Germany
Model-based Analysis and Optimization of Pressurised Alkaline Water Electrolysis Powered by Renewable Energy
Jul 2023
Publication
Alkaline water electrolysis is a key technology for large-scale hydrogen production. In this process safety and efficiency are among the most essential requirements. Hence optimization strategies must consider both aspects. While experimental optimization studies are the most accurate solution model-based approaches are more cost and time-efficient. However validated process models are needed which consider all important influences and effects of complete alkaline water electrolysis systems. This study presents a dynamic process model for a pressurized alkaline water electrolyzer consisting of four submodels to describe the system behavior regarding gas contamination electrolyte concentration cell potential and temperature. Experimental data from a lab-scale alkaline water electrolysis system was used to validate the model which could then be used to analyze and optimize pressurized alkaline water electrolysis. While steady-state and dynamic solutions were analyzed for typical operating conditions to determine the influence of the process variables a dynamic optimization study was carried out to optimize an electrolyte flow mode switching pattern. Moreover the simulation results could help to understand the impact of each process variable and to develop intelligent concepts for process optimization
Experimental Evaluation of Dynamic Operating Concepts for Alkaline Water Electrolyzers Powered by Renewable Energy
Dec 2021
Publication
Synthetic current density profiles with wind and photovoltaic power characteristics were calculated by autoregressive-moving-average (ARMA) models for the experimental evaluation of dynamic operating concepts for alkaline water electrolyzers powered by renewable energy. The selected operating concepts included switching between mixed and split electrolyte cycles and adapting the liquid electrolyte volume flow rate depending on the current density. All experiments were carried out at a pressure of 7 bar a temperature of 60 °C and with an aqueous potassium hydroxide solution with 32 wt.% KOH as the electrolyte. The dynamic operating concepts were compared to stationary experiments with mixed electrolyte cycles and the experimental evaluation showed that the selected operating concepts were able to reduce the gas impurity compared to the reference operating conditions without a noticeable increase of the cell potential. Therefore the overall system efficiency and process safety could be enhanced by this approach.
The Future European Hydrogen Market: Market Design and Policy Recommendations to Support Market Development and Commodity Trading
May 2024
Publication
A key building block of the European Green Deal is the development of a hydrogen commodity market which requires a suitable hydrogen market design and the timely introduction of related policy measures. Using exploratory interviews with five expert groups we contribute to this novel research field by outlining the core market design criteria and proposing suitable regulations for the future European hydrogen market. We identify detailed recommendations along three core market design focus areas: Market development policy measures infrastructure regulations as well as hydrogen and certificate trading. Our findings provide an across-industry view of current policy-related key challenges in the hydrogen commodity market development and mitigation approaches. We therefore support policymakers within the EU in the ongoing detailing of their regulatory hydrogen and green energy packages. Further we promote hydrogen market development by assisting current and future industry players in finding a common understanding of the future hydrogen market design.
Refuelling Tests of a Hydrogen Tank for Heavy-duty Applications
Sep 2023
Publication
A transition towards zero-emission fuels is required in the mobility sector in order to reach the climate goals. Here (green) renewable hydrogen for use in fuel cells will play an important role especially for heavy duty applications such as trucks. However there are still challenges to overcome regarding efficient storage infrastructure integration and optimization of the refuelling process. A key aspect is to reduce the refuelling duration as much as possible while staying below the maximum allowed temperature of 85 C. Experimental tests for the refuelling of a 320 l type III tank were conducted at different operating conditions and the tank gas temperature measured at the front and back ends. The results indicate a strongly inhomogeneous temperature field where measuring and verifying the actual maximum temperatures proves difficult. Furthermore a simulation approach is provided to calculate the average tank gas temperature at the end of the refuelling process.
3D Modeling of the Different Boiling Regimes During Spill and Spreading of Liquid Hydrogen
Nov 2012
Publication
In a future energy generation market the storage of energy is going to become increasingly important. Besides classic ways of storage like pumped storage hydro power stations etc the production of hydrogen will play an important role as an energy storage system. Hydrogen may be stored as a liquefied gas (LH2) on a long term base as well as for short term supply of fuel stations to ensure a so called “green” mobility. The handling with LH2 has been subject to several recent safety studies. In this context reliable simulation tools are necessary to predict the spill and spreading of LH2 during an accidental release. This paper deals with the different boiling regimes: film boiling transition boiling and nucleation boiling after a release and their modeling by means of an inhouse-code for wall evaporation which is implemented in the commercial CFD code ANSYS CFX. The paper will describe the model its implementation and validation against experimental data such as the HSL LH2 spill experiments.
Carbon-negative Hydrogen Production (HyBECCS): An Exemplary Techno-economic and Environmental Assessment
Sep 2023
Publication
An exemplary techno-economic and environmental assessment of carbon-negative hydrogen (H2) production is carried out in this work. It is based on the so-called “dark photosynthesis” with carbon dioxide (CO2) capture and geological storage. As a special feature of the assessment the economic consequences due to the impact on the global climate are taken into account. The results indicate that the example project would be capable of generating negative GHG emissions under the assumptions made. The amount is estimated to be 17.72 kgCO2 to be removed from the atmosphere per kilogram of H2 produced. The levelized costs of carbon-negative hydrogen are obtained considering the economic impact of greenhouse gas emissions and removals. They are estimated to be 0.013 EUR/kWhH2. Compared to grey hydrogen from natural gas (0.12 EUR/kWhH2) and green hydrogen from electrolysis using renewable electricity (0.18 EUR/kWhH2) this shows a potential environmental-economic advantage of the considered example. Even without internalization of GHG impacts an economic advantage of the project (0.12 EUR/kWhH2) over green hydrogen (0.17 EUR/kWhH2) is indicated. Compared to other NETs the GHG removal efficiency is at the lower end of both BECCS and DACCS approaches.
The Role of Hydrogen for a Greenhouse Gas-neutral Germany by 2045
May 2023
Publication
This paper aims to provide a holistic analysis of the role of hydrogen for achieving greenhouse gas neutrality in Germany. For that purpose we apply an integrated energy system model which includes all demand sectors of the German energy system and optimizes the transformation pathway from today's energy system to a future cost-optimal energy system. We show that 412 TWh of hydrogen are needed in the year 2045 mostly in the industry and transport sector. Particularly the use of about 267 TWh of hydrogen in industry is essential as there are no cost-effective alternatives for the required emission reduction in the chemical industry or in steel production. Furthermore we illustrate that the German hydrogen supply in the year 2045 requires both an expansion of domestic electrolyzer capacity to 71 GWH2 and hydrogen imports from other European countries and Northern Africa of about 196 TWh. Moreover flexible operation of electrolyzers is cost-optimal and crucial for balancing the intermittent nature of volatile renewable energy sources. Additionally a conducted sensitivity analysis shows that full domestic hydrogen supply in Germany is possible but requires an electrolyzer capacity of 111 GWH2.
Natural Hydrogen in the Energy Transition: Fundamentals, Promise, and Enigmas
Oct 2023
Publication
Beyond its role as an energy vector a growing number of natural hydrogen sources and reservoirs are being discovered all over the globe which could represent a clean energy source. Although the hydrogen amounts in reservoirs are uncertain they could be vast and they could help decarbonize energy-intensive economic sectors and facilitate the energy transition. Natural hydrogen is mainly produced through a geochemical process known as serpentinization which involves the reaction of water with low-silica ferrous minerals. In favorable locations the hydrogen produced can become trapped by impermeable rocks on its way to the atmosphere forming a reservoir. The safe exploitation of numerous natural hydrogen reservoirs seems feasible with current technology and several demonstration plants are being commissioned. Natural hydrogen may show variable composition and require custom separation purification storage and distribution facilities depending on the location and intended use. By investing in research in the mid-term more hydrogen sources could become exploitable and geochemical processes could be artificially stimulated in new locations. In the long term it may be possible to leverage or engineer the interplay between microorganisms and geological substrates to obtain hydrogen and other chemicals in a sustainable manner.
Full Load Optimization of a Hydrogen Fuelled Industrial Engine
Jun 2024
Publication
There are a large number of applications in which hydrogen internal combustion engines represent a sensible alternative to battery electric propulsion systems and to fuel cell electric propulsion systems. The main advantages of combustion engines are their high degree of robustness and low manufacturing costs. No critical raw materials are required for production and there are highly developed production plants worldwide. A CO2-free operation is possible when using hydrogen as a fuel. The formation of nitrogen oxides during hydrogen combustion in the engine can be effectively mitigated by a lean-burn combustion process. However achieving low NOx raw emissions conflicts with achieving high power yields. In this work a series industrial diesel engine was converted for hydrogen operation and comprehensive engine tests were carried out. Various measures to improve the trade-off between NOx emissions and performance were investigated and evaluated. The rated power output and the maximum torque of the series diesel engine could be exceeded while maintaining an indicated specific NOx emission of 1 g/kWh along the entire full load curve. In the low-end-torque range however the gap to the full load curve of the series diesel engine could not be fully closed with the hardware used.
Heat Pumps for Germany—Additional Pressure on the Supply–Demand Equilibrium and How to Cope with Hydrogen
Jun 2024
Publication
In the context of the German Energiewende the current government intends to install six million heat pumps by 2030. Replacing gas heating by power has significant implications on the infrastructure. One of the biggest advantages of using gas is the existing storage portfolio. It has not been clarified yet how power demand should be structured on an annual level—especially since power storage is already a problem and solar power is widely promoted to fuel heat pumps despite having an inverse profile. In this article three different solutions namely hydrogen batteries and carbon capture and storage are discussed with respect to resources energy and financial demand. It shows that relying solely on batteries or hydrogen is not solving the structuring problem. A combination of all existing technologies (including fossil fuels) is required to structure the newly generated electricity demand
Hydrogenization of Underground Storage of Natural Gas
Aug 2015
Publication
The intermittent production of the renewable energy imposes the necessity to temporarily store it. Large amounts of exceeding electricity can be stored in geological strata in the form of hydrogen. The conversion of hydrogen to electricity and vice versa can be performed in electrolyzers and fuel elements by chemical methods. The nowadays technical solution accepted by the European industry consists of injecting small concentrations of hydrogen in the existing storages of natural gas. The progressive development of this technology will finally lead to the creation of underground storages of pure hydrogen. Due to the low viscosity and low density of hydrogen it is expected that the problem of an unstable displacement including viscous fingering and gravity overriding will be more pronounced. Additionally the injection of hydrogen in geological strata could encounter chemical reactivity induced by various species of microorganisms that consume hydrogen for their metabolism. One of the products of such reactions is methane produced from Sabatier reaction between H2 and CO2. Other hydrogenotrophic reactions could be caused by acetogenic archaea sulfate-reducing bacteria and iron-reducing bacteria. In the present paper a mathematical model is presented which is capable to reflect the coupled hydrodynamic and bio-chemical processes in UHS. The model has been numerically implemented by using the open source code DuMuX developed by the University of Stuttgart. The obtained bio-chemical version of DuMuX was used to model the evolution of a hypothetical underground storage of hydrogen. We have revealed that the behavior of an underground hydrogen storage is different than that of a natural gas storage. Both the hydrodynamic and the bio-chemical effects contribute to the different characteristics.
Energy System Changes in 1.5 °C, Well Below 2 °C and 2 °C Scenarios
Dec 2018
Publication
Meeting the Paris Agreement's goal to limit global warming to well below 2 °C and pursuing efforts towards 1.5 °C is likely to require more rapid and fundamental energy system changes than the previously-agreed 2 °C target. Here we assess over 200 integrated assessment model scenarios which achieve 2 °C and well-below 2 °C targets drawn from the IPCC's fifth assessment report database combined with a set of 1.5 °C scenarios produced in recent years. We specifically assess differences in a range of near-term indicators describing CO2 emissions reductions pathways changes in primary energy and final energy across the economy's major sectors in addition to more detailed metrics around the use of carbon capture and storage (CCS) negative emissions low-carbon electricity and hydrogen.
Subsurface Porous Media Hydrogen Storage - Scenario Development and Simulation
Aug 2015
Publication
Subsurface porous media hydrogen storage could be a viable option to mitigate shortages in energy supply from renewable sources. In this work a scenario for such a storage is developed and the operation is simulated using a numerical model. A hypothetical storage site is developed based on an actual geological structure. The results of the simulations show that the storage can supply about 20 % of the average demand in electrical energy of the state of Schleswig-Holstein Germany for a week-long period.
Analysis of the Levelized Cost of Renewable Hydrogen in Austria
Mar 2023
Publication
Austria is committed to the net-zero climate goal along with the European Union. This requires all sectors to be decarbonized. Hereby hydrogen plays a vital role as stated in the national hydrogen strategy. A report commissioned by the Austrian government predicts a minimum hydrogen demand of 16 TWh per year in Austria in 2040. Besides hydrogen imports domestic production can ensure supply. Hence this study analyses the levelized cost of hydrogen for an off-grid production plant including a proton exchange membrane electrolyzer wind power and solar photovoltaics in Austria. In the first step the capacity factors of the renewable electricity sources are determined by conducting a geographic information system analysis. Secondly the levelized cost of electricity for wind power and solarphotovoltaics plants in Austria is calculated. Thirdly the most cost-efficient portfolio of wind power and solar photovoltaics plants is determined using electricity generation profiles with a 10-min granularity. The modelled system variants differ among location capacity factors of the renewable electricity sources and the full load hours of the electrolyzer. Finally selected variables are tested for their sensitivities. With the applied model the hydrogen production cost for decentralized production plants can be calculated for any specific location. The levelized cost of hydrogen estimates range from 3.08 EUR/kg to 13.12 EUR/kg of hydrogen whereas it was found that the costs are most sensitive to the capacity factors of the renewable electricity sources and the full load hours of the electrolyzer. The novelty of the paper stems from the model applied that calculates the levelized cost of renewable hydrogen in an off-grid hydrogen production system. The model finds a cost-efficient portfolio of directly coupled wind power and solar photovoltaics systems for 80 different variants in an Austria-specific context.
Positioning Germany in an International Hydrogen Economy: A Policy Review
Apr 2024
Publication
Germany the European Union member state with the largest fiscal space and its leading manufacturer of industrial goods is pursuing an ambitious hydrogen strategy aiming at establishing itself as a major technology provider and importer of green hydrogen. The success of its hydrogen strategy represents not only a key element in realizing the European vision of climate neutrality but also a central driver of an emerging global hydrogen economy. This article provides a detailed review of German policy highlighting its prominent international dimension and its implications for the development of a global renewable hydrogen economy. It provides an overview of the strategy’s central goals and how these have evolved since the launch of the strategy in 2020. Next it moves on to provide an overview of the strategy’s main areas of intervention and highlights corresponding policy instruments. For this we draw on a comprehensive assessment of hydrogen policy instruments which have been systematically analyzed and coded. This was complemented by a detailed analysis of policy documents and information gathered in six interviews with government officials and staff of key implementing agencies. The article places particular emphasis on the strategy’s international dimension. While less significant in financial terms than domestic hydrogen-related spending it represents a defining feature of the German hydrogen strategy setting it apart from strategies in other major economies. The article closes with a reflection on the key features of the strategy compared to other important countries identifies gaps of the strategy and discusses important avenues for future research.
Hydrogen Role in the Valorization of Integrated Steelworks Process Off-gases through Methane and Methanol Syntheses
Jun 2021
Publication
The valorization of integrated steelworks process off-gases as feedstock for synthesizing methane and methanol is in line with European Green Deal challenges. However this target can be generally achieved only through process off-gases enrichment with hydrogen and use of cutting-edge syntheses reactors coupled to advanced control systems. These aspects are addressed in the RFCS project i3 upgrade and the central role of hydrogen was evident from the first stages of the project. First stationary scenario analyses showed that the required hydrogen amount is significant and existing renewable hydrogen production technologies are not ready to satisfy the demand in an economic perspective. The poor availability of low-cost green hydrogen as one of the main barriers for producing methane and methanol from process off-gases is further highlighted in the application of an ad-hoc developed dispatch controller for managing hydrogen intensified syntheses in integrated steelworks. The dispatch controller considers both economic and environmental impacts in the cost function and although significant environmental benefits are obtainable by exploiting process off-gases in the syntheses the current hydrogen costs highly affect the dispatch controller decisions. This underlines the need for big scale green hydrogen production processes and dedicated green markets for hydrogen-intensive industries which would ensure easy access to this fundamental gas paving the way for a C-lean and more sustainable steel production.
Towards Green Hydrogen? - A Comparison of German and African Visions and Expectations in the Context of the H2Atlas-Africa Project
Sep 2023
Publication
Green hydrogen promises to be critical in achieving a sustainable and renewable energy transition. As green hydrogen is produced with renewables green hydrogen could become an energy storage medium of the future and even substitute the current unsustainable grey or blue hydrogen used in the industry. Bringing this transition into reality for instance in Germany there are visions to rapidly build hydrogen facilities in Africa and export the produced green hydrogen to Europe. One problem however is that these visions presumably conflict with the visions of actors within Africa. Therefore this study aims to provide an initial assessment of African stakeholders’ visions for future energy exports and renewable energy expectations. By comparing visions from Germany and Africa this assessment was conducted to identify differences in green energy and hydrogen visions that could lead to conflict and similarities that could be the basis for cooperation. The National Hydrogen Strategy outlines the German visions which clarifies that Germany will have to import green hydrogen to meet its green transition target. In this context of future energy export demand a partnership between German and African researchers on assessing green hydrogen potentials in Africa started. The African visions were explored by surveying the partners from different African countries working on the project. The results revealed that while both sides see the need for an immediate transition to renewable energy the African side is not envisioning the immediate export of green hydrogen. Based on the responses the partners are primarily concerned with improving the continent’s still deficient energy access for both the population and industry. Nevertheless this African perspective greatly emphasises cross-border cooperation where both sides can realise their visions. In the case of Germany that German investment could build infrastructure which would benefit the receiving African country or countries and open up the possibility for the envisioned green hydrogen export to Europe.
Parameterization Proposal to Determine the Feasibility of Geographic Areas for the Green Hydrogen Industry under Socio-environmental and Technical Constraints in Chile
Oct 2023
Publication
Chile abundant in solar and wind energy resources presents significant potential for the production of green hydrogen a promising renewable energy vector. However realizing this potential requires an understanding of the most suitable locations for the installation of green hydrogen industries. This study proposes a quantitative methodology that identifies and ranks potential public lands for industrial use based on a range of technical parameters (such as solar and wind availability) and socio-environmental considerations (including land use restrictions and population density). The results reveal optimal locations that can facilitate informed sustainable decision-making for large-scale green hydrogen implementation in Chile. While this methodology does not replace project-specific technical or environmental impact studies it provides a flexible general classification to guide initial site selection. Notably this approach can be applied to other regions worldwide with abundant solar and wind resources such as Australia and Northern Africa promoting more effective and sustainable global decision-making for green hydrogen production.
Hydrogen in Aviation: A Simulation of Demand, Price Dynamics, and CO2 Emission Reduction Potentials
Mar 2024
Publication
Aviation contributes to anthropogenic climate change by emitting both carbon dioxide (CO2) and non-CO2 emissions through the combustion of fossil fuels. One approach to reduce the climate impact of aviation is the use of hydrogen as an alternative fuel. Two distinct technological options are presently under consideration for the implementation of hydrogen in aviation: hydrogen fuel cell architectures and the direct combustion of hydrogen. In this study a hydrogen demand model is developed that considers anticipated advancements in liquid hydrogen aircraft technologies forecasted aviation demand and aircraft startup and retirement cycles. The analysis indicates that global demand for liquid hydrogen in aviation could potentially reach 17 million tons by 2050 leading to a 9% reduction in CO2 emissions from global aviation. Thus the total potential of hydrogen in aviation extends beyond this considering that the total market share of hydrogen aircraft on suitable routes in the model is projected to be only 27% in 2050 due to aircraft retirement cycles. Additionally it is shown that achieving the potential demand for hydrogen in aviation depends on specific market prices. With anticipated declines in current production costs hydrogen fuel costs would need to reach about 70 EUR/MWh by 2050 to fulfill full demand in aviation assuming biofuels provide the cheapest option for decarbonization alongside hydrogen. If e-fuels are the sole option for decarbonization alongside hydrogen which is the more probable scenario the entire hydrogen demand potential in aviation would be satisfied according to this study’s estimates at significantly higher hydrogen prices approximately 180 EUR/MWh.
Cost-optimal Design and Operation of Hydrogen Refueling Stations with Mechanical and Electrochemical Hydrogen Compressors
Sep 2024
Publication
Hydrogen refueling stations (HRS) can cause a significant fraction of the hydrogen refueling cost. The main cost contributor is the currently used mechanical compressor. Electrochemical hydrogen compression (EHC) has recently been proposed as an alternative. However its optimal integration in an HRS has yet to be investigated. In this study we compare the performance of a gaseous HRS equipped with different compressors. First we develop dynamic models of three process configurations which differ in the compressor technology: mechanical vs. electrochemical vs. combined. Then the design and operation of the compressors are optimized by solving multi-stage dynamic optimization problems. The optimization results show that the three configurations lead to comparable hydrogen dispensing costs because the electrochemical configuration exhibits lower capital cost but higher energy demand and thus operating cost than the mechanical configuration. The combined configuration is a trade-off with intermediate capital and operating cost.
Endoscopic Visualization of Backfire Behavior in a Medium Speed Maritime Hydrogen Engine
Aug 2025
Publication
Hydrogen is a promising energy carrier for decarbonizing maritime and stationary applications. However using 100% hydrogen in large-bore engines introduces combustion challenges such as pre-ignition and backfire. These statistically occurring combustion anomalies particularly their spatial and temporal behavior cannot be fully understood through thermodynamic data alone. This study applies optical diagnostics to a medium-speed single-cylinder research engine (bore: 350 mm stroke: 440 mm displacement: 42.3 dm3 ) operated with 100% hydrogen exceeding 20 bar IMEP. By varying the air–fuel equivalence ratio between 2.3 and 4.0 and comparing active pre-chamber and open combustion chamber ignition systems backfire-induced operating limits are identified. High-speed flame imaging through two endoscopic accesses and up to three cameras captures both visible and UV (308 nm) flame chemiluminescence. An implemented visual vibration compensation method using fiber optics enables tracking of flame origins and propagation. The recordings show that 65% of ignition events initiate near one intake valve suggesting local hydrogen enrichment confirmed via 3D-CFD simulations. This is linked to intake manifold geometry which leads to mixture inhomogeneity up to −260◦ CA BTDC. At loads above 15 bar IMEP the localized enrichment reduces or shifts attributed to increased turbulence and intake mass flow. CFD simulations also reveal that gas temperatures under the intake valves exceeding the ignition temperature of hydrogen as early as 300◦ CA BTDC create the risk of backfire in the early gas phase. Additionally glowing oil droplets and ignition zones near the piston were observed indicating that lube oil ignition may be a cause of later (after −290◦ CA BTDC) backfire events. These findings contribute to the understanding of hydrogen combustion anomalies and support future experimental and modeling-based optimization of large-bore hydrogen engines.
Green Tides: The Suez Canal as Key Hub and Green Corridor for a Hydrogen Future Between the Middle East and Europe
Feb 2025
Publication
The shipping industry faces the dual challenge of reducing emissions to meet net-zero targets by 2050 and transporting green energy sources like hydrogen and its derivatives. Green shipping corridors provide experimental routes for lowcarbon solutions with the Suez Canal uniquely positioned to lead. This paper examines the canal’s evolving role as a dynamic energy space where diverse actors and networks intersect shaping spatial power relations and aligning with green capitalism interests. It explores the Suez Canal’s potential to serve as a model for hydrogen initiatives and its capacity to influence global energy governance and geopolitical dynamics in the transition to a sustainable shipping future. The canal also represents a microcosm of broader global shifts toward a future hydrogen economy where numerous stakeholders vie for power and influence.
Potential Financing Mechanisms for Green Hydrogen Development in Sub-Saharan Africa
Aug 2025
Publication
Green hydrogen is gaining global attention as a zero-carbon energy carrier with the potential to drive sustainable energy transitions particularly in regions facing rising fossil fuel costs and resource depletion. In sub-Saharan Africa financing mechanisms and structured off-take agreements are critical to attracting investment across the green hydrogen value chain from advisory and pilot stages to full-scale deployment. While substantial funding is required to support a green economic transition success will depend on the effective mobilization of capital through smart public policies and innovative financial instruments. This review evaluates financing mechanisms relevant to sub-Saharan Africa including green bonds public–private partnerships foreign direct investment venture capital grants and loans multilateral and bilateral funding and government subsidies. Despite their potential current capital flows remain insufficient and must be significantly scaled up to meet green energy transition targets. This study employs a mixed-methods approach drawing on primary data from utility firms under the H2Atlas-Africa project and secondary data from international organizations and the peer-reviewed literature. The analysis identifies that transitioning toward Net-Zero emissions economies through hydrogen development in sub-Saharan Africa presents both significant opportunities and measurable risks. Specifically the results indicate an estimated investment risk factor of 35% reflecting potential challenges such as financing infrastructure and policy readiness. Nevertheless the findings underscore that green hydrogen is a viable alternative to fossil fuels in subSaharan Africa particularly if supported by targeted financing strategies and robust policy frameworks. This study offers practical insights for policymakers financial institutions and development partners seeking to structure bankable projects and accelerate green hydrogen adoption across the region.
Green Hydrogen in the European Union - A Large-scale Assessment of the Supply Potential and Economic Viability
Aug 2025
Publication
Demand for hydrogen is expected to increase in the coming years to defossilize hard-to-abate sectors. In the European Union the question remains in which quantities and at what cost hydrogen can be produced to satisfy the growing demand. This paper applies different approaches to model costs and potentials of off-grid hydrogen production within the European Union. The modeled approaches distinguish the effects of different spatial and technological resolutions on hydrogen production potentials costs and prices. According to the results the hydrogen potential within the European Union is above 6800 TWh. This figure far surpasses the expected demand range of 1423 to 1707 TWh in 2050. The cost of satisfying the demand exceeds 100 billion euro at marginal costs of hydrogen below 85 euro per megawatt-hour. Additionally the results show that an integrated European Union market would reduce the overall system costs notably compared to a setup in which each country covers its own hydrogen demand domestically. Just a few countries would be able to supply the entire European Union’s hydrogen demand in the case of an integrated market. This finding leads to the conclusion that an international hydrogen infrastructure seems advantageous.
Analysis of Hydrogen Network Tariffs in Relation to an Initially Reduced and Delayed Expansion of the German Hydrogen Network
Jun 2025
Publication
This study examines the economic and regulatory implications of the development of Germany’s hydrogen core network. Using a mathematical-economic model of the amortization account and a reproduction of the network topology based on the German transmission system operators’ draft proposals the analysis evaluates the impact of delaying the network expansion with completion postponed from 2032 to 2037. The proposed phased approach prioritizes geographically clustered regions and ensures sufficient demand alignment during each expansion stage. The results demonstrate that strategic adjustments to the network size and timing significantly enhance cost-efficiency. In the initially reduced and delayed scenario uncapped network tariffs remain below €15/ kWh/h/a suggesting that under specific conditions the amortization account may become redundant while maintaining supply security and supporting the market ramp-up of hydrogen. These findings highlight the potential for demand-driven phased hydrogen infrastructure development to reduce financial burdens and foster a sustainable transition to a hydrogen-based energy system.
Reduction of Liquid Steelmaking Slag Using Hydrogen Gas as a Reductant
Sep 2025
Publication
Electric arc furnace slag is a major by-product of steelmaking yet its industrial utilization remains limited due to its complex chemical and mineralogical composition. This study presents a hydrogen-based approach to recover metallic components from EAF slag for potential reuse in steelmaking. Laboratory experiments were conducted by melting 50 g of industrial slag samples at 1600 ◦C and injecting hydrogen gas through a ceramic tube into the liquid slag. After cooling both the slag and the metallic phases were analyzed for their chemical and phase compositions. Additionally the reduction process was modeled using a combination of approaches including the thermochemical software FactSage 8.1 models for density surface tension and viscosity as well as a diffusion model. The injection of hydrogen resulted in the reduction of up to 40% of the iron oxide content in the liquid slag. In addition the fraction of reacted hydrogen gas was calculated.
Conceptual Design of a Metal Hydride System for the Recovery of Gaseous Hydrogen Boil-Off Losses from Liquid Hydrogen Tanks
Mar 2025
Publication
Liquid hydrogen (LH2) is a promising energy carrier to decrease the climate impact of aviation. However the inevitable formation of hydrogen boil-off gas (BOG) is a main drawback of LH2. As the venting of BOG reduces the overall efficiency and implies a safety risk at the airport means for capturing and re-using should be implemented. Metal hydrides (MHs) offer promising approaches for BOG recovery as they can directly absorb the BOG at ambient pressures and temperatures. Hence this study elaborates a design concept for such an MH-based BOG recovery system at hydrogen-ready airports. The conceptual design involves the following process steps: identify the requirements establish a functional structure determine working principles and combine the working principles to generate a promising solution.
Fast Enough? The Consequences of Delayed Renewable Energy Expansion on European Hydrogen Import Needs
Aug 2025
Publication
This study investigates the impact of delayed and accelerated expansion of the volatile renewable energy sources (vRES) onshore wind offshore wind and photovoltaics on Europe’s (EU27 United Kingdom Norway and Switzerland) demand for hydrogen imports and its derivatives to meet demand from final energy consumption sectors and to comply with European greenhouse gas (GHG) emission targets. Using the multi-energy system model ISAaR we analyze fourteen scenarios with different levels of vRES expansion including an evaluation of the resulting hydrogen prices. The load-weighted average European hydrogen price in the BASE scenario decreases from 4.1 €/kg in 2030 to 3.3 €/kg by 2050. Results show that delaying the expansion of vRES significantly increases the demand for imports of hydrogen and its derivatives and thus increases the risk of not meeting GHG emission targets for two reasons: (1) higher import volumes to meet GHG emission targets increase dependence on third parties and lead to higher risk in terms of security of supply; (2) at the same time lower vRES expansion in combination with higher import volumes leads to higher resulting hydrogen prices which in turn affects the economic viability of the energy transition. In contrast an accelerated expansion of vRES reduces dependency on imports and stabilizes hydrogen prices below 3 €/kg in 2050 which increases planning security for hydrogen off-takers. The study underlines the importance of timely and strategic progress in the expansion of vRES and investment in hydrogen production storage and transport networks to minimize dependence on imports and effectively meet the European climate targets.
The UAE Net-Zero Strategy—Aspirations, Achievements and Lessons for the MENA Region
Aug 2025
Publication
The Middle East and North Africa region has not played a major role in climate action so far and several countries depend economically on fossil fuel exports. However this is a region with vast solar energy resources which can be exploited affordably for power generation and hydrogen production at scale to eventually reach carbon neutrality. In this paper we elaborate on the case of the United Arab Emirates and explore the aspirations and feasibility of its net-zero by 2050 target. While we affirm the concept per se we also highlight the technological complexity and economic dimensions that accompany such transformation. We expect the UAE’s electricity demand to triple between today and 2050 and the annual green hydrogen production is expected to reach 3.5 Mt accounting for over 40% of the electricity consumption. Green hydrogen will provide power-to-fuel solutions for aviation maritime transport and hard-to-abate industries. At the same time electrification will intensify—most importantly in road transport and low-temperature heat demands. The UAE can meet its future electricity demands primarily with solar power followed by natural gas power plants with carbon capture utilization and storage while the role of nuclear power in the long term is unclear at this stage.
Integration of a Model-based System Engineering Framework with Safety Assessment for Early Design Phases: A Case Study for Hydrogen-based Aircraft Fuel System Architecting
Feb 2025
Publication
Novel hydrogen-based aircraft concepts pose significant challenges for the system development process. This paper proposes a generic adaptable and multidisciplinary framework for integrated model-based systems engineering (MBSE) and model-based safety assessment (MBSA) for the conceptual design of complex systems. The framework employs a multi-granularity modelcentric approach whereby the architectural specification is utilized for design as well as query purposes as part of a qualitative and quantitative graphbased preliminary safety assessment. For the qualitative assessment design and safety rules based on existing standards and best practices are formalized in the model and applied to a graph-based architecture representation. Consequently the remaining architectures are quantitatively assessed using automated fault trees. This safety-integrated approach is applied to the conceptual design of a liquid hydrogen fuel system architecture as a novel uncertain and complex system with many unknown system interrelations. This paper illustrates the potential of a combined MBSE-MBSA framework to streamline complex early-stage system design and demonstrates that all qualitatively down-selected hydrogen system architecture variants also satisfy quantitative assessment. Furthermore it is shown that the design space of novel systems is also constrained by safety and certification requirements significantly reducing the number of actual feasible solutions.
Participatory Mapping of Local Green Hydrogen Cost-potentials in Sub-Saharan Africa
Mar 2025
Publication
C. Winkler,
Heidi Heinrichs,
S. Ishmam,
B. Bayat,
Amin Lahnaoui,
Solomon Nwabueze Agbo,
E.U. Pena Sanchez,
David Franzmann,
N. Oijeabou,
C. Koerner,
Y. Michael,
B. Oloruntoba,
C. Montzka,
H. Vereecken,
H. Hendricks Franssen,
J. Brendt,
S. Brauner,
Wilhelm Kuckshinrichs,
S. Venghaus,
Daouda Kone,
Bruno Korgo,
Kehinde Olufunso Ogunjobi,
Jane Olwoch,
V. Chiteculo,
Z. Getenga,
Jochen Linßen and
Detlef Stolten
Green hydrogen is a promising solution within carbon free energy systems with Sub-Saharan Africa being a possibly well-suited candidate for its production. However green hydrogen production in Sub-Saharan Africa is not yet investigated in detail. This work determines the cost-potential for green hydrogen production within this region. Therefore a potential analysis for PV wind and hydropower groundwater analysis and energy systems optimization are conducted. The results are evaluated under local socio-economic factors. Results show that hydrogen costs start at 1.6 EUR/kg in Mauritania with a total potential of ~259 TWh/a under 2 EUR/kg in 2050. Two third of the region experience groundwater limitations and need desalination at an added costs of ~1% of hydrogen costs. Socio-economic analysis show that green hydrogen deployment can be hindered along the Upper Guinea Coast and the African Great Lakes driven by limited energy access low labor costs in West Africa and high labor potential in other regions.
Planning LH2 Infrastructure for H2-powered Aviation: From the Initial Development to Market Penetration
Aug 2025
Publication
To enable hydrogen-powered aircraft operations liquid hydrogen infrastructure has to be planned well in advance. This study analyses the transition pathway of liquid hydrogen supply infrastructure from the initial development phase to market penetration optimizing the design and dispatch of the system. The findings reveal that the single-year approach used in previous studies significantly underestimates the costs associated with supply infrastructure. During the transition phase substantial investments are required in specific years leading to high supply costs particularly in the early years. Off-take agreements could be used to achieve a more balanced cost distribution. For the considered location of a generic airport on-site liquid hydrogen supply costs range between 3.83 and 5.03 USD/kgH2 assuming a long-term supply agreement. At a less favourable airport supply costs are 29% higher compared to a favourable location. However costs could be reduced by up to 12% if hydrogen is imported via vessels or the European Hydrogen Backbone. The primary factors influencing supply costs are the availability of renewable energy resources and the distances to the nearest port as well as hydrogen production hubs. Therefore the optimal supply chain must be assessed individually for each airport. Overall this study provides insights and a methodology that can support the development of future liquid hydrogen infrastructure roadmaps for hydrogen-powered aviation.
Green Hydrogen Potential Assessment in Ghana: Application of PEM Electrolysis Process and Geospatial-multi-criteria Approach
Sep 2023
Publication
With green hydrogen gaining traction as a viable sustainable energyoption the present study explores the potential of producing greenhydrogen from wind and solar energy in Ghana. The study combinedthe use of geospatial multi-criteria approach and PEM electrolysisprocess to estimate the geographical and technical potential of theselected two renewable resources. The study also included anassessment of potential areas for grid integration. Technologyspecifications of a monocrystalline solar PV module and 1 MW windturbine module were applied. Results of the assessment show thatabout 85% of the total land area in the country is available for greenhydrogen projects. Technically capacities of ∼14196.21 Mt of greenhydrogen using solar and ∼10123.36 Mt/year from wind energy can beproduced annually in the country. It was also observed that someregions especially regions in the northern part of the country eventhough showed the most favourable locations for solar-based greenhydrogen projects with technical potential of over 1500 Mt/year theseregions may not qualify for a grid connected system based on thecurrent electrification policy of the country due to the regions’ lowpopulation density and distance from the power grid network threshold.
Systematic Framework for Deep Learning-based Predictive Injection Control with Bayesian Hyperparameter Optimization for a Hydrogen/Diesel Dual-fuel Engine
Aug 2025
Publication
Climate change and global warming concerns promote interest in alternative fuels especially zero-carbon fuels like hydrogen. Modifying existing combustion engines for dual-fuel operation can decrease emissions of vehicles that are already on the road. The procedure of a deep learning-based model predictive control as a machine learning implementation practical for complex nonlinear systems with input and state constraints has been developed and tested on a hydrogen/diesel dual-fuel (HDDF) engine application. A nonlinear model predictive controller (NMPC) utilizing a deep neural network (DNN) process model is proposed to control the injected hydrogen and diesel. This DNN model has eight inputs and four outputs and has a short computational time compared to the physics-based model. The architecture and hyperparameters of the DNN model of the HDDF process are optimized through a two-stage Bayesian optimization to achieve high accuracy while minimizing the complexity of the model described. The final DNN architecture has two hidden layers with 31 and 23 neurons. A modified engine capable of HDDF operation is compared to standard diesel operation to evaluate the engine performance and emissions. During experimental engine testing the controller required an average computational time of 2 ms per cycle on a low-cost processor satisfying the real-time requirements and was faster than recurrent networks. The control performance of the DNN-NMPC for the HDDF engine showed a mean absolute error of 0.19 bar in load tracking while maximizing average hydrogen energy share (68%) and reducing emissions. Specifically the particulate matter emissions decrease by 87% compared to diesel operation.
Analysis of the Sugarcane Biomass Use to Produce Green Hydrogen: Brazilian Case Study
Feb 2025
Publication
Conventional hydrogen production processes which often involve fossil raw materials emit significant amounts of carbon dioxide into the atmosphere. This study critically evaluates the feasibility of using sugarcane biomass as an energy source to produce green hydrogen. In the 2023/2024 harvest Brazil the world’s largest sugarcane producer processed approximately 713.2 million metric tons of sugarcane. This yielded 45.68 million metric tons of sugar and 29.69 billion liters of first-generation ethanol equivalent to approximately 0.0416 liters of ethanol per kilogram of sugarcane. A systematic literature review was conducted using Scopus and Clarivate Analytics Web of Science resulting in the assessment of 335 articles. The study has identified seven potential biohydrogen production methods including two direct approaches from second-generation ethanol and five from integrated bioenergy systems. Experimental data indicate that second-generation ethanol can yield 594 MJ per metric ton of biomass with additional energy recovery from lignin combustion (1705 MJ per metric ton). Moreover advances in electrocatalytic reforming and plasma-driven hydrogen production have demonstrated high conversion efficiencies addressing key technical barriers. The results highlight Brazil’s strategic potential to integrate biohydrogen production within its existing bioenergy infrastructure. By leveraging sugarcane biomass for green hydrogen the country can contribute significantly to the global transition to sustainable energy while enhancing its energy security.
Development, Application and Optimization of Hydrogen Refueling Processes for Railway Vehicles
Apr 2025
Publication
In recent years numerous hydrogen-powered rail vehicles have been developed and their deployment within public transport is steadily increasing. To avoid disadvantages compared to diesel vehicles refueling times of 15 min are stated in the industry as target independent of climate zones or vehicle configurations. As refueling time varies with these parameters this work presents the corresponding refueling times and defines optimization potentials. A simulation model was set up and parametrized with a reference vehicle and hydrogen refueling station from the FCH2RAIL project. Measurement data from this station and vehicle were analyzed and compared to simulation results for model validation. The results show that at high ambient temperature pre-cooling reduces refueling time by 71 % and type 4 tanks increase refueling time by 20 % compared to type 3. Overall optimized tank design and thermal management reduce the refueling time for rail vehicles from over 2 h to 15 min.
The Impact of Temporal Hydrogen Regulation on Hydrogen Exporters and their Domestic Energy Transition
Aug 2025
Publication
As global demand for green hydrogen rises potential hydrogen exporters move into the spotlight. While exports can bring countries revenue large-scale on-grid hydrogen electrolysis for export can profoundly impact domestic energy prices and energy-related emissions. Our investigation explores the interplay of hydrogen exports domestic energy transition and temporal hydrogen regulation employing a sector-coupled energy model in Morocco. We find substantial co-benefits of domestic carbon dioxide mitigation and hydrogen exports whereby exports can reduce market-based costs for domestic electricity consumers while mitigation reduces costs for hydrogen exporters. However increasing hydrogen exports in a fossil-dominated system can substantially raise market-based costs for domestic electricity consumers but surprisingly temporal matching of hydrogen production can lower these costs by up to 31% with minimal impact on exporters. Here we show that this policy instrument can steer the welfare (re-)distribution between hydrogen exporting firms hydrogen importers and domestic electricity consumers and hereby increases acceptance among actors.
From Natural Gas to Hydrogen: Climate Impacts of Current and Future Gas Transmission Networks in Germany
May 2025
Publication
Hydrogen emissions arise from leakage during its production transport storage and use leading to an increase in atmospheric hydrogen concentrations. These emissions also cause an indirect climate effect which has been quantified in the literature with a global warming potential over 100 years (GWP100) of about 11.6 placing hydrogen between carbon dioxide (1) and methane (29.8). There is increasing debate about the climate impact of an energy transition based on hydrogen. As a case study we have therefore evaluated the expected climate impact of switching from the long-distance natural gas transmission network to the outlined future “hydrogen core network” in Germany. Our analysis focuses on the relevant sources and network components of emissions. Our results show that the emissions from the network itself represent only about 1.8% of total emissions from the transmission of hydrogen with 98% attributed to energy-related compressor emissions and only 2% to fugitive and operational hydrogen leakage. Compared to the current natural gas transmission network we calculate a 99% reduction in total network emissions and a 97% reduction in specific emissions per transported unit of energy. In the discussion we show that when considering the entire life cycle which also includes emissions from the upstream and end-use phases the switch to hydrogen reduces the overall climate impact by almost 90%. However while our results show a significantly lower climate impact of hydrogen compared to natural gas minimising any remaining emissions remains crucial to achieve carbon neutrality by 2045 as set in Germany’s Federal Climate Action Act. Hence we recommend further reducing the emissions intensity of hydrogen supply and minimising the indirect emissions associated with the energy supply of compressors.
The Role of Power-to-X and Domestic eFuel Production for Energy Transition and Energy Independence in Europe
Jan 2025
Publication
The ongoing global energy transition spurred by ecological concerns and by evolving political dynamics is necessitating a significant expansion of renewable energy sources. This shift towards renewables is introducing the challenge of heightened energy supply volatility and it underscores the imperative for large-scale storage solutions in order to mitigate fluctuations in demand and supply. This study investigates the potential of Power-to-X (P2X) technologies to address this challenge and it evaluates their technical and socioeconomic implications. Using scenario simulations that leverage the maximum estimated potentials of renewable energy sources relative to demand profiles across different countries we explore the role of P2X integration in the enhancement of energy production. Our analysis highlights the pivotal role of hydrogen in the decarbonization of key industrial sectors such as steel production and heavyduty transportation in the near term. For Germany we observe a reduction in CO2 emissions from 306.26 Mt to 232.28 Mt (-24.15%) and an increase in energy independence as measured by the reduction in primary energy imports from 1150.37 TWh to 887.86 TWh (-22.82%) when comparing the baseline scenario to the most socio-economically favorable scenario. France demonstrates even greater reductions with CO2 emissions decreasing by 37.69% and primary energy imports by 40.46%. Portugal achieves similar reductions with CO2 emissions falling by 38.71% and primary energy imports by 41.81%. However none of the three countries investigated in this study (Germany France and Portugal) achieve full decarbonization and energy independence simultaneously since their respective potential for renewable energy is not sufficiently large. Drawing from these insights and accounting for the unique contexts of each of the three countries we offer tailored policy recommendations for optimizing P2X utilization and enhancing energy production efficiency.
O&G, Geothermal Systems, and Natural Hydrogen Well Drilling: Market Analysis and Review
Mar 2025
Publication
Developing clean and renewable energy instead of the ones related to hydrocarbon resources has been known as one of the different ways to guarantee reduced greenhouse gas emissions. Geothermal systems and native hydrogen exploration could represent an opportunity to diversify the global energy matrix and lower carbon-related emissions. All of these natural energy sources require a well to be drilled for its access and/or extractions similar to the petroleum industry. The main focuses of this technical–scientific contribution and research are (i) to evaluate the global energy matrix; (ii) to show the context over the years and future perspectives on geothermal systems and natural hydrogen exploration; and (iii) to present and analyze the importance of developing technologies on drilling process optimization aiming at accessing these natural energy resources. In 2022 the global energy matrix was composed mainly of nonrenewable sources such as oil natural gas and coal where the combustion of fossil fuels produced approximately 37.15 billion tons of CO2 in the same year. In 2023 USD 1740 billion was invested globally in renewable energy to reduce CO2 emissions and combat greenhouse gas emissions. In this context currently about 353 geothermal power units are in operation worldwide with a capacity of 16335 MW. In addition globally there are 35 geothermal power units under pre-construction (project phase) 93 already being constructed and recently 45 announced. Concerning hydrogen the industry announced 680 large-scale project proposals valued at USD 240 billion in direct investment by 2030. In Brazil the energy company Petroleo Brasileiro SA (Petrobras Rio de Janeiro Brazil) will invest in the coming years nearly USD 4 million in research involving natural hydrogen generation and since the exploration and access to natural energy resources (oil and gas natural hydrogen and geothermal systems among others) are achieved through the drilling of wells this document presents a technical–scientific contextualization of social interest.
Keep it Local and Safe: Which System of Green Hydrogen in Germany is Accepted by Citizens?
Jan 2025
Publication
Transitioning from fossil fuels to renewable energies is imperative for Germany to reduce CO2 emissions and achieve greenhouse gas neutrality by 2045. Green hydrogen holds great potential to contribute to this energy transition by enabling the storage of surplus renewable energy. However Germany's green hydrogen production industry is still in its infancy with only a few green hydrogen plants existing. Studies examining the public's acceptance of green hydrogen production are scarce in this context. Still high societal acceptance can contribute to the future expansion of green hydrogen production in Germany in terms of speed and volume. Therefore our study aims to identify significant factors influencing the German population's acceptance of green hydrogen production within various acceptance groups with differing preferences for future green hydrogen production systems. We conducted an online survey (n=1203) in Germany in 2022/2023 incorporating a choice experiment. Through subsequent latent class analysis four acceptance groups with distinct preferences regarding local green hydrogen production were identified: Unconvinced citizens Security-conscious citizens Regional electricity consumers and Financial beneficiaries. A discriminant analysis identified 9 out of 11 factors as significant for distinguishing between these acceptance groups regarding their preferences for local green hydrogen production: trust in plant safety trust in project managers risk/benefit perception environmental self-identity negative attitude towards renewable energies positive attitude towards renewable energies emotions age and gender. However no significant effects were observed for experience with green hydrogen and distance to the place of residence. Based on our results it is recommended that required renewable energy for green hydrogen production should be produced as close to the green hydrogen plants as possible. It must be ensured and communicated to the public that the (planned) green hydrogen plants meet high safety standards and pose a very low risk of fire or explosion. The neighbouring population should also benefit through annual heating cost savings and financial participation. Implementing these measures can increase acceptance of local green hydrogen production facilitating the transition towards a more sustainable energy future in Germany and beyond.
The Integration of Hydrogen Energy Storage (HES) in Germany: What Are the Benefits for Power Grids?
Mar 2025
Publication
This article provides an overview of the requirements for a grid-oriented integration of hydrogen energy storage (HES) and components into the power grid. Considering the general definition of HES and the possible components this paper presents future hydrogen demand electrolysis performance and storage capacity. These parameters were determined through various overall system studies aiming for climate neutrality by the year 2045. In Germany the targeted expansion of renewable energy generation capacity necessitates grid expansion to transport electricity from north to south and due to existing grid congestions. Therefore electrolysis systems could be used to improve the integration of renewable energy systems by reducing energy curtailment and providing grid services when needed. Currently however there are hardly any incentives for a grid-friendly allocation and operation of electrolysis or power-to-gas plants. Two possible locations for hydrogen plants from two current research projects HyCavMobil (Hydrogen Cavern for Mobility) and H2-ReNoWe (Hydrogen Region of north-western Lower Saxony) are presented as practical examples. Using power grid models the integration of electrolysis systems at these locations in the current high and extra-high voltage grid is examined. The presented results of load flow calculations assess power line utilization and sensitivity for different case scenarios. Firstly the results show that power lines in these locations will not be overloaded which would mean an uncritical operation of the power grid. While the overall grid stability remains unaffected in this case selecting suitable locations is vital to prevent negative effects on the local grid.
Energy Efficiency of Future Hydrogen-based Fuel Supply Chain Routes for Germany's Maritime Demand
Aug 2025
Publication
The share of renewable electricity generation has been growing steadily over the past few years. However not all sectors can be fully electrified to reach decarbonization goals. The maritime industry which plays a critical role in international trade is such a sector. Therefore there is a need for a global strategic approach towards the production transportation and use of synfuels enabling the maritime energy transition to benefit from economies of scale. There are potential locations around the world for renewable generation such as hydropower in Norway wind turbines in the North Sea and photovoltaics in the Sahara where synfuels can be produced and utilized within the country as well as exported to demand hubs. Given that a country's domestic production may not fully meet its demand a scenario-based analysis is essential to determine the feasibility of supply chains pillaring on the demand and supply for the respective sector of utilization. Our work demonstrates this methodology for the import of hydrogen and derived ammonia and methanol to Germany from Norway Namibia and Algeria in 2030 and 2050 utilizing the pipeline- and ship-based transport scenarios. Thereby the overall supply chain efficiency for maritime applications is analyzed based on the individual supply chain energy consumption from production to bunkering of the fuel to a vessel. The analysis showed that the efficiency of import varies from 44.6% to 53.9% between the analyzed countries. Furthermore a sensitivity analysis for green and blue hydrogen production pathways is presented along with the influence of qualitative factors like port infrastructure geopolitics etc. As an example through these analyses recommendations for supply from Norway Algeria and Namibia at the Port of Wilhelmshaven within a supply chain are examined.
Hydrogen Properties and Their Safety Implications for Experimental Testing of Wing Structure-Integrated Hydrogen Tanks
Apr 2025
Publication
Hydrogen is a promising candidate for addressing environmental challenges in aviation yet its use in structural validation tests for Wing Structure-Integrated highpressure Hydrogen Tanks (SWITHs) remains underexplored. To the best of the authors’ knowledge this study represents the first attempt to assess the feasibility of conducting such tests with hydrogen at aircraft scales. It first introduces hydrogen’s general properties followed by a detailed exploration of the potential hazards associated with its use substantiated by experimental and simulation results. Key factors triggering risks such as ignition and detonation are identified and methods to mitigate these risks are presented. While the findings affirm that hydrogen can be used safely in aviation if responsibly managed they caution against immediate large-scale experimental testing of SWITHs due to current knowledge and technology limitations. To address this a roadmap with two long-term objectives is outlined as follows: first enabling structural validation tests at scales equivalent to large aircraft for certification; second advancing simulation techniques to complement and eventually reduce reliance on costly experiments while ensuring sufficient accuracy for SWITH certification. This roadmap begins with smaller-scale experimental and numerical studies as an initial step.
Techno-Economic Analysis of Geospatial Green Hydrogen Potential Using Solar Photovoltaic in Niger: Application of PEM and Alkaline Water Electrolyzers
Apr 2025
Publication
This study evaluates the techno-economic feasibility of solar-based green hydrogen potential for off-grid and utility-scale systems in Niger. The geospatial approach is first employed to identify the area available for green hydrogen production based on environmental and socio-technical constraints. Second we evaluate the potential of green hydrogen production using a geographic information system (GIS) tool followed by an economic analysis of the levelized cost of hydrogen (LCOH) for alkaline and proton exchange membrane (PEM) water electrolyzers using fresh and desalinated water. The results show that the electricity generation potential is 311617 TWh/year and 353166 TWh/year for off-grid and utility-scale systems. The hydrogen potential using PEM (alkaline) water electrolyzers is calculated to be 5932 Mt/year and 6723 Mt/year (5694 Mt/year and 6454 Mt/year) for off-grid and utility-scale systems respectively. The LCOH production potential decreases for PEM and alkaline water electrolyzers by 2030 ranging between 4.72–5.99 EUR/kgH2 and 5.05–6.37 EUR/kgH2 for off-grid and 4.09–5.21 EUR/kgH2 and 4.22–5.4 EUR/kgH2 for utility-scale systems.
Solar-heat-assisted Hydrogen Production using Solid Oxide Electrolysis Cells in Japan
Aug 2025
Publication
Japan and other industrialized countries rely on the import of green hydrogen (H2 ) as they lack the resources to meet their own demand. In contrast countries such as Australia have the potential to produce hydrogen and its derivatives using wind and solar energy. Solar energy can be harnessed to produce electricity using photovoltaic systems or to generate thermal energy by concentrating solar irradiation. Thus thermal and electrical energy can be used in a solid oxide electrolysis process for low-cost hydrogen production. The operation of a solid oxide electrolysis cell (SOEC) stack integrated with solar energy is experimentally investigated and further analyzed using a validated simulation model. Furthermore a techno-economic assessment is conducted to estimate the hydrogen production costs including the expenses associated with liquefaction and transportation from Australia to Japan. High conversion efficiencies and low-cost SOECs are projected to result in production costs below 4 USD/kg.
Modelling Green Hydrogen Storage in Salt Caverns: Implications of Future Storage Demands on Cavern Operation
Mar 2025
Publication
The transition to a renewable energy system based mainly on an electricity and hydrogen infrastructure places new requirements and constraints on the infrastructure systems involved. This study investigates the impact of future hydrogen storage demands on a representative salt cavern considering two cases: a regional focus on Lower Saxony with high wind energy penetration and a national perspective on Germany with a PV-dominated mix of installed capacities. A numerical model is developed for in-depth assessment of the thermodynamics inside the cavern. Hydrogen storage profiles generated from 2045 renewable electricity projections for Germany reveal substantial storage demands. Key parameters such as hydrogen production and storage share turnover rate and storage interval length vary significantly between the two cases. In the Lower Saxony case high wind shares lead to increased turnover rates and reduced required working gas volumes but also result in steeper pressure and temperature gradients inside the cavern and necessitate larger compressor systems. In contrast the PV-dominated Germany case experiences lower internal cavern stresses but requires more flexible surface components to manage frequent fluctuations in hydrogen flow. These findings underscore the complex interplay between regional power mixes storage facility design and operational requirements.
Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy
Aug 2021
Publication
Hydrogen plays a key role in many industrial applications and is currently seen as one of the most promising energy vectors. Many efforts are being made to produce hydrogen with zero CO 2 footprint via water electrolysis powered by renewable energies. Nevertheless the use of fossil fuels is essentialin the short term. The conventional coal gasification and steam methane reforming processes for hydrogen production are undesirable due to the huge CO2 emissions. A cleaner technologybased on natural gas that has received special attention in recent years is methane pyrolysis. The thermal decomposition of methane gives rise to hydrogen and solid carbon and thus the release of greenhouse gases is prevented. Therefore methane pyrolysis is a CO2-free technology that can serve as a bridge from fossil fuels torenewable energies.
The Green Hydrogen Ambition and Implementation Gap
Jan 2025
Publication
Green hydrogen is critical for decarbonizing hard-to-electrify sectors but it faces high costs and investment risks. Here we defne and quantify the green hydrogen ambition and implementation gap showing that meeting hydrogen expectations will remain challenging despite surging announcements of projects and subsidies. Tracking 190 projects over 3 years we identify a wide 2023 implementation gap with only 7% of global capacity announcements fnished on schedule. In contrast the 2030 ambition gap towards 1.5 °C scenarios has been gradually closing as the announced project pipeline has nearly tripled to 422 GW within 3 years. However we estimate that without carbon pricing realizing all these projects would require global subsidies of US$1.3 trillion (US$0.8–2.6 trillion range) far exceeding announced subsidies. Given past and future implementation gaps policymakers must prepare for prolonged green hydrogen scarcity. Policy support needs to secure hydrogen investments but should focus on applications where hydrogen is indispensable.
Cost-optimized Replacement Strategies for Water Electrolysis Systems Affected by Degradation
Sep 2025
Publication
A key factor in reducing the cost of green hydrogen production projects using water electrolysis systems is to minimize the degradation of the electrolyzer stacks as this impacts the lifetime of the stacks and therefore the frequency of their replacement. To create a better understanding of the economics of stack degradation we present a linear optimization approach minimizing the costs of a green hydrogen supply chain including an electrolyzer with degradation modeling. By calculating the levelized cost of hydrogen depending on a variable degradation threshold the cost optimal time for stack replacement can be identified. We further study how this optimal time of replacement is affected by sensitivities such as the degradation scale the load-dependency of both degradation and energy demand and the costs of the electrolyzer. The variation of the identified major sensitivity degradation scale results in a difference of up to 9 years regarding the cost optimal time for stack replacement respectively lifetime of the stacks. Therefore a better understanding of the degradation impact is imperative for project cost reductions which in turn would support a proceeding hydrogen market ramp-up.
No more items...