China, People’s Republic
Marine Hydrogen Pressure Reducing Valves: A Review on Multi-Physics Coupling, Flow Dynamics, and Structural Optimization for Ship-Borne Storage Systems
Oct 2025
Publication
As a zero-carbon energy carrier hydrogen is playing an increasingly vital role in the decarbonization of maritime transportation. The hydrogen pressure reducing valve (PRV) is a core component of ship-borne hydrogen storage systems directly influencing the safety efficiency and reliability of hydrogen-powered vessels. However the marine environment— characterized by persistent vibrations salt spray corrosion and temperature fluctuations— poses significant challenges to PRV performance including material degradation flow instability and reduced operational lifespan. This review comprehensively summarizes and analyzes recent advances in the study of high-pressure hydrogen PRVs for marine applications with a focus on transient flow dynamics turbulence and compressible flow characteristics multi-stage throttling strategies and valve core geometric optimization. Through a systematic review of theoretical modeling numerical simulations and experimental studies we identify key bottlenecks such as multi-physics coupling effects under extreme conditions and the lack of marine-adapted validation frameworks. Finally we conducted a preliminary discussion on future research directions covering aspects such as the construction of coupled multi-physics field models the development of marine environment simulation experimental platforms the research on new materials resistant to vibration and corrosion and the establishment of a standardized testing system. This review aims to provide fundamental references and technical development ideas for the research and development of high-performance marine hydrogen pressure reducing valves with the expectation of facilitating the safe and efficient application and promotion of hydrogen-powered shipping technology worldwide.
Co-Optimization of Capacity and Operation for Battery-Hydrogen Hybrid Energy Storage Systems Based on Deep Reinforcement Learning and Mixed Integer Programming
Oct 2025
Publication
The hybrid energy storage system (HESS) that combines battery with hydrogen storage exploits complementary power/energy characteristics but most studies optimize capacity and operation separately leading to suboptimal overall performance. To address this issue this paper proposes a bi-level co-optimization framework that integrates deep reinforcement learning (DRL) and mixed integer programming (MIP). The outer layer employs the TD3 algorithm for capacity configuration while the inner layer uses the Gurobi solver for optimal operation under constraints. On a standalone PV–wind–load-HESS system the method attains near-optimal quality at dramatically lower runtime. Relative to GA + Gurobi and PSO + Gurobi the cost is lower by 4.67% and 1.31% while requiring only 0.52% and 0.58% of their runtime; compared with a direct Gurobi solve the cost remains comparable while runtime decreases to 0.07%. Sensitivity analysis further validates the model’s robustness under various cost parameters and renewable energy penetration levels. These results indicate that the proposed DRL–MIP cooperation achieves near-optimal solutions with orders of magnitude speedups. This study provides a new DRL–MIP paradigm for efficiently solving strongly coupled bi-level optimization problems in energy systems.
Assessment of Regional Hydrogen Refueling Station Layout Planning and Carbon Reduction Benefits Based on Multi-Dimensional Factors of Population, Land, and Demand
Oct 2025
Publication
The urgent global transition toward low-carbon energy systems has highlighted the need for systematic planning of hydrogen refueling stations (HRS) to facilitate clean energy adoption. This study develops an integrated framework for regional HRS layout optimization and carbon emission assessment considering population distribution land area and hydrogen demand. Using Hainan Province as a case study the model estimates regional hydrogen demand determines optimal HRS deployment evaluates spatial coverage and refueling distances and quantifies potential carbon emission reductions under various renewable energy scenarios. Model validation with Haikou demonstrates its reliability and applicability at the regional scale. Results indicate pronounced spatial disparities in hydrogen demand and infrastructure requirements emphasizing that prioritizing station deployment in densely populated urban areas can enhance accessibility and maximize emission reduction. The framework offers a practical data-efficient tool for policymakers and planners to guide early-stage hydrogen infrastructure development and supports strategies for regional decarbonization and sustainable energy transitions.
Degradation Heterogeneity in Active X70 Pipeline Welds Microstructure-Property Coupling Under Multiphysics Environments of Hydrogen-Blended Natural Gas
Oct 2025
Publication
This study investigates the performance degradation of X70 steel weld material in highpressure natural gas pipelines in the Sichuan-Chongqing region and its impact on pipeline safety by investigating their behavior under multiphysics environments including varying gas media (nitrogen methane hydrogen-blended) pressure conditions (0.1–10 MPa) and material regions (base metal vs. weld). A key novelty of this work is the introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. A key novelty of this work is the explicit introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. Slow strain rate tensile tests combined with fracture morphology and microstructure analysis reveal that welds exhibit inferior mechanical properties due to microstructural inhomogeneity and residual stresses including a yield stress reduction of 15.2–18.7%. The risk of brittle fracture was highest in the hydrogen-blended environment while nitrogen exhibited the most benign effect. Material region changes were identified as the most significant factor affecting degradation. This research provides crucial data and theoretical support for pipeline safety design and material performance optimization.
Enhanced Performance of TiO2 Composites for Solar Cells and Photocatalytic Hydrogen Production
Oct 2025
Publication
Titanium dioxide (TiO2) is widely used in solar cells and photocatalysts given its excellent photoactivity low cost and high structural electronic and optical stability. Here a novel TiO2 composite was prepared by coating TiO2 inverse opal (IO) with TiO2 nanorods (NRs). With a porous three-dimensional network structure the composite exhibited higher light absorption; enhanced the separation of the electron–hole pairs; deepened the infiltration of the electrolyte; better transported and collected charge carriers; and greatly improved the power conversion efficiency (PCE) of the quantum-dot sensitized solar cells (QDSSCs) based on it while also boosting its own photocatalytic hydrogen generation efficiency. A very high PCE of 12.24% was achieved by QDSSCs utilizing CdS/CdSe sensitizer. Furthermore the TiO2 composite exhibited high photocatalytic activity with a H2 release rate of 1080.2 µ mol h−1 g −1 several times that of bare TiO2 IO or TiO2 NRs.
A Review on Combustion Instability of Hydrogen-Enriched Marine Gas Turbines
Nov 2025
Publication
Hydrogen is widely regarded as a promising carbon-free alternative fuel. However the development of low-emission marine gas turbine combustion systems has been hindered by the associated risks of combustion instability also termed as thermoacoustic oscillations. Although there is sufficient literature on hydrogen fuel and combustion instability systematic reviews addressing the manifestations and mechanisms of these instabilities remain limited. The present study aims to provide a comprehensive review of combustion instabilities in hydrogen-enriched marine gas turbines with a particular focus on elucidating the characteristics and underlying mechanisms. The review begins with a concise overview of recent progress in understanding the fundamental combustion properties of hydrogen and then details various instability phenomena in hydrogen-enriched methane flames. The mechanisms by which hydrogen enrichment affects combustion instabilities are extensively discussed particularly in relation to the feedback loop in thermoacoustic combustion systems. The paper concludes with a summary of the key combustion instability challenges associated with hydrogen addition to methane flames and offers prospects for future research. In summary the review highlights the interaction between hydrogenenriched methane flames and thermoacoustic phenomena providing a foundation for the development of stable low-emission combustion systems in industrial marine applications incorporating hydrogen enrichment.
Benefit Allocation Strategies for Electric–Hydrogen Coupled Virtual Power Plants with Risk–Reward Tradeoffs
Nov 2025
Publication
Driven by carbon neutrality goals electric–hydrogen coupled virtual power plants (EHCVPPs) integrate renewable hydrogen production with power system flexibility resources emerging as a critical technology for large-scale renewable integration. As distributed energy resources (DERs) within EHCVPPs diversify heterogeneous resources generate diversified market values. However inadequate benefit allocation mechanisms risk reducing participation incentives destabilizing cooperation and impairing operational efficiency. To address this benefit allocation must balance fairness and efficiency by incorporating DERs’ regulatory capabilities risk tolerance and revenue contributions. This study proposes a multi-stage benefit allocation framework incorporating risk–reward tradeoffs and an enhanced optimization model to ensure sustainable EHCVPP operations and scalability. The framework elucidates bidirectional risk–reward relationships between DERs and EHCVPPs. An individualized risk-adjusted allocation method and correction mechanism are introduced to address economic-centric inequities while a hierarchical scheme reduces computational complexity from diverse DERs. The results demonstrate that the optimized scheme moderately reduces high-risk participants’ shares increasing operator revenue by 0.69% demand-side gains by 3.56% and reducing generation-side losses by 1.32%. Environmental factors show measurable yet statistically insignificant impacts. The framework meets stakeholders’ satisfaction and minimizes deviation from reference allocations.
Durable Pt-Decorated NiFe-LDH for High-Current-Density Electrocatalytic Water Splitting Under Alkaline Conditions
Nov 2025
Publication
The development of durable and efficient catalysts capable of driving both hydrogen and oxygen evolution reactions is essential for advancing sustainable hydrogen production through overall water electrolysis. In this study we developed a corrosion-mediated approach where Ni ions originate from the self-corrosion of the nickel foam (NF) substrate to construct Pt-modified NiFe layered double hydroxide (Pt-NiFeOxHy@NiFe-LDH) under ambient conditions. The obtained catalyst exhibits a hierarchical architecture with abundant defect sites which favor the uniform distribution of Pt clusters and optimized electronic configuration. The Pt-NiFeOxHy@NiFe-LDH catalyst constructed through the interaction between Pt sites and defective NiFe layered double hydroxide (NiFe-LDH) demonstrates remarkable hydrogen evolution reaction (HER) activity delivering an overpotential as low as 29 mV at a current density of 10 mA·cm−2 and exhibiting a small tafel slope of 34.23 mV·dec−1 in 1 M KOH together with excellent oxygen evolution reaction (OER) performance requiring only 252 mV to reach 100 mA·cm−2 . Moreover the catalyst demonstrates outstanding activity and durability in alkaline seawater maintaining stable operation over long-term tests. The Pt-NiFeOxHy@NiFe-LDH electrode when integrated into a two-electrode system demonstrates operating voltages as low as 1.42 and 1.51 V for current densities of 10 and 100 mA·cm−2 respectively and retains outstanding stability under concentrated alkaline conditions (6 M KOH 70 ◦C). Overall this work establishes a scalable and economically viable pathway toward high-efficiency bifunctional electrocatalysts and deepens the understanding of Pt-LDH interfacial synergy in promoting water-splitting catalysis.
Correlation Development for Para-to-Ortho Hydrogen Catalytic Conversion in Vapor-Cooled Shields of Hydrogen Tanks
Nov 2025
Publication
The cooling effect from the para-ortho hydrogen conversion (POC) combined with a vaporcooled shield (VCS) and multi-layer insulation (MLI) can effectively extend the storage duration of liquid hydrogen in cryogenic tanks. However there is currently no effective and straightforward empirical correlation available for predicting the catalytic POC efficiency in VCS pipelines. This study focuses on the development of correlations for the catalytic conversion of para-hydrogen to ortho-hydrogen in pipelines particularly in the context of cryogenic hydrogen storage systems. A model that incorporates the Langmuir adsorption characteristics of catalysts and introduces the concept of conversion efficiency to quantify the catalytic process’s performance is introduced. Experimental data were obtained in the temperature range of 141.9~229.9 K from a cryogenic hydrogen catalytic conversion facility where the effects of temperature pressure and flow rate on the catalytic conversion efficiency were analyzed. Based on a validation against the experimental data the proposed model offers a reliable method for predicting the cooling effects and optimizing the catalytic conversion process in VCS pipelines which may contribute to the improvement of liquid hydrogen storage systems enhancing both the efficiency and duration of storage.
High‑Entropy Amorphous Catalysts for Water Electrolysis: A New Frontier
Sep 2025
Publication
High‐entropy amorphous catalysts (HEACs) integrate multielement synergy with structural disorder making them promising candidates for water splitting. Their distinctive features—including flexible coordination environments tunable electronic structures abundant unsaturated active sites and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions. This review summarizes recent advances in HEACs for hydrogen evolution oxygen evolution and overall water splitting highlighting their disorder-driven advantages over crystalline counterparts. Catalytic performance benchmarks are presented and mechanistic insights are discussed focusing on how multimetallic synergy amorphization effect and in‐situ reconstruction cooperatively regulate reaction pathways. These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.
Numerical Study of Liquid Hydrogen Internal Flow in Liquid Hydrogen Storage Tank
Oct 2025
Publication
As a key zero-carbon energy carrier the accurate measurement of liquid hydrogen flow in its industrial chain is crucial. However the ultra-low temperature ultra-low density and other properties of liquid hydrogen can introduce calibration errors. To enhance the measurement accuracy and reliability of liquid hydrogen flow this study investigates the heat and mass transfer within a 1 m3 non-vented storage tank during the calibration process of a liquid hydrogen flow standard device that integrates combined dynamic and static gravimetric methods. The vertical tank configuration was selected to minimize the vapor–liquid interface area thereby suppressing boil-off gas generation and enhancing pressure stability which is critical for measurement accuracy. Building upon research on cryogenic flow standard devices as well as tank experiments and simulations this study employs computational fluid dynamics (CFD) with Fluent 2024 software to numerically simulate liquid hydrogen flow within a non-vented tank. The thermophysical properties of hydrogen crucial for the accuracy of the phase-change simulation were implemented using high-fidelity real-fluid data from the NIST Standard Reference Database as the ideal gas law is invalid under the cryogenic conditions studied. Specifically the Lee model was enhanced via User-Defined Functions (UDFs) to accurately simulate the key phasechange processes involving coupled flash evaporation and condensation during liquid hydrogen refueling. The simulation results demonstrated good agreement with NASA experimental data. This study systematically examined the effects of key parameters including inlet flow conditions and inlet liquid temperature on the flow characteristics of liquid hydrogen entering the tank and the subsequent heat and mass transfer behavior within the tank. The results indicated that an increase in mass flow rate elevates tank pressure and reduces filling time. Conversely a decrease in the inlet liquid hydrogen temperature significantly intensifies heat and mass transfer during the initial refueling stage. These findings provide important theoretical support for a deeper understanding of the complex physical mechanisms of liquid hydrogen flow calibration in non-vented tanks and for optimizing calibration accuracy.
Enhancing Regional Integrated Energy Systems Through Seasonal Hydrogen Storage: Insights from a Stackelberg Game Model
Nov 2025
Publication
This study enhances regional integrated energy systems by proposing a Stackelberg planning–operation model with seasonal hydrogen storage addressing source–network separation. An equilibrium algorithm is developed that integrates a competitive search routine with mixed-integer optimization. In the price–energy game framework the hydrogen storage operator is designated as the leader while energy producers load aggregators and storage providers act as followers facilitating a distributed collaborative optimization strategy within the Stackelberg game. Using an industrial park in northern China as a case study the findings reveal that the operator’s initiative results in a revenue increase of 38.60% while producer profits rise by 6.10% and storage-provider profits surge by 108.75%. Additionally renewable accommodation reaches 93.86% reflecting an absolute improvement of 20.60 percentage points. Total net energy imbalance decreases by 55.70% and heat-loss load is reduced by 31.74%. Overall the proposed approach effectively achieves cross-seasonal energy balancing and multi-party gains providing an engineering-oriented reference for addressing energy imbalances in regional integrated energy systems.
Performance Analysis of Natural Gas Centrifugal Compressors Under Hydrogen-Blended Conditions
Nov 2025
Publication
The transport of natural gas blended with hydrogen is a key strategy for the low-carbon energy transition. However the influence mechanism of its thermo-physical property variations on centrifugal compressor performance remains insufficiently understood. This study systematically investigates the effects of the hydrogen blending ratio (HBR 0–30%) inlet temperature and rotational speed on key compressor parameters (pressure ratio polytropic efficiency and outlet temperature) through numerical simulations. In order to evaluate the influence of hydrogen blending on the performance and stability of centrifugal compressors a three-dimensional model of the compressor was established and the simulation conducted was verified with the experimental data. Results indicate that under constant inlet conditions both the pressure ratio and outlet temperature decrease with increasing HBR while polytropic efficiency remains relatively stable. Hydrogen blending significantly expands the surge margin shifting both surge and choke lines downward and consequently reducing the stable operating range by 27.11% when hydrogen content increases from 0% to 30%. This research provides theoretical foundations and practical guidance for optimizing hydrogen-blended natural gas centrifugal compressor design and operational control.
Dual S-Scheme Heterojunction Nanocomposite-chrge Transport for Photocatalytic Green Energy Production and Environmental Implementations - Where to Go?
Sep 2025
Publication
Dating back to more than one century ago the photocatalysis process has demonstrated great promise in addressing environmental problems and the energy crisis. Nevertheless some single or binary composite materials cannot meet the requirements of large-scale implementations owing to their limited photocatalytic efficiencies. Since 2021 dual S-scheme heterojunctionbased nanocomposites have been undertaken as highly efficient photoactive materials for green energy production and environmental applications in order to overcome limitations faced in traditional photocatalysts. Herein state-of-the-art protocols designed for the synthesis of dual S-scheme heterojunctions are described. How the combined three semiconductors in dual S-scheme heterojunctions can benefit from one another to achieve high energy production and efficient oxidative removal of various pollutants is deeply explained. Photocatalytic reaction mechanisms by paying special attention to the creation of Fermi levels (Ef ) and charge carriers transfer between the three semiconductors in dual S-scheme heterojunctions are discussed. An entire section has been dedicated to some examples of preparation and applications of double S-scheme heterojunction-based nanocomposites for several photocatalytic applications such as soluble pollutants photodegradation bacteria disinfection artificial photosynthesis H2 generation H2O2 production CO2 reduction and ammonia synthesis. Lastly the current challenges of dual S-scheme heterojunctions are presented and future research directions are presented. To sum up dual S-scheme heterojunction nanocomposites are promising photocatalytic materials in the pursuit of sustainable energy production and environmental remediation. In the future dual S-scheme heterojunctions are highly recommended for photoreactors engineering instead of single or binary photocatalysts to drive forward photocatalysis processes for practical green energy production and environmental protection.
Sustainable Power System Transition Pathways: Regional Decarbonisation and Resource Conservation Aided by Small Modular Reactors
Oct 2025
Publication
Clean energy technologies offer promising pathways for low-carbon transitions yet their feasibility remains uncertain particularly in rapidly developing regions. This study develops a Factorial Multi-Stochastic Optimization-driven Equilibrium (FMOE) model to assess the economic and environmental impacts of clean power deployment. Using Small Modular Reactors (SMRs) in Guangdong China as a case study the model reveals that SMRs can reduce system costs and alleviate GDP losses supporting provincial-level Nationally Determined Contributions (NDCs). If offshore wind capital costs fall to 40 % of SMRs’ SMR deployment may no longer be necessary after 2030. Otherwise SMRs could supply 22 % of capacity by 2040. The FMOE model provides a robust adaptable framework for evaluating emerging technologies under uncertainty and supports sustainable power planning across diverse regional contexts. This study offers valuable insights into the resource and economic implications of clean energy strategies contributing to global carbon neutrality and efficient energy system design.
Coordinated Control Strategy for Island Power Generation System with Photovoltaic, Hydrogen-Fueled Gas Turbine and Hybrid Energy Storage
Oct 2025
Publication
Marine and island power systems usually incorporate various forms of energy supply which poses challenges to the coordinated control of the system under diverse irregular and complex load operation modes. To improve the stability and self-sufficiency of island-isolated microgrids with high penetration of renewable energy this study proposes a coordinated control strategy for an island microgrid with PV HGT and HESS combining primary power allocation via low-pass filtering with a fuzzy logic-based secondary correction. The fuzzy controller dynamically adjusts power distribution based on the states of charge of the battery and supercapacitor following a set of predefined rules. A comprehensive system model is developed in Matlab R2023b integrating PV generation an electrolyzer HGT and a battery–supercapacitor HESS. Simulation results across four operational cases demonstrate that the proposed strategy reduces DC bus voltage fluctuations to a maximum of 4.71% (compared to 5.63% without correction) with stability improvements between 0.96% and 1.55%. The HESS avoids overcharging and over-discharging by initiating priority charging at low SOC levels thereby extending service life. This work provides a scalable control framework for enhancing the resilience of marine and island microgrids with high renewable energy penetration.
Design of Hydrogen-Powered Mobile Emergency Power Vehicle with Soft Open Point and Appropriate Energy Management Strategy
Oct 2025
Publication
Mobile emergency power supply vehicles (MEPSVs) powered by diesel engines or lithiumion batteries (LIBs) have become a viable tool for emergency power supply. However diesel-powered MEPSVs generate noise and environmental pollution while LIB-powered vehicles suffer from limited power supply duration. To overcome these limitations a hydrogen-powered MEPSV incorporating a soft open point (SOP) was developed in this study. We analyzed widely used operating scenarios for the SOP-equipped MEPSV and determined important parameters including vehicle body structure load capacity driving speed and power generation capability for the driving motor hydrogen fuel cell (FC) module auxiliary LIB module and SOP equipment. Subsequently we constructed an energy management strategy for the model for MEPSV which uses multiple energy sources of hydrogen fuel cells and lithium-ion batteries. Through simulations an optimal hydrogen consumption rate in various control strategies was validated using a predefined load curve to optimize the energy consumption minimization strategy and achieve the highest efficiency.
No more items...