alternative. Green hydrogen is produced in a process called electrolysis. Generally the electrolyser can generate hydrogen from a fluctuating power supply such as renewables. However due to the startup time of the electrolyser and electrolyser degradation accelerated by multiple shutdowns an idle mode is required. When in idle mode the electrolyser uses 10% of the rated electrolyser load. An energy management system (EMS) shall be applied where a storage technology such as a lithium-ion capacitor or lithium-ion battery is used. This paper uses a state-machine EMS of PV microgrid for green hydrogen production and energy storage to manage the hydrogen production during the morning from solar power and in the night using the stored energy in the energy storage which is sized for different scenarios using a lithium-ion capacitor and lithium-ion battery. The mission profile and life expectancy of the lithium-ion capacitor and lithium-ion battery are evaluated considering the system’s local irradiance and temperature conditions in the Australian climate. A tradeoff between storage size and cutoffs of hydrogen production as variables of the cost function is evaluated for different scenarios. The lithium-ion capacitor and lithium-ion battery are compared for each tested scenario for an optimum lifetime. It was found that a lithium-ion battery on average is 140% oversized compared to a lithium-ion capacitor but a lithium-ion capacitor has a smaller remaining capacity of 80.2% after ten years of operation due to its higher calendar aging while LiB has 86%. It was also noticed that LiB is more affected by cycling aging while LiC is affected by calendar aging. However the average internal resistance after 10 years for the lithium-ion capacitor is 264% of the initial internal resistance while for lithium-ion battery is 346% making lithium-ion capacitor a better candidate for energy storage if it is used for grid regulation as it requires maintaining a lower internal resistance over the lifetime of the storage.
Optimising Renewable Generation Configurations of Off-grid Green Ammonia Production System Considering Haber-Bosch Flexibility
Feb 2023
Publication
Green ammonia has received increasing interest for its potential as an energy carrier in the international trade of renewable power. This paper considers the factors that contribute to producing cost-competitive green ammonia from an exporter’s perspective. These factors include renewable resource quality across potential sites operating modes for off-grid plants and seasonal complementarity with trade buyers. The study applies a mixed-integer programming model and uses Australia as a case study because of its excellent solar and wind resources and the potential for synergy between Southern Hemisphere supply and Northern Hemisphere demand. Although renewable resources are unevenly distributed across Australia and present distinct diurnal and seasonal variability modelling shows that most of the pre-identified hydrogen hubs in each state and territory of Australia can produce cost-competitive green ammonia providing the electrolysis and Haber-Bosch processes are partially flexible to cope with the variability of renewables. Flexible operation reduces energy curtailment and leads to lower storage capacity requirements using batteries or hydrogen storage which would otherwise increase system costs. In addition an optimised combination of wind and solar can reduce the magnitude of storage required. Providing that a partially flexible Haber Bosch plant is commercially available the modelling shows a levelised cost of ammonia (LCOA) of AU$756/tonne and AU$659/tonne in 2025 and 2030 respectively. Based on these results green ammonia would be cost-competitive with grey ammonia in 2030 given a feedstock natural gas price higher than AU$14/MBtu. For green ammonia to be cost-competitive with grey ammonia assuming a lower gas price of AU$6/MBtu a carbon price would need to be in place of at least AU$123/tonne. Given that there is a greater demand for energy in winter concurrent with lower solar power production there may be opportunities for solar-based Southern Hemisphere suppliers to supply the major industrial regions most of which are located in the Northern Hemisphere.
Experimental Study for Thermal Methane Cracking Reaction to Generate Very Pur Hydrogen in Small or Medium Scales by Using Regenrative Reactor
Sep 2022
Publication
Non-catalytic thermal methane cracking (TMC) is an alternative for hydrogen manufacturing and traditional commercial processes in small-scale hydrogen generation. Supplying the high-level temperatures (850–1800°C) inside the reactors and reactor blockages are two fundamental challenges for developing this technology on an industrial scale (Mahdi Yousefi and Donne 2021). A regenerative reactor could be a part of a solution to overcome these obstacles. This study conducted an experimental study in a regenerative reactor environment between 850 and 1170°C to collect the conversion data and investigate the reactor efficiency for TMC processes. The results revealed that the storage medium was a bed for carbon deposition and successfully supplied the reaction’s heat with more than 99.7% hydrogen yield (at more than 1150°C). Results also indicated that the reaction rate at the beginning of the reactor is much higher and the temperature dependence in the early stages of the reaction is considerably higher. However after reaching a particular concentration of Hydrogen at each temperature the influence of temperature on the reaction rate decreases and is almost constant. The type of produced carbon in the storage medium and its auto-catalytic effect on the reactions were also investigated. Results showed that carbon black had been mostly formed but in different sizes from 100 to 2000 nm. Increasing the reactor temperature decreased the size of the generated carbon. Pre-produced carbon in the reactor did not affect the production rate and is almost negligible at more than 850°C.
Techno-economic Assessment of a Hydrogen-based Islanded Microgrid in North-east
Feb 2023
Publication
Currently renewable energy-based generators are considered worldwide to achieve net zero targets. However the stochastic nature of renewable energy systems leads to regulation and control challenges for power system operators especially in remote and regional grids with smaller footprints. A hybrid system (i.e. solar wind biomass energy storage) could minimise this issue. Nevertheless the hybrid system is not possible to develop in many islands due to the limited land area geographical conditions and others. Hydrogen as a carrier of clean energy can be used in locations where the installation of extensive or medium-scale renewable energy facilities is not permissible due to population density geographical constraints government policies and regulatory issues. This paper presents a techno-economic assessment of designing a green hydrogen-based microgrid for a remote island in North-east Australia. This research work determines the optimal sizing of microgrid components using green hydrogen technology. Due to the abovementioned constraints the green hydrogen production system and the microgrid proposed in this paper are located on two separate islands. The paper demonstrates three cost-effective scenarios for green hydrogen production transportation and electricity generation. This work has been done using Hybrid Optimisation Model for Multiple Energy Resources or HOMER Pro simulation platform. Simulation results show that the Levelized Cost of Energy using hydrogen technology can vary from AU$0.37/kWh to AU$1.08/kWh depending on the scenarios and the variation of key parameters. This offers the potential to provide lower-cost electricity to the remote community. Furthermore the CO2 emission could be reduced by 1760777 kg/year if the renewable energy system meets 100% of the electricity demand. Additionally the sensitivity analysis in this paper shows that the size of solar PV and wind used for green hydrogen production can further be reduced by 50%. The sensitivity analysis shows that the system could experience AU$0.03/kWh lower levelized cost if the undersea cable is used to transfer the generated electricity between islands instead of hydrogen transportation. However it would require environmental approval and policy changes as the islands are located in the Great Barrier Reef.
Electrochemical Ammonia: Power to Ammonia Ratio and Balance of Plant Requirements for Two Different Electrolysis Approaches
Nov 2021
Publication
Electrochemical ammonia generation allows direct low pressure synthesis of ammonia as an alternative to the established Haber-Bosch process. The increasing need to drive industry with renewable electricity central to decarbonisation and electrochemical ammonia synthesis offers a possible efficient and low emission route for this increasingly important chemical. It also provides a potential route for more distributed and small-scale ammonia synthesis with a reduced production footprint. Electrochemical ammonia synthesis is still early stage but has seen recent acceleration in fundamental understanding. In this work two different ammonia electrolysis systems are considered. Balance of plant (BOP) requirements are presented and modelled to compare performance and determine trade-offs. The first option (water fed cell) uses direct ammonia synthesis from water and air. The second (hydrogen-fed cell) involves a two-step electrolysis approach firstly producing hydrogen followed by electrochemical ammonia generation. Results indicate that the water fed approach shows the most promise in achieving low energy demand for direct electrochemical ammonia generation. Breaking the reaction into two steps for the hydrogen fed approach introduces a source of inefficiency which is not overcome by reduced BOP energy demands and will only be an attractive pathway for reactors which promise both high efficiency and increased ammonia formation rate compared to water fed cells. The most optimised scenario investigated here with 90% faradaic efficiency (FE) and 1.5 V cell potential (75% nitrogen utilisation) gives a power to ammonia value of 15 kWh/kg NH3 for a water fed cell. For the best hydrogen fed arrangement the requirement is 19 kWh/kg NH3. This is achieved with 0.5 V cell potential and 75% utilisation of both hydrogen and nitrogen (90% FE). Modelling demonstrated that balance of plant requirements for electrochemical ammonia are significant. Electrochemical energy inputs dominate energy requirements at low FE however in cases of high FE the BOP accounts for approximately 50% of the total energy demand mostly from ammonia separation requirements. In the hydrogen fed cell arrangement it was also demonstrated that recycle of unconverted hydrogen is essential for efficient operation even in the case where this increases BOP energy inputs
A Review of Hydrogen/rock/brine Interaction: Implications for Hydrogen Geo-storage
Dec 2022
Publication
Hydrogen (H2) is currently considered a clean fuel to decrease anthropogenic greenhouse gas emissions and will play a vital role in climate change mitigation. Nevertheless one of the primary challenges of achieving a complete H2 economy is the large-scale storage of H2 which is unsafe on the surface because H2 is highly compressible volatile and flammable. Hydrogen storage in geological formations could be a potential solution to this problem because of the abundance of such formations and their high storage capacities. Wettability plays a critical role in the displacement of formation water and determines the containment safety storage capacity and amount of trapped H2 (or recovery factor). However no comprehensive review article has been published explaining H2 wettability in geological conditions. Therefore this review focuses on the influence of various parameters such as salinity temperature pressure surface roughness and formation type on wettability and consequently H2 storage. Significant gaps exist in the literature on understanding the effect of organic material on H2 storage capacity. Thus this review summarizes recent advances in rock/H2/brine systems containing organic material in various geological reservoirs. The paper also presents influential parameters affecting H2 storage capacity and containment safety including liquid–gas interfacial tension rock–fluid interfacial tension and adsorption. The paper aims to provide the scientific community with an expert opinion to understand the challenges of H2 storage and identify storage solutions. In addition the essential differences between underground H2 storage (UHS) natural gas storage and carbon dioxide geological storage are discussed and the direction of future research is presented. Therefore this review promotes thorough knowledge of UHS provides guidance on operating large-scale UHS projects encourages climate engineers to focus more on UHS research and provides an overview of advanced technology. This review also inspires researchers in the field of climate change to give more credit to UHS studies.
Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review
Feb 2023
Publication
Hydrogen is one of the prospective clean energies that could potentially address two pressing areas of global concern namely energy crises and environmental issues. Nowadays fossil‐ based technologies are widely used to produce hydrogen and release higher greenhouse gas emis‐ sions during the process. Decarbonizing the planet has been one of the major goals in the recent decades. To achieve this goal it is necessary to find clean sustainable and reliable hydrogen pro‐ duction technologies with low costs and zero emissions. Therefore this study aims to analyse the hydrogen generation from solar and wind energy sources and observe broad prospects with hybrid renewable energy sources in producing green hydrogen. The study mainly focuses on the critical assessment of solar wind and hybrid‐powered electrolysis technologies in producing hydrogen. Furthermore the key challenges and opportunities associated with commercial‐scale deployment are addressed. Finally the potential applications and their scopes are discussed to analyse the important barriers to the overall commercial development of solar‐wind‐based hydrogen production systems. The study found that the production of hydrogen appears to be the best candidate to be employed for multiple purposes blending the roles of fuel energy carrier and energy storage modality. Further studies are recommended to find technical and sustainable solutions to overcome the current issues that are identified in this study.
Numerical Modeling for Rapid Charging of Hydrogen Gas Vessel in Fuel Cell Vehicle
Feb 2023
Publication
As a fuel for power generation high-pressure hydrogen gas is widely used for transportation and its efficient storage promotes the development of fuel cell vehicles (FCVs). However as the filling process takes such a short time the maximum temperature in the storage tank usually undergoes a rapid increase which has become a thorny problem and poses great technical challenges to the steady operation of hydrogen FCVs. For security reasons SAE J2601/ISO 15869 regulates a maximum temperature limit of 85 ◦C in the specifications for refillable hydrogen tanks. In this paper a two-dimensional axisymmetric and a three-dimensional numerical model for fast charging of Type III 35 MPa and 70 MPa hydrogen vehicle cylinders are proposed in order to effectively evaluate the temperature rise within vehicle tanks. A modified standard k-ε turbulence model is utilized to simulate hydrogen gas charging. The equation of state for hydrogen gas is adopted with the thermodynamic properties taken from the National Institute of Standards and Technology (NIST) database taking into account the impact of hydrogen gas’ compressibility. To validate the numerical model three groups of hydrogen rapid refueling experimental data are chosen. After a detailed comparison it is found that the simulated results calculated by the developed numerical model are in good agreement with the experimental results with average temperature differences at the end time of 2.56 K 4.08 K and 4.3 K. The present study provides a foundation for in-depth investigations on the structural mechanics analysis of hydrogen gas vessels during fast refueling and may supply some technical guidance on the design of charging experiments.
Optimizing an Integrated Hybrid Energy System with Hydrogen-based Storage to Develop an Off-grid Green Community for Sustainable Development in Bangladesh
Dec 2024
Publication
An integrated renewable system that utilizes solid waste-based biogas is important steps towards the sustainable energy solutions to rural off-grid communities in Bangladesh. In this study a hybrid energy system consisting of photovoltaic modules wind turbines biogas generators fuel cells and electrolyzer-hydrogen tank-based energy storage is optimized using non-dominated sorting genetic algorithm (NSGA-II). The hybrid system is optimized based on the cost of energy and human health damage as objective functions and a fuzzy decision-making technique is employed to determine the optimal solution to the multi-objective approach. Additionally several economic ecological and social indicators are also investigated while meeting a certain load reliability. An energy management strategy has been developed in the MATALB environment to satisfy the community load and the battery-driven electric vehicle load. Results from this comprehensive analysis suggest that the optimal configuration of PV/WT/FC/BG has an energy cost of 0.1634 $/kWh and an ecosystem damage of 0.00098 species.year. The human health damage and the human development index of the optimized system are 0.1732 DALYs and 0.696 DALYs respectively. Additionally the proposed system has a lifecycle emission of 123730 kg CO2-eq/year carbon emission penalties of $1856/year a job creation potential of 30 jobs/MW over the 25 years of project lifetime. The hybrid system oversees solid waste management solutions and provides the community with sustainable energy and vehicle recharge.
Coordinated Volt-Var Control of Reconfigurable Microgrids with Power-to-Hydrogen Systems
Dec 2024
Publication
The integration of electrolyzers and fuel cells can cause voltage fluctuations within microgrids if not properly scheduled. Therefore controlling voltage and reactive power becomes crucial to mitigate the impact of fluctuating voltage levels ensuring system stability and preventing damage to equipment. This paper therefore seeks to enhance voltage and reactive power control within reconfigurable microgrids in the presence of innovative power-to-hydrogen technologies via electrolyzers and hydrogen-to-power through fuel cells. Specifically it focuses on the simultaneous coordination of an electrolyzer hydrogen storage and a fuel cell alongside on-load tap changers smart photovoltaic inverters renewable energy sources diesel generators and electric vehicle aggregation within the microgrid system. Additionally dynamic network reconfiguration is employed to enhance microgrid flexibility and improve the overall system adaptability. Given the inherent unpredictability linked to resources the unscented transformation method is employed to account for these uncertainties in the proposed voltage and reactive power management. Finally the model is formulated as a convex optimization problem and is solved through GUROBI version 11 which leads to having a time-efficient model with high accuracy. To assess the effectiveness of the model it is eventually examined on a modified 33-bus microgrid in several cases. Through the results of the under-study microgrid the developed model is a great remedy for the simultaneous operation of diverse resources in reconfigurable microgrids with a flatter voltage profile across the microgrid.
Experimental and Numerical Analysis of Low-density Gas Dispersion Characteristics in Semi-confined Environments
Oct 2023
Publication
Hydrogen as a clean fuel offers a practical pathway to achieve net-zero targets. However due to its physical and chemical characteristics there are some safety concerns for large-scale hydrogen utilisation particularly in process safety management. Leakage of gaseous hydrogen especially in semi-confined spaces such as tunnels can lead to catastrophic outcomes including uncontrolled fire and explosion. The current paper describes the outcome of an experimental and numerical study that aims to understand the dispersion of leaked light gas in a semi-confined space to support the adoption of hydrogen. A dispersion chamber with dimensions of 4m × 0.3m × 0.3m was constructed to investigate a baseline gas leakage scenario. To reduce the risk of the experiment in the laboratory helium is utilised as a surrogate for hydrogen. Computational fluid dynamics simulations are con ducted using FLACS-CFD to model the dispersion of leaked gas in different scenarios focusing on the impact of the ventilation velocity leakage rate and slope. The results from comprehensive numerical simulations show that ventilation is a critical safety management measure that can significantly reduce the growth of flammable clouds and mitigate the fire and explosion risk. Even with the lowest ventilation velocity of 0.25 m/s an improvement in the gas concentration level of 29.34% can be achieved in the downstream chamber. The current results will help to further enhance the understanding of hydrogen safety aspects.
Navigating the Intersection of Microgrids and Hydrogen: Evolutionary Trends, Challenges, and Future Strategies
Jan 2025
Publication
Growing interest in sustainable energy has gathered significant attention for alternative technologies with hydrogen-based solutions emerging as a crucial component in the transition to cleaner and more resilient energy systems. Following that hydrogenbased microgrids integrated with renewable energy sources including wind and solar have gained substantial attention as an upcoming pathway toward long-term energy sustainability. Hydrogen produced through processes such as electrolysis and steam methane reforming can be stored in various forms including compressed gas liquid or solid-state hydrides and later utilized for electricity generation through fuel cells and gas turbines. This dynamic energy system offers highly flexible scalable and resilient solutions for various applications. Specifically hydrogen-based microgrids are particularly suitable for offshore and islanded applications with geographical factors adverse environmental conditions and limited access to conventional energy solutions. This is critical for energy independence long-term storage capacity and grid stability. This review explores topological and functional-based classifications of microgrids advancements in hydrogen generation storage and utilization technologies and their integration with microgrid systems. It also critically evaluates the key challenges of each technology including cost efficiency and scalability which impact the feasibility of hydrogen microgrids.
Green Energy Revolution and Substitution of Hydrocarbons with Hydrogen: Distribution Network Infrastructure Materials
Dec 2023
Publication
Global warming is an accepted fact of life on Earth posing grave consequences in the form of weather patterns with life-threatening outcomes for inhabitants and their cultures especially those of island countries. These wild and unpredictable weather patterns have persuaded authorities governments and industrial leaders to adapt a range of solutions to combat the temperature rise on Earth. One such solution is to abandon fossil fuels (hydrocarbons) for energy generation and employ renewable energy sources or at least use energy sources that do not generate greenhouse gases. One such energy carrier is hydrogen which is expected to slowly replace natural gas and will soon be pumped into the energy distribution pipeline network. Since the current energy distribution network was designed for hydrocarbons its use for hydrogen may pose some threat to the safety of urban society. This is the first time an overview article has examined the replacement of hydrocarbons by hydrogen from a totally different angle by incorporating material science viewpoints. This article discusses hydrogen properties and warns about the issue of hydrogen embrittlement in the current pipeline network if hydrogen is to be pumped through the current energy distribution network i.e. pipelines. It is recommended that sufficient study and research be planned and carried out to ensure the safety of using the current energy distribution network for hydrogen distribution and to set the necessary standards and procedures for future design and construction.
Multi-functional Hybrid Energy System for Zero-energy Residential Buildings: Integrating Hydrogen Production and Renewable Energy Solutions
Jan 2025
Publication
The increasing global residential energy demand causes carbon emissions and ecological impacts necessitating cleaner efficient solutions. This study presents an innovative hybrid energy system integrating wind power and gas turbines for a four-story 16-unit residential building. The system generates electricity heating cooling and hydrogen using a Proton Exchange Membrane electrolyzer and a compression chiller. Integrating the electrolyzer enables hydrogen production and demonstrates hydrogen’s potential as a versatile clean energy carrier for systems contributing to advancements in hydrogen utilization. Simulations with Engineering Equation Solver software coupled with neural network-based multi-objective optimization fine-tuned parameters such as gas turbine efficiency wind turbine count and gas turbine inlet temperature to enhance exergy efficiency and reduce operational costs. The optimized system achieves an energy efficiency of 33.69% and an exergy efficiency of 36.95% and operates at $446.04 per hour demonstrating economic viability. It produces 51061 MWh annually exceeding the building’s energy demands and allowing surplus energy use elsewhere. BEopt simulations confirm the system meets residential needs by providing 2.52 GWh of electricity 3.36 GWh of heating and 5.11 GWh of cooling annually. This system also generates 10 kg of hydrogen per hour and achieves a CO₂ reduction of 10416 tons/year. The wind farm (25 turbines) provides most of the energy at 396.7 dollars per hour while the gas turbine operates at 80% efficiency. By addressing the challenges of intermittent renewable energy in residential Zero-Energy Buildings this research offers a scalable and environmentally friendly solution contributing to sustainable urban living and advancing hydrogen energy applications.
A High-performance Capillary-fed Electrolysis Cell Promises More Cost-competitive Renewable Hydrogen
Mar 2022
Publication
Renewable or green hydrogen will play a critical role in the decarbonisation of hard-to-abate sectors and will therefore be important in limiting global warming. However renewable hydrogen is not cost-competitive with fossil fuels due to the moderate energy efficiency and high capital costs of traditional water electrolysers. Here a unique concept of water electrolysis is introduced wherein water is supplied to hydrogen- and oxygen-evolving electrodes via capillary-induced transport along a porous inter-electrode separator leading to inherently bubble-free operation at the electrodes. An alkaline capillary-fed electrolysis cell of this type demonstrates water electrolysis performance exceeding commercial electrolysis cells with a cell voltage at 0.5 A cm−2 and 85 °C of only 1.51 V equating to 98% energy efficiency with an energy consumption of 40.4 kWh/kg hydrogen (vs. ~47.5 kWh/kg in commercial electrolysis cells). High energy efficiency combined with the promise of a simplified balance-ofplant brings cost-competitive renewable hydrogen closer to reality.
Understanding Costs in Hydrogen Infrastructure Networks: A Multi-stage Approach for Spatially-aware Pipeline Design
Jan 2025
Publication
The emergence and design of hydrogen transport infrastructures are crucial steps towards the development of a hydrogen economy. However pipeline routing remains underdeveloped in hydrogen infrastructure design models despite its significant impact on the resultant cost and network configuration. Many previous studies assume uniform cost surfaces on which pipelines are designed. Studies that consider a variable cost surface focus on designing candidate networks rather than bespoke routes for a given infrastructure. This study proposes a novel multi-stage approach based on a graph-based Steiner tree with Obstacles Genetic Algorithm (StObGA) to route pipelines on a complex cost surface for multi-source multi-sink hydrogen networks. The application of StObGA results in cost savings of 20–40% compared to alternative graph-based methods that assume uniform cost surfaces. Furthermore this publication presents an in-depth methodological comparative analysis of different pipeline routing and sizing methods used in the literature and discusses their impact. Finally we demonstrate how this model can generate design variations and provide practical insights to inform industry and policymakers.
Optimal Sizing of Renewable Energy Storage: A Techno-economic Analysis of Hydrogen, Battery and Hybrid Systems Considering Degradation and Seasonal Storage
Feb 2023
Publication
Energy storage is essential to address the intermittent issues of renewable energy systems thereby enhancing system stability and reliability. This paper presents the design and operation optimisation of hydrogen/battery/ hybrid energy storage systems considering component degradation and energy cost volatility. The study ex amines a real-world case study which is a grid-connected warehouse located in a tropical climate zone with a photovoltaic solar system. An accurate and robust Multi-Objective Modified Firefly Algorithm (MOMFA) is proposed for the optimal design and operation of the energy storage systems of the case study. To further demonstrate the robustness and versatility of the optimisation method another synthetic case is tested for a location in a temperate climate zone that has a high seasonal mismatch. The modelling results show that the system in the tropical zone always provides a superior return when compared to a similar system in the temperate zone due to abundant solar resources. When comparing battery-only and hydrogen-only systems battery systems perform better than hydrogen systems in many situations with a higher self-sufficient ratio and net present value. However if there is high seasonal variation and a high requirement for using renewable energy (the penetration of renewable energy is >80 %) using hydrogen for energy storage is more beneficial. Furthermore the hybrid system (i.e. combining battery and hydrogen) outperforms battery-only and hydrogenonly systems. This is attributed to the complementary combination of hydrogen which can be used as a longterm energy storage option and battery which is utilised as a short-term option. This study also shows that storing hydrogen in a long-term strategy can lower component degradation enhance efficiency and increase the total economic performance of hydrogen and hybrid storage systems. The developed optimisation method and findings of this study can support the implementation of energy storage systems for renewable energy.
Modelling and Simulation of an Integrated Coupled Reactor for Hydrogen Production and Carbon Dioxide Utilisation in an Integrated Fuel Cell Power System
Dec 2024
Publication
In today’s world the need for sustainable energy solutions is paramount to address the ongoing crisis of increasing greenhouse gas emissions and global warming. Industries heavily reliant on fossil fuels must explore alternative energy sources. Hydrogen with its high heating value and zero direct emissions has emerged as a promising fuel for the future. Electrolytic hydrogen production has gained significance as it enables demand-side response grid stabilization using excess energy and the mitigation of curtailment from intermittent renewable energy sources (RES) such as solar and wind. Advanced combined heat and power (CHP) systems comprise of Solid oxide fuel cell (SOFC) module and a coupled reforming reactor to capture energy contained in the SOFC exhaust gases from SOFC. In present work 3D CFD model of an experimental coupled reactor used for onsite hydrogen production is developed and implemented into ANSYS Fluent® software. The study is aimed at opti mizing the reactor performance by identifying appropriate kinetic models for reforming and combustion re actions. SOFC anode off-gas (AOG) comprising mainly of unconverted hydrogen is combined with methane combustion to enhance thermal efficiency of the reactor and hence the CHP system. Kinetic models for catalytic reforming and combustion are implemented into ANSYS Fluent® through custom-built user defined functions (UDFs) written in C programming language. Simulation results are validated with experimental data and found in good agreement. AOG assisted combustion of methane shows a substantial improvement in thermal efficiency of the system. Improvement in thermal efficiency and reduction in carbon-based fuel demand AOG utilization contributes to sustainable hydrogen production and curtailment of greenhouse gas emissions.
Challenges and Opportunities for Hydrogen Production from Microalgae
Nov 2015
Publication
The global population is predicted to increase from ~7.3 billion to over 9 billion people by 2050.Together with rising economic growth this is forecast to result in a 50% increase in fueldemand which will have to be met while reducing carbon dioxide (CO 2 ) emissions by 50–80%to maintain social political energy and climate security. This tension between rising fuel demandand the requirement for rapid global decarbonization highlights the need to fast-track thecoordinated development and deployment of efficient cost-effective renewable technologies forthe production of CO 2 neutral energy. Currently only 20% of global energy is provided aselectricity while 80% is provided as fuel. Hydrogen (H 2) is the most advanced CO 2 -free fuel andprovides a ‘common’ energy currency as it can be produced via a range of renewabletechnologies including photovoltaic (PV) wind wave and biological systems such as microalgaeto power the next generation of H 2 fuel cells. Microalgae production systems for carbon-basedfuel (oil and ethanol) are now at the demonstration scale. This review focuses on evaluating thepotential of microalgal technologies for the commercial production of solar-driven H2 fromwater. It summarizes key global technology drivers the potential and theoretical limits ofmicroalgal H2 production systems emerging strategies to engineer next-generation systems andhow these fit into an evolving H 2 economy.
Insights into Site Evaluation for Underground Hydrogen Storage (UHS) on Gas Mixing-the Effects of Meter-Scale Heterogeniety and Associated Reservoir Characterization Parameters
Feb 2025
Publication
Underground Hydrogen Storage (UHS) as an emerging large-scale energy storage technology has shown great promise to ensure energy security with minimized carbon emission. A set of comprehensive UHS site evaluation criteria based on important factors that affect UHS performances is needed for its potential commercialization. This study focuses on the UHS site evaluation of gas mixing. The economic implications of gas mixing between injected hydrogen gas and the residual or cushion gas in a porous storage reservoir is an emerging problem for Underground Hydrogen Storage (UHS). It is already clear that reservoir scale heterogeneity such as formation structure (e.g. formation dip angle) and facies heterogeneity of the sedimentary rock may considerably affect the reservoir-scale mechanical dispersion-induced gas mixing during UHS in high permeability braided-fluvial systems (a common depleted reservoir type for UHS). Following this finding the current study uses the processmimicking modeling software to build synthetic meandering-fluvial reservoir models. Channel dimensions and the presence of abandoned channel facies are set as testing parameters resulting in 4 simulation cases with 200 realizations. Numerical flow simulations are performed on these models to investigate and compare the effects of reservoir and metre-scale heterogeneity on UHS gas mixing. Through simulation channel dimensions (reservoir-scale heterogeneity) are found to affect the uncertainty of produced gas composition due to mixing (represented by the P10-P90 difference of hydrogen fraction in a produced stream) by up to 42%. The presence of abandoned channel facies (metre-scale heterogeneity) depending on their architectural relationship with meander belts could also influence the gas mixing process to a comparable extent (up to 40%). Moreover we show that there is no clear statistical correlation between gas mixing and typical reservoir characterization parameters such as original gas in place (OGIP) average reservoir permeability and the Dykstra-Parsons coefficient. Instead the average time of travel of all reservoir cells calculated from flow diagnostics shows a negative correlation with the level of gas mixing. These results reveal the importance of 3D reservoir architecture analysis (integration of multiple levels of heterogeneity) to UHS site evaluation on gas mixing in depleted gas reservoirs. This study herein provides valuable insights into UHS site evaluation regarding gas mixing.
Decarbonizing the Future for the Transportation and Aviation Industries: Green Hydrogen as the Sustainable Fuel Solution
Jun 2025
Publication
The pressure to move to sustainable energy sources is obvious in today's fast changing energy environment. In this context green hydrogen appears as a beacon of hope with the potential to reinvent the paradigms of energy consumption particularly in the transportation and aviation sectors. Hydrogen has long been intriguing owing to its unique characteristics. It is not only an energy transporter; it has the power to alter the game. Its growing significance is due to its capacity to decarbonize energy generation. Traditional hydrogen generation techniques have contributed considerably to world CO2 emissions accounting for over 2% of total emissions. This environmental problem is successfully addressed by the development of green hydrogen which is created from renewable energy sources. The International Energy Agency (IEA) predicts a 25 to 30 percent increase in global energy consumption by 2040 which is a very grim scenario. If continue to rely on coal and oil this growing demand will result in greater CO2 emissions exacerbating climate change's consequences. In this situation green hydrogen is not only an option but a need. Because green hydrogen has properties with conventional fuels it can be simply integrated into current infrastructure. This harmonic integration ensures that the shift to hydrogen-based solutions in these sectors would not demand a complete redesign of the present systems assuring cost-effectiveness and practicality. However like with any energy source green hydrogen has obstacles. Its combustibility and probable explosiveness have been cited as causes for concern. However developments in safety measures have successfully mitigated these dangers ensuring that hydrogen may be used safely and efficiently across various applications. A further difficulty is its energy density particularly in comparison to conventional fuels. While its energy-to-weight ratio may be good its bulk poses challenges particularly in the aviation industry where space is at a premium. Beyond its direct use as a fuel green hydrogen has potential in auxiliary capacities. It may be used as a dependable backup energy source during power outages as well as in a variety of different sectors and uses ranging from manufacturing to residential. Green hydrogen's adaptability demonstrates its potential to infiltrate all sectors of our economy. Storage is an important enabler for broad hydrogen use. Effective hydrogen storage technologies guarantee not only its availability but also its viability as a source of energy. Current research and advancements in this field are encouraging which strengthens the argument for green hydrogen. At conclusion green hydrogen is in the vanguard of sustainable energy solutions particularly for the transportation and aviation industries. In our collaborative quest of a sustainable future its unique features and environmental advantages make it a vital asset. As we explore further into the complexities of green hydrogen in this publication we want to shed light on its potential obstacles and future route.
Cooperative Boron and Vanadium Doping of Nickel Phosphides for Hydrogen Evolution in Alkaline and AnionExchange Membrane Water/Seawater Electrolyzers
Mar 2023
Publication
Developing low-cost and high-performance transition metal-based electro-catalysts is crucial for realizing sustainable hydrogen evolution reaction (HER)in alkaline media. Here a cooperative boron and vanadium co-doped nickelphosphide electrode (B V-Ni2P) is developed to regulate the intrinsic elec-tronic configuration of Ni2P and promote HER processes. Experimental andtheoretical results reveal that V dopants in B V-Ni2P greatly facilitate the dis-sociation of water and the synergistic effect of B and V dopants promotes thesubsequent desorption of the adsorbed hydrogen intermediates. Benefitingfrom the cooperativity of both dopants the B V-Ni2P electrocatalyst requires alow overpotential of 148 mV to attain a current density of −100 mA cm−2 withexcellent durability. The B V-Ni2P is applied as the cathode in both alkalinewater electrolyzers (AWEs) and anion exchange membrane water electrolyzers(AEMWEs). Remarkably the AEMWE delivers a stable performance to achieve500 and 1000 mA cm−2 current densities at a cell voltage of 1.78 and 1.92 Vrespectively. Furthermore the developed AWEs and AEMWEs also demon-strate excellent performance for overall seawater electrolysis.
The Hydrogen-water Collision: Assessing Water and Cooling Demands for Large-scale Green Hydrogen Production in a Warming Climate
Dec 2024
Publication
Hydrogen is expected to play a critical role in future energy systems projected to have an annual demand of 401–660 Mt by 2050. With large-scale green hydrogen projects advancing in water-scarce regions like Australia Chile and the Middle East and North Africa understanding water requirements for large-scale green hydrogen production is crucial. Meeting this future hydrogen demand will necessitate 4010 to 6600 GL of demineralised water annually for electrolyser feedwater if dry cooling is employed or an additional 6015 to 19800 GL for cooling water per year if evaporative cooling is employed. Using International Panel of Climate Change 2050 climate projections this work evaluated the techno-economic implications of dry vs. evaporative cooling for large-scale electrolyser facilities under anticipated higher ambient temperatures. The study quantifies water demands costs and potential operational constraints showing that evaporative cooling is up to 8 times cheaper to implement than dry cooling meaning that evaporative cooling can be oversized to accommodate increased cooling demand of high temperature events at a lower cost. Furthermore of the nations analysed herein Chile emerged as having the lowest cost of hydrogen owing to the lower projected ambient temperatures and frequency of high temperature events.
Renewable Hydrogen for the Energy Transition in Australia - Current Trends, Challenges and Future Directions
Sep 2024
Publication
Hydrogen is viewed as a potential energy solution for the 21st century with capabilities to tackle issues relating to environmental emissions sustainability energy shortages and security. Even though there are potential benefits of renewable hydrogen towards transitioning to net-zero emissions there is a limited study on the current use ongoing development and future directions of renewable hydrogen in Australia. Thus this study conducts a systematic review of studies for exploring Australia’s renewable hydrogen energy transition current trends strategies developments and future directions. By using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines earlier studies from 2005 to 2024 from two major databases such as ProQuest and Web of Science are gathered and analyzed. The study highlights significant issues relating to hydrogen energy technologies and opportunities/challenges in production storage distribution utilization and environmental impacts. The study found that Australia’s ambition for a strong hydrogen economy is made apparent with its clear strategic actions to develop a clean technology-based hydrogen production storage and distribution system. This study provides several practical insights on Australia’s hydrogen energy transition hydrogen energy technologies investments and innovation as well as strategies/recommendations for achieving a more environment friendly secure affordable and sustainable energy future.
Freshwater Supply for Hydrogen Production: An Underestimated Challenges
Jun 2024
Publication
This paper presents a thorough critical literature review aimed at understanding the challenges associated with freshwater supply associated with rapidly growing global hydrogen economies. The review has been prompted by the fact that the hydrogen production projected for 2030 will create at least an additional demand of 2.1 billion cubic meters for freshwater which needs to be addressed to support sustainable development of emerging hydrogen economies. The key solutions explored by this study include seawater and wastewater treatment methods for large-scale freshwater generation along with the newly introduced technique of direct seawater-fed electrolysis. Prior research indicates that desalination technologies including reverse osmosis and membrane distillation also offer promising avenues for large-scale freshwater production at costs comparable to other desalination techniques. Additionally low-temperature desalination methods such as membrane distillation could play a significant role in freshwater production for electrolysis underscoring the importance of exploring waste recovery opportunities within the system (e.g. fuel cell heat recovery). This review also identifies research gaps that need to be addressed to overcome freshwater supply challenges and enhance the sustainability and techno-economic viability of large-scale hydrogen energy systems.
Availability Assessment of an Offshore PEM Seawater Electrolysis: A System-level Approach
Jun 2025
Publication
Green hydrogen is gaining prominence as a sustainable fuel to decarbonize hard-to-electrify industries and complement renewable energy growth. Among clean hydrogen production technologies seawater-based PEM electrolysis systems hold substantial promise. However implementing offshore PEM electrolysis systems faces significant challenges in ensuring long-term availability due to technological infancy and harsh environmental conditions. Ensuring safe and reliable operation is therefore critical to advancing global sustainability goals. While existing research has primarily focused on component-level techno-economic feasibility limited attention has been given to system-level safety and availability analysis particularly for offshore renewable-powered seawater-based PEM electrolysis systems. This study addresses this gap by conducting a comprehensive availability analysis of containerized plug-and-play PEM systems in offshore environments. A Bayesian Network model is employed incorporating Fault Tree Analysis and Reliability Block Diagram approaches for failure and availability analysis at the system level. A maintenance decision support tool using Influence diagram is developed to analyse different maintenance planning strategies impact on system availability improvement. A case study incorporating industrial modular PEM model is utilised to analyse the developed model effectiveness. The study identifies 81 availability states with the hydrogen generation subsystem being the most critical to system performance. Comparative analysis shows that applying redundancy across all subsystems improves availability by 18.54% but reduces Expected Utility by 4.94%. The optimal strategy involves redundancy for seawater purification cooling and monitoring subsystems with preventive maintenance for hydrogen generation achieving a maximum EU of 5.29 × 106. This framework supports decision-makers in evaluating system availability under uncertain offshore conditions optimizing maintenance strategies and ensuring resilience for large-scale H2 production.
Optimization Research on a Novel Community Integrated Energy System Based on Solar Energy Utilization and Energy Storage
Feb 2025
Publication
Integrated energy systems (IESs) are essential for enabling the energy transition in communities and reducing CO2 emissions. This paper proposes a novel IES that combines photovoltaic (PV) and solar thermal energy with coordinated electrical and thermal energy storage to meet the energy demands of residential communities. The system also incorporates hydrogen production for fuel cell vehicles. A dual-objective optimization model was developed minimizing both economic costs and CO2 emissions. The system’s performance was evaluated using data from a case study in Dalian which showed that the IES successfully reduced the annual total cost and CO2 emissions compared to conventional systems. The key findings showed that PV electrolysis for hydrogen production provides both economic and environmental advantages. The system’s integration of solar thermal energy offers higher economic efficiency while PV energy supplies enhance coordination. Additionally carbon trading prices effectively reduce emissions but excessively high prices do not always lead to better emission outcomes. This study introduces a comprehensive multi-energy approach for optimizing the energy supply contributing novel insights to the field of sustainable energy systems.
Fuelling a Clean Future: A Systematic Review of Techno-Economic and Life Cycle Assessments in E-Fuel Development
Aug 2024
Publication
The transition to sustainable energy has ushered in the era of electrofuels (e-fuels) which are synthesised using electricity from renewable sources water and CO2 as a sustainable alternative to fossil fuels. This paper presents a systematic review of the techno-economic (TEA) and life cycle assessments (LCAs) of e-fuel production. We critically evaluate advancements in production technologies economic feasibility environmental implications and potential societal impacts. Our findings indicate that while e-fuels offer a promising solution to reduce carbon emissions their economic viability depends on optimising production processes and reducing input material costs. The LCA highlights the necessity of using renewable energy for hydrogen production to ensure the genuine sustainability of e-fuels. This review also identifies knowledge gaps suggesting areas for future research and policy intervention. As the world moves toward a greener future understanding the holistic implications of e-fuels becomes paramount. This review aims to provide a comprehensive overview to guide stakeholders in their decision-making processes.
Distributional Trends in the Generation and End-Use Sector of Low-Carbon Hydrogen Plants
Mar 2023
Publication
This paper uses established and recently introduced methods from the applied mathematics and statistics literature to study trends in the end-use sector and the capacity of low-carbon hydrogen projects in recent and upcoming decades. First we examine distributions in plants over time for various end-use sectors and classify them according to metric discrepancy observing clear similarity across all industry sectors. Next we compare the distribution of usage sectors between different continents and examine the changes in sector distribution over time. Finally we judiciously apply several regression models to analyse the association between various predictors and the capacity of global hydrogen projects. Across our experiments we see a welcome exponential growth in the capacity of zero-carbon hydrogen plants and significant growth of new and planned hydrogen plants in the 2020’s across every sector.
Just Trade-offs in a Net-zero Transition and Social Impact Assessment
Apr 2024
Publication
Countries around the world are prioritising net zero emissions to meet their Paris Agreement goals. The demand for social impact assessment (SIA) is likely to grow as this transition will require investments in decarbonisation projects with speed and at scale. There will be winners and losers of these projects because not everyone benefits the same; and hence trade-offs are inevitable. SIAs therefore should focus on understanding how the risks and benefits will be distributed among and within stakeholders and sectors and enable the identification of trade-offs that are just and fair. In this study we used a hypothetical case of large-scale hydrogen production in regional Australia and engaged with multi-disciplinary experts to identify justice issues in transitioning to such an industry. Using Rawlsian theory of justice as fairness we identified several tensions between different groups (national regional local inter and intra-communities) and sectors (environmental and economic) concerning the establishment of a hydrogen industry. These stakeholders and sectors will be disproportionately affected by this establishment. We argue that Rawlsian principles of justice would enable the practice of SIA to identify justice trade-offs. Further we conceptualise that a systems approach will be critical to facilitate a wider participation and an agile process for achieving just trade-offs in SIA.
Split Injection Strategies for a High-pressure Hydrogen Direct Injection in a Small-bore Dual-fuel Diesel Engine
Jan 2024
Publication
Hydrogen-diesel dual direct-injection (H2DDI) engines present a promising pathway towards cleaner and more efficient transportation. In this study hydrogen split injection strategies were explored in an automotive-size single-cylinder compression ignition (CI) engine with a focus on varying the injection timings and energy fractions. The engine was operated at an intermediate load with fixed combustion phasing through adjustments of pilot diesel injection timing. An energy substitution principle guided the variation in energy fraction between the two hydrogen injections and then diesel injection while keeping the total energy input constant. The findings demonstrate that early first hydrogen injection timings lead to characteristics indicative of premixed combustion reflecting a high homogeneity of the hydrogen-air mixture. In contrast hydrogen stratification levels were predominantly influenced by later second injection timings with mixing-controlled combustion behaviour apparent for very late injections near top dead centre or when the second hydrogen injection held high energy fractions which led to decreased nitrogen oxides (NOx: NO and NO2) emissions. The carbon dioxide (CO2) emissions did not show high sensitivity to the hydrogen split injection strategies exhibiting about 77 % reduction compared to the diesel baseline due primarily to increased hydrogen energy fraction of up to 90 %
Influence of Natural Gas and Hydrogen Properties on Internal Combustion Engine Performance, Combustion, and Emissions: A Review
Jan 2024
Publication
This paper provides a comprehensive overview of the physical properties and applications of natural gas (NG) and hydrogen as fuels in internal combustion (IC) engines. The paper also meticulously examines the use of both NG and hydrogen as a fuel in vehicles their production physical characteristics and combustion properties. It reviews the current experimental studies in the literature and investigates the results of using both fuels. It further covers the challenges associated with injectors needle valves lubrication spark plugs and safety requirements for both fuels. Finally the challenges related to the storage production and safety of both fuels are also discussed. The literature review reveals that NG in spark ignition (SI) engines has a clear and direct positive impact on fuel economy and certain emissions notably reducing CO2 and non-methane hydrocarbons. However its effect on other emissions such as unburnt hydrocarbons (UHC) nitrogen oxides (NOx) and carbon monoxide (CO) is less clear. NG which is primarily methane has a lower carbon-to-hydrogen ratio than diesel fuel resulting in lower CO2 emissions per unit of energy released. In contrast hydrogen is particularly well-suited for use in gasoline engines due to its high self-ignition temperature. While increasing the hydrogen content of NG engines reduces torque and power output higher hydrogen input results in reduced fuel consumption and the mitigation of toxic exhaust emissions. Due to its high ignition temperature hydrogen is not inherently suitable for direct use in diesel engines necessitating the exploration of alternative methods for hydrogen introduction into the cylinder. The literature review suggests that hydrogen in diesel engines has shown a reduction in specific exhaust emissions and fuel consumption and an increase in NOx emissions. Overall the paper provides a valuable and informative overview of the challenges and opportunities associated with using hydrogen and NG as fuels in IC engines. It highlights the need for further research and development to address the remaining challenges such as the development of more efficient combustion chambers and the reduction of NOx emissions.
Outlook and Challenges for Hydrogen Storage in Nanoporous Materials
Feb 2016
Publication
Darren P. Broom,
Colin Webb,
Katherine Hurst,
P. A. Parilla,
Thomas Gennett,
C. M. Brown,
Renju Zacharia,
E. Tylianakis,
E. Klontzas,
George E. Froudakis,
Th. A. Steriotis,
Pantelis N. Trikalitis,
Donald L. Anton,
B. Hardy,
David A. Tamburello,
Claudio Corgnale,
B. A. van Hassel,
D. Cossement,
Richard Chahine and
Michael Hirscher
Considerable progress has been made recently in the use of nanoporous materials for hydrogen storage. In this article the current status of the field and future challenges are discussed ranging from important open fundamental questions such as the density and volume of the adsorbed phase and its relationship to overall storage capacity to the development of new functional materials and complete storage system design. With regard to fundamentals the use of neutron scattering to study adsorbed H2 suitable adsorption isotherm equations and the accurate computational modelling and simulation of H2 adsorption are discussed. The new materials covered include flexible metal–organic frameworks core–shell materials and porous organic cage compounds. The article concludes with a discussion of the experimental investigation of real adsorptive hydrogen storage tanks the improvement in the thermal conductivity of storage beds and new storage system concepts and designs.
Hydrogen Trapping and Embrittlement in Metals - A Review
Apr 2024
Publication
Hydrogen embrittlement in metals (HE) is a serious challenge for the use of high strength materials in engineering practice and a major barrier to the use of hydrogen for global decarbonization. Here we describe the factors and variables that determine HE susceptibility and provide an overview of the latest understanding of HE mechanisms. We discuss hydrogen uptake and how it can be managed. We summarize hydrogen trapping and the techniques used for its characterization. We also review literature that argues that hydrogen trapping can be used to decrease HE susceptibility. We discuss the future research that is required to advance the understanding of HE and hydrogen trapping and to develop HE-resistant alloys.
Decarbonizing Combustion with Hydrogen Blended Fuels: An Exploratory Study of Impact of Hydrogen on Hydrocarbon Autoignition
Jan 2024
Publication
Blending hydrogen to existing fuel mix represents a major opportunity for decarbonisation. One important consideration for this application is the chemical interaction between hydrogen and hydrocarbon fuels arising from their different combustion chemistries and varying considerably with combustion processes. This paper conducted an exploratory study of hydrogen’s impact on autoignition in several combustion processes where hydrogen is used as a blending component or the main fuel. Case studies are presented for spark ignition engines (H2/natural gas) compression ignition engines (H2/diesel) moderate or intense low-oxygen dilution (MILD) combustors (H2/natural gas) and rotational detonation engines (H2/natural gas). Autoignition reactivity as a function of the hydrogen blending level is investigated numerically using the ignition delay iso-contours and state-of-the-art kinetic models at time scales representative of each application. The results revealed drastically different impact of hydrogen blending on autoignition due to different reaction temperature pressure and time scale involved in these applications leaving hydrocarbon interacting with hydrogen at different ignition branches where the negative pressure/temperature dependency of oxidation kinetics could take place. The resulted non-linear and at times non-monotonic behaviours indicate a rich topic for combustion chemistry and also demonstrates ignition delay iso-contour as a useful tool to scope autoignition reactivity for a wide range of applications.
No more items...