China, People’s Republic
Highly Selective Production of ‘‘Jadeite Hydrogen” from the Catalytic Decomposition of Diesel
Mar 2025
Publication
Clean hydrogen (H2) is highly desirable for the sustainable development of society in the era of carbon neutrality. However the current capability of water electrolysis and steam methane (CH4) reforming to produce green and blue H2 is very limited mainly due to the high production cost difficult scale-up technology or operational risk. Here we propose the direct catalytic decomposition of diesel using a nano-Fe-based catalyst to produce the so-called ‘‘jadeite H2” while simultaneously fixing the carbon from the diesel in the form of carbon nanotubes (CNTs). Efforts are made to understand the suppression mechanism of the CH4 byproduct such as by tuning the catalyst type space velocity and reaction time. The optimal green index (GI)—that is the molar ratio of H2/carbon in a gaseous state—of the proposed technology exceeds 42 which is far higher than those of any previously reported chemical vapor deposition (CVD) method. Moreover the carbon footprint (CFP) of the proposed technology is far lower than those of grey H2 blue H2 and other dehydrogenation technologies. Compared with most of the technologies mentioned above the energy consumption (per mole of H2) and reactor amplification of the proposed technology validate its high efficiency and great practical feasibility.
Pathways to Environmental Sustainability through Energy Efficiency: A Strategic Next Energy Vision for Sustainable Development by 2050
Oct 2025
Publication
As the global push for carbon neutrality accelerates energy efficiency has become essential for sustainable development especially for nations like Nigeria that face rising energy demands and significant environmental challenges. This study explores how integrating energy efficiency with carbon neutrality can support Nigeria’s strategic energy goals while offering global lessons for other countries facing similar challenges focusing on key sectors including industry transport and power generation. The study systematically examines the impacts of renewable energy (RE) technologies like solar wind and hydropower—alongside policy reforms technological innovations and demand-side management strategies to advance energy efficiency in Nigeria. Key findings include the identification of strategic policy frameworks technological solutions and the transformative role of green hydrogen in decarbonizing hard-to-electrify sectors. The study also emphasizes the importance of international climate finance decentralized RE systems like solar mini-grids for improving energy access and economic opportunities for job creation in the RE sector. Furthermore it highlights the need for behavioral changes community engagement and consistent policy implementation to address infrastructure gaps and drive energy efficiency goals. The novelty of this research lies in its scenario-based analysis of Nigeria’s low-carbon transition detailing both the opportunities and challenges such as policy inconsistencies infrastructure deficits and financial constraints. The findings stress the importance of international collaboration technological advancements and targeted investments to overcome these challenges. By offering actionable insights and strategic recommendations this study provides a roadmap for policymakers industry stakeholders and researchers to drive Nigeria towards a sustainable carbon-neutral future by 2050.
QDQN-ThermoNet: A Quantum-driven Dual Depp Q-network Framework for Intelligent Thermal Regulation in Solid-state and Hydrogen Fuel Cell Systems of Future Electric Vehicles
Oct 2025
Publication
This paper presents QDQN-ThermoNet a novel Quantum-Driven Dual Deep Q-Network framework for intelligent thermal regulation in next-generation electric vehicles with hybrid energy systems. Our approach introduces a dual-agent architecture where a classical DQN governs solid-state battery thermal management while a quantumenhanced DQN regulates proton exchange membrane fuel cell dynamics both sharing a unified quantumenhanced experience replay buffer to facilitate cross-system information transfer. Hardware-in-the-Loop validation across diverse operational scenarios demonstrates significant performance improvements compared to classical methods including enhanced thermal stability (95.1 % vs. 82.3 %) faster thermal response (2.1 s vs. 4.7 s) reduced overheating events (0.3 vs. 3.2) and superior energy efficiency (22.4 % energy savings). The quantum-enhanced components deliver 38.7 % greater sample efficiency and maintain robust performance under sparse data conditions (33.9 % improvement) while material-adaptive control strategies leveraging MXeneenhanced phase change materials achieve a 50.3 % reduction in peak temperature rise during transients. Component lifetime analysis reveals a 33.2 % extension in battery service life through optimized thermal management. These results establish QDQN-ThermoNet as a significant advancement in AI-driven thermal management for future electric vehicle platforms effectively addressing the complex challenges of coordinating thermal regulation across divergent energy sources with different optimal operating temperatures.
Nodal Marginal Price Decomposition Mechanism for the Hydrogen Energy Market Considering Hydrogen Transportation Characteristics
Oct 2025
Publication
With the growing significance of hydrogen in the global energy transition research on its pricing mechanisms has become increasingly crucial. Focusing on hydrogen markets predominantly supplied by electrolytic production this study proposes a nodal marginal hydrogen price decomposition algorithm that explicitly incorporates the time-delay dynamics inherent in hydrogen transmission. A four-dimensional price formation framework is established comprising the energy component network loss component congestion component and time-delay component. To address the nonconvex optimization challenges arising in the market-clearing model an improved second-order cone programming method is introduced. This method effectively reduces computational complexity through the reconstruction of time-coupled constraints and reformulation of the Weymouth equation. On this basis the analytical expression of the nodal marginal hydrogen price is rigorously derived elucidating how transmission dynamics influence each price component. Empirical studies using a modified Belgian 20-node system demonstrate that the proposed pricing mechanism dynamically adapts to load variations with hydrogen prices exhibiting a strong correlation with electricity cost fluctuations. The results validate the efficacy and superiority of the proposed approach in hydrogen energy market applications. This study provides a theoretical foundation for designing efficient and transparent pricing mechanisms in emerging hydrogen markets.
Optimization of Novel Variable-Channel-Width Solid Oxide Electrolysis Cell (SOEC) Design for Enhanced Hydrogen Production
Oct 2025
Publication
This study presents a novel solid oxide electrolysis cell (SOEC) design with variable channel widths to optimize thermal management and electrochemical performance for enhanced hydrogen production. Using high-fidelity computational modeling in COMSOL Multiphysics 6.1 five distinct channel width configurations were analyzed with a baseline model validated against experimental data. The simulations showed that modifying the channel geometry particularly in Scenario 2 significantly improved hydrogen production rates by 6.8% to 29% compared to a uniform channel design with the effect becoming more pronounced at higher voltages. The performance enhancement was found to be primarily due to improved fluid velocity regulation which increased reactant residence time and enhanced mass transport rather than a significant thermal effect as temperature distribution remained largely uniform across the cell. Additionally the inclusion of a dedicated heat transfer channel was shown to improve current density and overall efficiency particularly at lower voltages. While a small increase in voltage raised internal cell pressure the variable-width designs especially those with widening channels led to greater hydrogen output albeit with a corresponding increase in system energy consumption due to higher pressure. Overall the findings demonstrate that strategically designed variable-width channels offer a promising approach to optimizing SOEC performance for industrial-scale hydrogen production.
Effects of Operating Parameters on Combustion Characteristics of Hydrogen-Doped Natural Gas
Oct 2025
Publication
The operational optimization of industrial boilers utilizing hydrogen-enriched natural gas is constrained by two critical gaps: insufficient understanding of the coupled effects of hydrogen blending ratio equivalence ratio and boiler load on combustion performance— compounded by unresolved challenges of combustion instability flashback and elevated NOx emissions—and a lack of systematic investigations combining these parameters in industrial-scale systems (prior studies often focus on single variables like hydrogen fraction). To address this a comprehensive computational fluid dynamics (CFD) analysis was conducted on a 2.1 MW industrial boiler employing the Steady Laminar Flamelet Model (SLFM) with a modified k-ε turbulence model and the GRI-Mech 3.0 mechanism. Simulations covered hydrogen fractions (f(H2) = 0–25%) equivalence ratios (Φ = 0.8–1.2) and load conditions (15–100%). All NOx emissions reported herein are normalized to 3.5% O2 (mg/Nm3 ) for regulatory comparison. Results show that increasing the hydrogen content raises the flame temperature and NOx emissions while reducing CO and unburned hydrocarbons; a higher equivalence ratio elevates temperature and NOx with Φ = 0.8 balancing efficiency and emission control; and reducing load significantly lowers furnace temperature and NO emissions. Notably the boiler’s unique staged-combustion configuration (81% fuel supply to the central rich-combustion nozzle 19% to the concentric lean-combustion nozzle) was found to mitigate NOx formation by 15–20% compared to single-inlet burner designs and its integrated cyclone blades (generating maximum swirling velocity of 14.2 m/s at full load) enhanced fuel–air mixing which became particularly critical for maintaining combustion stability at low loads (≤20%) and high hydrogen blending ratios (≥20%). This study provides quantitative trade-off insights between combustion efficiency and pollutant formation offering actionable guidance for the safe efficient operation of hydrogen-enriched natural gas in industrial boilers.
Application and Research Progress of Mechanical Hydrogen Compressors in Hydrogen Refueling Stations: Structure, Performance, and Challenges
Nov 2025
Publication
The hydrogen energy industry is rapidly developing positioning hydrogen refueling stations (HRSs) as critical infrastructure for hydrogen fuel cell vehicles. Within these stations hydrogen compressors serve as the core equipment whose performance and reliability directly determine the overall system’s economy and safety. This article systematically reviews the working principles structural features and application status of mechanical hydrogen compressors with a focus on three prominent types based on reciprocating motion principles: the diaphragm compressor the hydraulically driven piston compressor and the ionic liquid compressor. The study provides a detailed analysis of performance bottlenecks material challenges thermal management issues and volumetric efficiency loss mechanisms for each compressor type. Furthermore it summarizes recent technical optimizations and innovations. Finally the paper identifies current research gaps particularly in reliability hydrogen embrittlement and intelligent control under high-temperature and high-pressure conditions. It also proposes future technology development pathways and standardization recommendations aiming to serve as a reference for further R&D and the industrialization of hydrogen compression technology.
Addressing Spatiotemporal Mismatch via Hourly Pipeline Scheduling: Regional Hydrogen Energy Supply Optimization
Nov 2025
Publication
The rapid adoption of hydrogen fuel cell vehicles (HFCVs) in the Beijing–Tianjin–Hebei (BTH) hub accentuates the mismatch between renewable-based hydrogen supply in Hebei and concentrated demand in Beijing and Tianjin. We develop a mixed-integer linear model that co-configures a hydrogen pipeline network and optimizes hourly flow schedules to minimize annualized cost and CO2 emissions simultaneously. For 15000 HFCVs expected in 2025 (137 t d−1 demand) the Pareto-optimal design consists of 13 production plants 43 pipelines and 38 refueling stations delivering 50767 t yr−1 at 68% pipeline utilization. Hebei provides 88% of the hydrogen 70% of which is consumed in the two megacities. Hourly profiles reveal that 65% of electrolytic output coincides with local wind–solar peaks whereas refueling surges arise during morning and evening rush hours; the proposed schedule offsets the 4–6 h mismatch without additional storage. Transport distances are 40% < 50 km 35% 50–200 km and 25% > 200 km. Raising the green hydrogen share from 10% to 70% increases total system cost from USD 1.56 bn to USD 2.73 bn but cuts annual CO2 emissions from 142 kt to 51 kt demonstrating the trade-off between cost and decarbonization. The model quantifies the value of sub-day pipeline scheduling in resolving spatial–temporal imbalances for large-scale low-carbon hydrogen supply.
Optimal Dispatch Model for Hybrid Energy Storage in Low-Carbon Integrated Energy Systems
Nov 2025
Publication
Integrated Energy Systems (IESs) which leverage the synergistic coordination of electricity heat and gas networks serve as crucial enablers for a low-carbon transition. Current research predominantly treats energy storage as a subordinate resource in dispatch schemes failing to simultaneously optimise IES economic efficiency and storage operators’ profit maximisation thereby overlooking their potential value as independent market entities. To address these limitations this study establishes an operator-autonomous management framework incorporating electrical thermal and hydrogen storage in IESs. We propose a joint optimal dispatch model for hybrid energy storage systems in low-carbon IES operation. The upper-level model minimises total system operation costs for IES operators while the lower-level model maximises net profits for independent storage operators managing various storage assets. These two levels are interconnected through power price and carbon signals. The effectiveness of the proposed model is verified by setting up multiple scenarios for example analysis.
Optimal Sizing and Energy Management for Fuel Cell Electric Vehicles with 3D-ordered MEAs: A Pareto Frontier Study
Oct 2025
Publication
Fuel cell electric vehicles (FCEVs) are zero-emission but face cost and power density challenges. To mitigate these limitations a novel 3D-ordered nano-structured self-supporting membrane electrode assembly (MEA) has been developed. This paper investigates the optimal component sizing of the battery and fuel cell in FCEVs equipped with 3D-ordered MEAs integrating the energy management. To explore the trade-offs between component cost operational cost and fuel cell degradation the sizing and energy management problem is formulated into a multi-objective optimisation problem. A Pareto frontier (PF) study is conducted using the decomposed multi-objective evolutionary algorithm (MOEA/D) for a more diverse distribution of feasible solutions. The modular design of fuel cells is derived from a scaled and stressed experiment. After executing MOEA/D across the three aggressive driving cycles power source configurations are selected from the corresponding PFs based on objective trade-offs ensuring robustness of the overall system. The optimisation performance of the MOEA/D is compared with that of the multi-objective Particle Swarm Optimisation. In addition the selected powertrain configurations are evaluated and compared through standard and realworld driving cycles in a simulation environment. This paper also performs a sensitivity analysis to reveal the influence of diverse component unit costs and hydrogen price. The results indicate that the mediumsized configuration consisting of a 63.31 kW fuel cell stack and a 52.15 kWh battery pack delivers the best overall performance. It achieves a 26.71% reduction in component cost and up to 12.76% savings in hydrogen consumption across various driving conditions. These findings provide valuable insights into the design and optimisation of fuel cell systems for FCEVs.
Marine Hydrogen Pressure Reducing Valves: A Review on Multi-Physics Coupling, Flow Dynamics, and Structural Optimization for Ship-Borne Storage Systems
Oct 2025
Publication
As a zero-carbon energy carrier hydrogen is playing an increasingly vital role in the decarbonization of maritime transportation. The hydrogen pressure reducing valve (PRV) is a core component of ship-borne hydrogen storage systems directly influencing the safety efficiency and reliability of hydrogen-powered vessels. However the marine environment— characterized by persistent vibrations salt spray corrosion and temperature fluctuations— poses significant challenges to PRV performance including material degradation flow instability and reduced operational lifespan. This review comprehensively summarizes and analyzes recent advances in the study of high-pressure hydrogen PRVs for marine applications with a focus on transient flow dynamics turbulence and compressible flow characteristics multi-stage throttling strategies and valve core geometric optimization. Through a systematic review of theoretical modeling numerical simulations and experimental studies we identify key bottlenecks such as multi-physics coupling effects under extreme conditions and the lack of marine-adapted validation frameworks. Finally we conducted a preliminary discussion on future research directions covering aspects such as the construction of coupled multi-physics field models the development of marine environment simulation experimental platforms the research on new materials resistant to vibration and corrosion and the establishment of a standardized testing system. This review aims to provide fundamental references and technical development ideas for the research and development of high-performance marine hydrogen pressure reducing valves with the expectation of facilitating the safe and efficient application and promotion of hydrogen-powered shipping technology worldwide.
Co-Optimization of Capacity and Operation for Battery-Hydrogen Hybrid Energy Storage Systems Based on Deep Reinforcement Learning and Mixed Integer Programming
Oct 2025
Publication
The hybrid energy storage system (HESS) that combines battery with hydrogen storage exploits complementary power/energy characteristics but most studies optimize capacity and operation separately leading to suboptimal overall performance. To address this issue this paper proposes a bi-level co-optimization framework that integrates deep reinforcement learning (DRL) and mixed integer programming (MIP). The outer layer employs the TD3 algorithm for capacity configuration while the inner layer uses the Gurobi solver for optimal operation under constraints. On a standalone PV–wind–load-HESS system the method attains near-optimal quality at dramatically lower runtime. Relative to GA + Gurobi and PSO + Gurobi the cost is lower by 4.67% and 1.31% while requiring only 0.52% and 0.58% of their runtime; compared with a direct Gurobi solve the cost remains comparable while runtime decreases to 0.07%. Sensitivity analysis further validates the model’s robustness under various cost parameters and renewable energy penetration levels. These results indicate that the proposed DRL–MIP cooperation achieves near-optimal solutions with orders of magnitude speedups. This study provides a new DRL–MIP paradigm for efficiently solving strongly coupled bi-level optimization problems in energy systems.
Assessment of Regional Hydrogen Refueling Station Layout Planning and Carbon Reduction Benefits Based on Multi-Dimensional Factors of Population, Land, and Demand
Oct 2025
Publication
The urgent global transition toward low-carbon energy systems has highlighted the need for systematic planning of hydrogen refueling stations (HRS) to facilitate clean energy adoption. This study develops an integrated framework for regional HRS layout optimization and carbon emission assessment considering population distribution land area and hydrogen demand. Using Hainan Province as a case study the model estimates regional hydrogen demand determines optimal HRS deployment evaluates spatial coverage and refueling distances and quantifies potential carbon emission reductions under various renewable energy scenarios. Model validation with Haikou demonstrates its reliability and applicability at the regional scale. Results indicate pronounced spatial disparities in hydrogen demand and infrastructure requirements emphasizing that prioritizing station deployment in densely populated urban areas can enhance accessibility and maximize emission reduction. The framework offers a practical data-efficient tool for policymakers and planners to guide early-stage hydrogen infrastructure development and supports strategies for regional decarbonization and sustainable energy transitions.
Degradation Heterogeneity in Active X70 Pipeline Welds Microstructure-Property Coupling Under Multiphysics Environments of Hydrogen-Blended Natural Gas
Oct 2025
Publication
This study investigates the performance degradation of X70 steel weld material in highpressure natural gas pipelines in the Sichuan-Chongqing region and its impact on pipeline safety by investigating their behavior under multiphysics environments including varying gas media (nitrogen methane hydrogen-blended) pressure conditions (0.1–10 MPa) and material regions (base metal vs. weld). A key novelty of this work is the introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. A key novelty of this work is the explicit introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. Slow strain rate tensile tests combined with fracture morphology and microstructure analysis reveal that welds exhibit inferior mechanical properties due to microstructural inhomogeneity and residual stresses including a yield stress reduction of 15.2–18.7%. The risk of brittle fracture was highest in the hydrogen-blended environment while nitrogen exhibited the most benign effect. Material region changes were identified as the most significant factor affecting degradation. This research provides crucial data and theoretical support for pipeline safety design and material performance optimization.
Enhanced Performance of TiO2 Composites for Solar Cells and Photocatalytic Hydrogen Production
Oct 2025
Publication
Titanium dioxide (TiO2) is widely used in solar cells and photocatalysts given its excellent photoactivity low cost and high structural electronic and optical stability. Here a novel TiO2 composite was prepared by coating TiO2 inverse opal (IO) with TiO2 nanorods (NRs). With a porous three-dimensional network structure the composite exhibited higher light absorption; enhanced the separation of the electron–hole pairs; deepened the infiltration of the electrolyte; better transported and collected charge carriers; and greatly improved the power conversion efficiency (PCE) of the quantum-dot sensitized solar cells (QDSSCs) based on it while also boosting its own photocatalytic hydrogen generation efficiency. A very high PCE of 12.24% was achieved by QDSSCs utilizing CdS/CdSe sensitizer. Furthermore the TiO2 composite exhibited high photocatalytic activity with a H2 release rate of 1080.2 µ mol h−1 g −1 several times that of bare TiO2 IO or TiO2 NRs.
A Review on Combustion Instability of Hydrogen-Enriched Marine Gas Turbines
Nov 2025
Publication
Hydrogen is widely regarded as a promising carbon-free alternative fuel. However the development of low-emission marine gas turbine combustion systems has been hindered by the associated risks of combustion instability also termed as thermoacoustic oscillations. Although there is sufficient literature on hydrogen fuel and combustion instability systematic reviews addressing the manifestations and mechanisms of these instabilities remain limited. The present study aims to provide a comprehensive review of combustion instabilities in hydrogen-enriched marine gas turbines with a particular focus on elucidating the characteristics and underlying mechanisms. The review begins with a concise overview of recent progress in understanding the fundamental combustion properties of hydrogen and then details various instability phenomena in hydrogen-enriched methane flames. The mechanisms by which hydrogen enrichment affects combustion instabilities are extensively discussed particularly in relation to the feedback loop in thermoacoustic combustion systems. The paper concludes with a summary of the key combustion instability challenges associated with hydrogen addition to methane flames and offers prospects for future research. In summary the review highlights the interaction between hydrogenenriched methane flames and thermoacoustic phenomena providing a foundation for the development of stable low-emission combustion systems in industrial marine applications incorporating hydrogen enrichment.
Benefit Allocation Strategies for Electric–Hydrogen Coupled Virtual Power Plants with Risk–Reward Tradeoffs
Nov 2025
Publication
Driven by carbon neutrality goals electric–hydrogen coupled virtual power plants (EHCVPPs) integrate renewable hydrogen production with power system flexibility resources emerging as a critical technology for large-scale renewable integration. As distributed energy resources (DERs) within EHCVPPs diversify heterogeneous resources generate diversified market values. However inadequate benefit allocation mechanisms risk reducing participation incentives destabilizing cooperation and impairing operational efficiency. To address this benefit allocation must balance fairness and efficiency by incorporating DERs’ regulatory capabilities risk tolerance and revenue contributions. This study proposes a multi-stage benefit allocation framework incorporating risk–reward tradeoffs and an enhanced optimization model to ensure sustainable EHCVPP operations and scalability. The framework elucidates bidirectional risk–reward relationships between DERs and EHCVPPs. An individualized risk-adjusted allocation method and correction mechanism are introduced to address economic-centric inequities while a hierarchical scheme reduces computational complexity from diverse DERs. The results demonstrate that the optimized scheme moderately reduces high-risk participants’ shares increasing operator revenue by 0.69% demand-side gains by 3.56% and reducing generation-side losses by 1.32%. Environmental factors show measurable yet statistically insignificant impacts. The framework meets stakeholders’ satisfaction and minimizes deviation from reference allocations.
Durable Pt-Decorated NiFe-LDH for High-Current-Density Electrocatalytic Water Splitting Under Alkaline Conditions
Nov 2025
Publication
The development of durable and efficient catalysts capable of driving both hydrogen and oxygen evolution reactions is essential for advancing sustainable hydrogen production through overall water electrolysis. In this study we developed a corrosion-mediated approach where Ni ions originate from the self-corrosion of the nickel foam (NF) substrate to construct Pt-modified NiFe layered double hydroxide (Pt-NiFeOxHy@NiFe-LDH) under ambient conditions. The obtained catalyst exhibits a hierarchical architecture with abundant defect sites which favor the uniform distribution of Pt clusters and optimized electronic configuration. The Pt-NiFeOxHy@NiFe-LDH catalyst constructed through the interaction between Pt sites and defective NiFe layered double hydroxide (NiFe-LDH) demonstrates remarkable hydrogen evolution reaction (HER) activity delivering an overpotential as low as 29 mV at a current density of 10 mA·cm−2 and exhibiting a small tafel slope of 34.23 mV·dec−1 in 1 M KOH together with excellent oxygen evolution reaction (OER) performance requiring only 252 mV to reach 100 mA·cm−2 . Moreover the catalyst demonstrates outstanding activity and durability in alkaline seawater maintaining stable operation over long-term tests. The Pt-NiFeOxHy@NiFe-LDH electrode when integrated into a two-electrode system demonstrates operating voltages as low as 1.42 and 1.51 V for current densities of 10 and 100 mA·cm−2 respectively and retains outstanding stability under concentrated alkaline conditions (6 M KOH 70 ◦C). Overall this work establishes a scalable and economically viable pathway toward high-efficiency bifunctional electrocatalysts and deepens the understanding of Pt-LDH interfacial synergy in promoting water-splitting catalysis.
Correlation Development for Para-to-Ortho Hydrogen Catalytic Conversion in Vapor-Cooled Shields of Hydrogen Tanks
Nov 2025
Publication
The cooling effect from the para-ortho hydrogen conversion (POC) combined with a vaporcooled shield (VCS) and multi-layer insulation (MLI) can effectively extend the storage duration of liquid hydrogen in cryogenic tanks. However there is currently no effective and straightforward empirical correlation available for predicting the catalytic POC efficiency in VCS pipelines. This study focuses on the development of correlations for the catalytic conversion of para-hydrogen to ortho-hydrogen in pipelines particularly in the context of cryogenic hydrogen storage systems. A model that incorporates the Langmuir adsorption characteristics of catalysts and introduces the concept of conversion efficiency to quantify the catalytic process’s performance is introduced. Experimental data were obtained in the temperature range of 141.9~229.9 K from a cryogenic hydrogen catalytic conversion facility where the effects of temperature pressure and flow rate on the catalytic conversion efficiency were analyzed. Based on a validation against the experimental data the proposed model offers a reliable method for predicting the cooling effects and optimizing the catalytic conversion process in VCS pipelines which may contribute to the improvement of liquid hydrogen storage systems enhancing both the efficiency and duration of storage.
High‑Entropy Amorphous Catalysts for Water Electrolysis: A New Frontier
Sep 2025
Publication
High‐entropy amorphous catalysts (HEACs) integrate multielement synergy with structural disorder making them promising candidates for water splitting. Their distinctive features—including flexible coordination environments tunable electronic structures abundant unsaturated active sites and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions. This review summarizes recent advances in HEACs for hydrogen evolution oxygen evolution and overall water splitting highlighting their disorder-driven advantages over crystalline counterparts. Catalytic performance benchmarks are presented and mechanistic insights are discussed focusing on how multimetallic synergy amorphization effect and in‐situ reconstruction cooperatively regulate reaction pathways. These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.
Numerical Study of Liquid Hydrogen Internal Flow in Liquid Hydrogen Storage Tank
Oct 2025
Publication
As a key zero-carbon energy carrier the accurate measurement of liquid hydrogen flow in its industrial chain is crucial. However the ultra-low temperature ultra-low density and other properties of liquid hydrogen can introduce calibration errors. To enhance the measurement accuracy and reliability of liquid hydrogen flow this study investigates the heat and mass transfer within a 1 m3 non-vented storage tank during the calibration process of a liquid hydrogen flow standard device that integrates combined dynamic and static gravimetric methods. The vertical tank configuration was selected to minimize the vapor–liquid interface area thereby suppressing boil-off gas generation and enhancing pressure stability which is critical for measurement accuracy. Building upon research on cryogenic flow standard devices as well as tank experiments and simulations this study employs computational fluid dynamics (CFD) with Fluent 2024 software to numerically simulate liquid hydrogen flow within a non-vented tank. The thermophysical properties of hydrogen crucial for the accuracy of the phase-change simulation were implemented using high-fidelity real-fluid data from the NIST Standard Reference Database as the ideal gas law is invalid under the cryogenic conditions studied. Specifically the Lee model was enhanced via User-Defined Functions (UDFs) to accurately simulate the key phasechange processes involving coupled flash evaporation and condensation during liquid hydrogen refueling. The simulation results demonstrated good agreement with NASA experimental data. This study systematically examined the effects of key parameters including inlet flow conditions and inlet liquid temperature on the flow characteristics of liquid hydrogen entering the tank and the subsequent heat and mass transfer behavior within the tank. The results indicated that an increase in mass flow rate elevates tank pressure and reduces filling time. Conversely a decrease in the inlet liquid hydrogen temperature significantly intensifies heat and mass transfer during the initial refueling stage. These findings provide important theoretical support for a deeper understanding of the complex physical mechanisms of liquid hydrogen flow calibration in non-vented tanks and for optimizing calibration accuracy.
Enhancing Regional Integrated Energy Systems Through Seasonal Hydrogen Storage: Insights from a Stackelberg Game Model
Nov 2025
Publication
This study enhances regional integrated energy systems by proposing a Stackelberg planning–operation model with seasonal hydrogen storage addressing source–network separation. An equilibrium algorithm is developed that integrates a competitive search routine with mixed-integer optimization. In the price–energy game framework the hydrogen storage operator is designated as the leader while energy producers load aggregators and storage providers act as followers facilitating a distributed collaborative optimization strategy within the Stackelberg game. Using an industrial park in northern China as a case study the findings reveal that the operator’s initiative results in a revenue increase of 38.60% while producer profits rise by 6.10% and storage-provider profits surge by 108.75%. Additionally renewable accommodation reaches 93.86% reflecting an absolute improvement of 20.60 percentage points. Total net energy imbalance decreases by 55.70% and heat-loss load is reduced by 31.74%. Overall the proposed approach effectively achieves cross-seasonal energy balancing and multi-party gains providing an engineering-oriented reference for addressing energy imbalances in regional integrated energy systems.
Performance Analysis of Natural Gas Centrifugal Compressors Under Hydrogen-Blended Conditions
Nov 2025
Publication
The transport of natural gas blended with hydrogen is a key strategy for the low-carbon energy transition. However the influence mechanism of its thermo-physical property variations on centrifugal compressor performance remains insufficiently understood. This study systematically investigates the effects of the hydrogen blending ratio (HBR 0–30%) inlet temperature and rotational speed on key compressor parameters (pressure ratio polytropic efficiency and outlet temperature) through numerical simulations. In order to evaluate the influence of hydrogen blending on the performance and stability of centrifugal compressors a three-dimensional model of the compressor was established and the simulation conducted was verified with the experimental data. Results indicate that under constant inlet conditions both the pressure ratio and outlet temperature decrease with increasing HBR while polytropic efficiency remains relatively stable. Hydrogen blending significantly expands the surge margin shifting both surge and choke lines downward and consequently reducing the stable operating range by 27.11% when hydrogen content increases from 0% to 30%. This research provides theoretical foundations and practical guidance for optimizing hydrogen-blended natural gas centrifugal compressor design and operational control.
Dual S-Scheme Heterojunction Nanocomposite-chrge Transport for Photocatalytic Green Energy Production and Environmental Implementations - Where to Go?
Sep 2025
Publication
Dating back to more than one century ago the photocatalysis process has demonstrated great promise in addressing environmental problems and the energy crisis. Nevertheless some single or binary composite materials cannot meet the requirements of large-scale implementations owing to their limited photocatalytic efficiencies. Since 2021 dual S-scheme heterojunctionbased nanocomposites have been undertaken as highly efficient photoactive materials for green energy production and environmental applications in order to overcome limitations faced in traditional photocatalysts. Herein state-of-the-art protocols designed for the synthesis of dual S-scheme heterojunctions are described. How the combined three semiconductors in dual S-scheme heterojunctions can benefit from one another to achieve high energy production and efficient oxidative removal of various pollutants is deeply explained. Photocatalytic reaction mechanisms by paying special attention to the creation of Fermi levels (Ef ) and charge carriers transfer between the three semiconductors in dual S-scheme heterojunctions are discussed. An entire section has been dedicated to some examples of preparation and applications of double S-scheme heterojunction-based nanocomposites for several photocatalytic applications such as soluble pollutants photodegradation bacteria disinfection artificial photosynthesis H2 generation H2O2 production CO2 reduction and ammonia synthesis. Lastly the current challenges of dual S-scheme heterojunctions are presented and future research directions are presented. To sum up dual S-scheme heterojunction nanocomposites are promising photocatalytic materials in the pursuit of sustainable energy production and environmental remediation. In the future dual S-scheme heterojunctions are highly recommended for photoreactors engineering instead of single or binary photocatalysts to drive forward photocatalysis processes for practical green energy production and environmental protection.
Sustainable Power System Transition Pathways: Regional Decarbonisation and Resource Conservation Aided by Small Modular Reactors
Oct 2025
Publication
Clean energy technologies offer promising pathways for low-carbon transitions yet their feasibility remains uncertain particularly in rapidly developing regions. This study develops a Factorial Multi-Stochastic Optimization-driven Equilibrium (FMOE) model to assess the economic and environmental impacts of clean power deployment. Using Small Modular Reactors (SMRs) in Guangdong China as a case study the model reveals that SMRs can reduce system costs and alleviate GDP losses supporting provincial-level Nationally Determined Contributions (NDCs). If offshore wind capital costs fall to 40 % of SMRs’ SMR deployment may no longer be necessary after 2030. Otherwise SMRs could supply 22 % of capacity by 2040. The FMOE model provides a robust adaptable framework for evaluating emerging technologies under uncertainty and supports sustainable power planning across diverse regional contexts. This study offers valuable insights into the resource and economic implications of clean energy strategies contributing to global carbon neutrality and efficient energy system design.
Coordinated Control Strategy for Island Power Generation System with Photovoltaic, Hydrogen-Fueled Gas Turbine and Hybrid Energy Storage
Oct 2025
Publication
Marine and island power systems usually incorporate various forms of energy supply which poses challenges to the coordinated control of the system under diverse irregular and complex load operation modes. To improve the stability and self-sufficiency of island-isolated microgrids with high penetration of renewable energy this study proposes a coordinated control strategy for an island microgrid with PV HGT and HESS combining primary power allocation via low-pass filtering with a fuzzy logic-based secondary correction. The fuzzy controller dynamically adjusts power distribution based on the states of charge of the battery and supercapacitor following a set of predefined rules. A comprehensive system model is developed in Matlab R2023b integrating PV generation an electrolyzer HGT and a battery–supercapacitor HESS. Simulation results across four operational cases demonstrate that the proposed strategy reduces DC bus voltage fluctuations to a maximum of 4.71% (compared to 5.63% without correction) with stability improvements between 0.96% and 1.55%. The HESS avoids overcharging and over-discharging by initiating priority charging at low SOC levels thereby extending service life. This work provides a scalable control framework for enhancing the resilience of marine and island microgrids with high renewable energy penetration.
Design of Hydrogen-Powered Mobile Emergency Power Vehicle with Soft Open Point and Appropriate Energy Management Strategy
Oct 2025
Publication
Mobile emergency power supply vehicles (MEPSVs) powered by diesel engines or lithiumion batteries (LIBs) have become a viable tool for emergency power supply. However diesel-powered MEPSVs generate noise and environmental pollution while LIB-powered vehicles suffer from limited power supply duration. To overcome these limitations a hydrogen-powered MEPSV incorporating a soft open point (SOP) was developed in this study. We analyzed widely used operating scenarios for the SOP-equipped MEPSV and determined important parameters including vehicle body structure load capacity driving speed and power generation capability for the driving motor hydrogen fuel cell (FC) module auxiliary LIB module and SOP equipment. Subsequently we constructed an energy management strategy for the model for MEPSV which uses multiple energy sources of hydrogen fuel cells and lithium-ion batteries. Through simulations an optimal hydrogen consumption rate in various control strategies was validated using a predefined load curve to optimize the energy consumption minimization strategy and achieve the highest efficiency.
No more items...