Germany
Response Time Measurement of Hydrogen Sensors
Sep 2017
Publication
The efficiency of gas sensor application for facilitating the safe use of hydrogen depends considerably on the sensor response to a change in hydrogen concentration. Therefore the response time has been measured for five different-type commercially available hydrogen sensors. Experiments showed that all these sensors surpass the ISO 26142 standard; for the response times t90 values of 2 s to 16 s were estimated. Results can be fitted with an exponential or sigmoidal function. It can be demonstrated that the results on transient behaviour depend on both the operating parameters of sensors and investigation methods as well as on the experimental conditions: gas change rate and concentration jump.
Can Industry Keep Gas Distribution Networks Alive? Future Development of the Gas Network in a Decarbonized World: A German Case Study
Dec 2022
Publication
With the growing need for decarbonization the future gas demand will decrease and the necessity of a gas distribution network is at stake. A remaining industrial gas demand on the distribution network level could lead to industry becoming the main gas consumer supplied by the gas distribution network leading to the question: can industry keep the gas distribution network alive? To answer this research question a three-stage analysis was conducted starting from a rough estimate of average gas demand per production site and then increasing the level of detail. This paper shows that about one third of the German industry sites investigated are currently supplied by the gas distribution network. While the steel industry offers new opportunities the food and tobacco industry alone cannot sustain the gas distribution network by itself.
Deflagration-to-detonation Transition of H2-CO-Air Mixtures in a Partially Obstructed Channel
Sep 2019
Publication
In this study an explosion channel is used to investigate flame dynamics in homogeneous hydrogencarbon monoxide-air (H2-CO-air) mixtures. The test rig is a small scale 6 m channel at a rectangular cross section of 300x60 mm. Obstacles of a blockage ratio of BR=60% and a spacing of s=300mm are placed in first part of the channel. A 2.05 m long unobstructed part in the rear of the channel allows for investigation of freely propagating flames and detonations. The fuel composition is varied from 100/0 to 50/50 Vol.-% H2/CO mixtures. The overall fuel content ranges from 15 to 40 Vol.-% in air aiming to obtain fast flames and deflagration-to-detonation transition (DDT). Flame speed and dynamic pressure data are evaluated. Results extend data obtained by [1] and can be used for validation of numerical frameworks. Limits for fast flames and DDT in homogeneous H2-CO-air mixtures at the given geometry are presented.
Experimental Investigations Relevant for Hydrogen and Fission Product Issues Raised by the Fukushima Accident
Jan 2015
Publication
The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011 caused by an earthquake and a subsequent tsunami resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation leakage from primary containment boundary to the reactor building improper functioning of standby gas treatment system (SGTS) unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous aqueous and solid materials available for interaction e.g. gas components decontamination paint aerosols and water pools. In the light of the Fukushima accident additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally as more and more passive safety systems such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics hydrogen aerosols and iodine) test facility (9.2 m high 3.2 m in diameter and 60 m3 volume) are discussed in the light of the Fukushima accident.
Optimal Development of Alternative Fuel Station Networks Considering Node Capacity Restrictions
Jan 2020
Publication
A potential solution to reduce greenhouse gas (GHG) emissions in the transport sector is the use of alternative fuel vehicles (AFV). As global GHG emission standards have been in place for passenger cars for several years infrastructure modelling for new AFV is an established topic. However as the regulatory focus shifts towards heavy-duty vehicles (HDV) the market diffusion of AFV-HDV will increase as will planning the relevant AFV infrastructure for HDV. Existing modelling approaches need to be adapted because the energy demand per individual refill increases significantly for HDV and there are regulatory as well as technical limitations for alternative fuel station (AFS) capacities at the same time. While the current research takes capacity restrictions for single stations into account capacity limits for locations (i.e. nodes) – the places where refuelling stations are built such as highway entries exits or intersections – are not yet considered. We extend existing models in this respect and introduce an optimal development for AFS considering (station) location capacity restrictions. The proposed method is applied to a case study of a potential fuel cell heavy-duty vehicle AFS network. We find that the location capacity limit has a major impact on the number of stations required station utilization and station portfolio variety.
Scale-up of Milling in a 100 L Device for Processing of TiFeMn Alloy for Hydrogen Storage Applications: Procedure and characterization
Feb 2019
Publication
In this work the mechanical milling of a FeTiMn alloy for hydrogen storage purposes was performed in an industrial milling device. The TiFe hydride is interesting from the technological standpoint because of the abundance and the low cost of its constituent elements Ti and Fe as well as its high volumetric hydrogen capacity. However TiFe is difficult to activate usually requiring a thermal treatment above 400 °C. A TiFeMn alloy milled for just 10 min in a 100 L industrial milling device showed excellent hydrogen storage properties without any thermal treatment. The as-milled TiFeMn alloy did not need any activation procedure and showed fast kinetic behavior and good cycling stability. Microstructural and morphological characterization of the as-received and as-milled TiFeMn alloys revealed that the material presents reduced particle and crystallite sizes even after such short time of milling. The refined microstructure of the as-milled TiFeMn is deemed to account for the improved hydrogen absorption-desorption properties.
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
How Hydrogen Empowers the Energy Transition
Jan 2017
Publication
This report commissioned by the Hydrogen Council and announced in conjunction with the launch of the initiative at the World Economic Forum in January 2017 details the future potential that hydrogen is ready to provide and sets out the vision of the Council and the key actions it considers fundamental for policy makers to implement to fully unlock and empower the contribution of hydrogen to the energy transition.
In this paper we explore the role of hydrogen in the energy transition including its potential recent achievements and challenges to its deployment. We also offer recommendations to ensure that the proper conditions are developed to accelerate the deployment of hydrogen technologies with the support of policymakers the private sector and society.
You can download the full report from the Hydrogen Council website here
In this paper we explore the role of hydrogen in the energy transition including its potential recent achievements and challenges to its deployment. We also offer recommendations to ensure that the proper conditions are developed to accelerate the deployment of hydrogen technologies with the support of policymakers the private sector and society.
You can download the full report from the Hydrogen Council website here
Concepts for Improving Hydrogen Storage in Nanoporous Materials
Feb 2019
Publication
Hydrogen storage in nanoporous materials has been attracting a great deal of attention in recent years as high gravimetric H2 capacities exceeding 10 wt% in some cases can be achieved at 77 K using materials with particularly high surface areas. However volumetric capacities at low temperatures and both gravimetric and volumetric capacities at ambient temperature need to be improved before such adsorbents become practically viable. This article therefore discusses approaches to increasing the gravimetric and volumetric hydrogen storage capacities of nanoporous materials and maximizing the usable capacity of a material between the upper storage and delivery pressures. In addition recent advances in machine learning and data science provide an opportunity to apply this technology to the search for new materials for hydrogen storage. The large number of possible component combinations and substitutions in various porous materials including Metal-Organic Frameworks (MOFs) is ideally suited to a machine learning approach; so this is also discussed together with some new material types that could prove useful in the future for hydrogen storage applications.
Hydrogen Scaling Up: A Sustainable Pathway for the Global Energy Transition
Nov 2017
Publication
Deployed at scale hydrogen could account for almost one-fifth of total final energy consumed by 2050. This would reduce annual CO2 emissions by roughly 6 gigatons compared to today’s levels and contribute roughly 20% of the abatement required to limit global warming to two degrees Celsius.
On the demand side the Hydrogen Council sees the potential for hydrogen to power about 10 to 15 million cars and 500000 trucks by 2030 with many uses in other sectors as well such as industry processes and feedstocks building heating and power power generation and storage. Overall the study predicts that the annual demand for hydrogen could increase tenfold by 2050 to almost 80 EJ in 2050 meeting 18% of total final energy demand in the 2050 two-degree scenario. At a time when global populations are expected to grow by two billion people by 2050 hydrogen technologies have the potential to create opportunities for sustainable economic growth.
“The world in the 21st century must transition to widespread low carbon energy use” said Takeshi Uchiyamada Chairman of Toyota Motor Corporation and co-chair of the Hydrogen Council. “Hydrogen is an indispensable resource to achieve this transition because it can be used to store and transport wind solar and other renewable electricity to power transportation and many other things. The Hydrogen Council has identified seven roles for hydrogen which is why we are encouraging governments and investors to give it a prominent role in their energy plans. The sooner we get the hydrogen economy going the better and we are all committed to making this a reality.”
Achieving such scale would require substantial investments; approximately US$20 to 25 billion annually for a total of about US$280 billion until 2030. Within the right regulatory framework – including long-term stable coordination and incentive policies – the report considers that attracting these investments to scale the technology is feasible. The world already invests more than US$1.7 trillion in energy each year including US$650 billion in oil and gas US$300 billion in renewable electricity and more than US$300 billion in the automotive industry.
“This study confirms the place of hydrogen as a central pillar in the energy transition and encourages us in our support of its large-scale deployment. Hydrogen will be an unavoidable enabler for the energy transition in certain sectors and geographies. The sooner we make this happen the sooner we will be able to enjoy the needed benefits of Hydrogen at the service of our economies and our societies” said Benoît Potier Chairman and CEO Air Liquide. “Solutions are technologically mature and industry players are committed. We need concerted stakeholder efforts to make this happen; leading this effort is the role of the Hydrogen Council.”
The launch of the new roadmap came during the Sustainability Innovation Forum in the presence of 18 senior members of the Hydrogen led by co-chairs Takeshi Uchiyamada Chairman of Toyota and Benoît Potier Chairman and CEO Air Liquide and accompanied by Prof. Aldo Belloni CEO of The Linde Group Woong-chul Yang Vice Chairman of Hyundai Motor Company and Anne Stevens Board Member of Anglo American. During the launch the Hydrogen Council called upon investors policymakers and businesses to join them in accelerating deployment of hydrogen solutions for the energy transition. It was also announced that Woong-chul Yang of Hyundai Motor Company will succeed Takeshi Uchiyamada of Toyota in the rotating role of the Council’s co-chair and preside the group together with Benoit Potier CEO Air Liquide in 2018. Mr Uchiyamada is planning to return as Co-chairman in 2020 coinciding with the Tokyo Olympic and Paalympic Games an important milestone for showcasing hydrogen society and mobility.
You can download the full report from the Hydrogen Council website here
On the demand side the Hydrogen Council sees the potential for hydrogen to power about 10 to 15 million cars and 500000 trucks by 2030 with many uses in other sectors as well such as industry processes and feedstocks building heating and power power generation and storage. Overall the study predicts that the annual demand for hydrogen could increase tenfold by 2050 to almost 80 EJ in 2050 meeting 18% of total final energy demand in the 2050 two-degree scenario. At a time when global populations are expected to grow by two billion people by 2050 hydrogen technologies have the potential to create opportunities for sustainable economic growth.
“The world in the 21st century must transition to widespread low carbon energy use” said Takeshi Uchiyamada Chairman of Toyota Motor Corporation and co-chair of the Hydrogen Council. “Hydrogen is an indispensable resource to achieve this transition because it can be used to store and transport wind solar and other renewable electricity to power transportation and many other things. The Hydrogen Council has identified seven roles for hydrogen which is why we are encouraging governments and investors to give it a prominent role in their energy plans. The sooner we get the hydrogen economy going the better and we are all committed to making this a reality.”
Achieving such scale would require substantial investments; approximately US$20 to 25 billion annually for a total of about US$280 billion until 2030. Within the right regulatory framework – including long-term stable coordination and incentive policies – the report considers that attracting these investments to scale the technology is feasible. The world already invests more than US$1.7 trillion in energy each year including US$650 billion in oil and gas US$300 billion in renewable electricity and more than US$300 billion in the automotive industry.
“This study confirms the place of hydrogen as a central pillar in the energy transition and encourages us in our support of its large-scale deployment. Hydrogen will be an unavoidable enabler for the energy transition in certain sectors and geographies. The sooner we make this happen the sooner we will be able to enjoy the needed benefits of Hydrogen at the service of our economies and our societies” said Benoît Potier Chairman and CEO Air Liquide. “Solutions are technologically mature and industry players are committed. We need concerted stakeholder efforts to make this happen; leading this effort is the role of the Hydrogen Council.”
The launch of the new roadmap came during the Sustainability Innovation Forum in the presence of 18 senior members of the Hydrogen led by co-chairs Takeshi Uchiyamada Chairman of Toyota and Benoît Potier Chairman and CEO Air Liquide and accompanied by Prof. Aldo Belloni CEO of The Linde Group Woong-chul Yang Vice Chairman of Hyundai Motor Company and Anne Stevens Board Member of Anglo American. During the launch the Hydrogen Council called upon investors policymakers and businesses to join them in accelerating deployment of hydrogen solutions for the energy transition. It was also announced that Woong-chul Yang of Hyundai Motor Company will succeed Takeshi Uchiyamada of Toyota in the rotating role of the Council’s co-chair and preside the group together with Benoit Potier CEO Air Liquide in 2018. Mr Uchiyamada is planning to return as Co-chairman in 2020 coinciding with the Tokyo Olympic and Paalympic Games an important milestone for showcasing hydrogen society and mobility.
You can download the full report from the Hydrogen Council website here
Assessment of Hydrogen Quality Dispensed for Hydrogen Refuelling Stations in Europe
Dec 2020
Publication
The fuel quality of hydrogen dispensed from 10 refuelling stations in Europe was assessed. Representative sampling was conducted from the nozzle by use of a sampling adapter allowing to bleed sample gas in parallel while refuelling an FCEV. Samples were split off and distributed to four laboratories for analysis in accordance with ISO 14687 and SAE J2719. The results indicated some inconsistencies between the laboratories but were still conclusive. The fuel quality was generally good. Elevated nitrogen concentrations were detected in two samples but not in violation with the new 300 μmol/mol tolerance limit. Four samples showed water concentrations higher than the 5 μmol/mol tolerance limit estimated by at least one laboratory. The results were ambiguous: none of the four samples showed all laboratories in agreement with the violation. One laboratory reported an elevated oxygen concentration that was not corroborated by the other two laboratories and thus considered an outlier.
Options for Multilateral Initiatives to Close the Global 2030 Climate Ambition and Action Gap - Policy Field Synthetic E-fuels
Jan 2021
Publication
Achieving the goals of the Paris Agreement requires increased global climate action especially towards the production and use of synthetic e-fuels. This paper focuses on aviation and maritime transport and the role of green hydrogen for indirect electrification of industry sectors. Based on a sound analysis of existing multilateral cooperation the paper proposes four potential initiatives to increase climate ambition of the G20 countries in the respective policy field: a Sustainable e-Kerosene Alliance a Sustainable e-fuel Alliance for Maritime Shipping a Hard-to-Abate Sector Partnership and a Global Supply-demand-partnership.
The full report can be found here on the Umweltbundesamt website
The full report can be found here on the Umweltbundesamt website
Hydrogen Jet Structure in Presence of Forced Co-, Counter- and Cross-flow Ventilation
Sep 2021
Publication
This paper presents results of experimental investigations on unignited horizontal hydrogen jets in air in presence of co- cross- and counter-flow. Hydrogen concentration distributions are obtained as functions of distance to the hydrogen release nozzle. The H2-jet variables are two nozzle diameters 1 mm and 4 mm and two H2-jet mass flow rates 1 g/s up to 5 g/s. A propeller fan is used to provide forced ventilation compared to the case with no ventilation three different airflow velocities up to 5 m/s were studied systematically. It was found that any forced ventilation in co- cross- and counter-flow direction reduces the size of the burnable mixture cloud of the H2-jet compared to a free jet in quiescent air.
The Role of κ-Carbides as Hydrogen Traps in High-Mn Steels
Jul 2017
Publication
Since the addition of Al to high-Mn steels is known to reduce their sensitivity to hydrogen-induced delayed fracture we investigate possible trapping effects connected to the presence of Al in the grain interior employing density-functional theory (DFT). The role of Al-based precipitates is also investigated to understand the relevance of short-range ordering effects. So-called E21-Fe3AlC κ-carbides are frequently observed in Fe-Mn-Al-C alloys. Since H tends to occupy the same positions as C in these precipitates the interaction and competition between both interstitials is also investigated via DFT-based simulations. While the individual H–H/C–H chemical interactions are generally repulsive the tendency of interstitials to increase the lattice parameter can yield a net increase of the trapping capability. An increased Mn content is shown to enhance H trapping due to attractive short-range interactions. Favorable short-range ordering is expected to occur at the interface between an Fe matrix and the E21-Fe3AlC κ-carbides which is identified as a particularly attractive trapping site for H. At the same time accumulation of H at sites of this type is observed to yield decohesion of this interface thereby promoting fracture formation. The interplay of these effects evident in the trapping energies at various locations and dependent on the H concentration can be expressed mathematically resulting in a term that describes the hydrogen embrittlement
Analysis of Hydrogen-Induced Changes in the Cyclic Deformation Behaviour of AISI 300–Series Austenitic Stainless Steels Using Cyclic Indentation Testing
Jun 2021
Publication
The locally occurring mechanisms of hydrogen embrittlement significantly influence the fatigue behaviour of a material which was shown in previous research on two different AISI 300-series austenitic stainless steels with different austenite stabilities. In this preliminary work an enhanced fatigue crack growth as well as changes in crack initiation sites and morphology caused by hydrogen were observed. To further analyze the results obtained in this previous research in the present work the local cyclic deformation behaviour of the material volume was analyzed by using cyclic indentation testing. Moreover these results were correlated to the local dislocation structures obtained with transmission electron microscopy (TEM) in the vicinity of fatigue cracks. The cyclic indentation tests show a decreased cyclic hardening potential as well as an increased dislocation mobility for the conditions precharged with hydrogen which correlates to the TEM analysis revealing courser dislocation cells in the vicinity of the fatigue crack tip. Consequently the presented results indicate that the hydrogen enhanced localized plasticity (HELP) mechanism leads to accelerated crack growth and change in crack morphology for the materials investigated. In summary the cyclic indentation tests show a high potential for an analysis of the effects of hydrogen on the local cyclic deformation behaviour.
Global Hydrogen and Synfuel Exchanges in an Emission-Free Energy System
Apr 2023
Publication
This study investigates the global allocation of hydrogen and synfuels in order to achieve the well below 2 ◦C preferably 1.5 ◦C target set in the Paris Agreement. For this purpose TIMES Integrated Assessment Model (TIAM) a global energy system model is used. In order to investigate global hydrogen and synfuel flows cost potential curves are aggregated and implemented into TIAM as well as demand technologies for the end use sectors. Furthermore hydrogen and synfuel trades are established using liquid hydrogen transport (LH2 ) and both new and existing technologies for synfuels are implemented. To represent a wide range of possible future events four different scenarios are considered with different characteristics of climate and security of supply policies. The results show that in the case of climate policy the renewable energies need tremendous expansion. The final energy consumption is shifting towards the direct use of electricity while certain demand technologies (e.g. aviation and international shipping) require hydrogen and synfuels for full decarbonization. Due to different security of supply policies the global allocation of hydrogen and synfuel production and exports is shifting while the 1.5 ◦C target remains feasible in the different climate policy scenarios. Considering climate policy Middle East Asia is the preferred region for hydrogen export. For synfuel production several regions are competitive including Middle East Asia Mexico Africa South America and Australia. In the case of security of supply policies Middle East Asia is sharing the export volume with Africa while only minor changes can be seen in the synfuel supply.
Implementation of Fuel Cells in Aviation from a Maintenance, Repair and Overhaul Perspective
Dec 2022
Publication
Hydrogen is one of the most promising power sources for meeting the aviation sector’s long-term decarbonization goals. Although on-board hydrogen systems namely fuel cells are extensively researched the maintenance repair and overhaul (MRO) perspective remains mostly unaddressed. This paper analyzes fuel cells from an MRO standpoint based on a literature review and comparison with the automotive sector. It also examines how well the business models and key resources of MRO providers are currently suited to provide future MRO services. It is shown that fuel cells require extensive MRO activities and that these are needed to meet the aviation sector’s requirements for price safety and especially durability. To some extent experience from the automotive sector can be built upon particularly with respect to facility requirements and qualification of personnel. Yet MRO providers’ existing resources only partially allow them to provide these services. MRO providers’ underlying business models must adapt to the implementation of fuel cells in the aviation sector. MRO providers and services should therefore be considered and act as enablers for the introduction of fuel cells in the aviation industry.
Techno-economic Assessment of Long-distance Supply Chains of Energy Carriers: Comparing Hydrogen and Iron for Carbon-free Electricity Generation
Mar 2023
Publication
The effective usage of renewable energy sources requires ways of storage and delivery to balance energy demand and availability divergences. Carbon-free chemical energy carriers are proposed solutions converting clean electricity into stable media for storage long-distance energy trade and on-demand electricity generation. Among them hydrogen (H2) is noteworthy being the subject of significant investment and research. Metal fuels such as iron (Fe) represent another promising solution for a clean energy supply but establishing an interconnected ecosystem still requires considerable research and development. This work proposes a model to assess the supply chain characteristics of hydrogen and iron as clean carbon-free energy carriers and then examines case studies of possible trade routes between the potential energy exporters Morocco Saudi Arabia and Australia and the energy importers Germany and Japan. The work comprises the assessment of economic (levelized cost of electricity - LCOE) energetic (thermodynamic efficiency) and environmental (CO2 emissions) aspects which are quantified by the comprehensive model accounting for the most critical processes in the supply chain. The assessment is complemented by sensitivity and uncertainty analyses to identify the main drivers for energy costs. Iron is shown to be lower-cost and more efficient to transport in longer routes and for long-term storage but potentially more expensive and less efficient than H2 to produce and convert. Uncertainties related to the supply chain specifications and the sensitivity to the used variables indicate that the path to viable energy carriers fundamentally depends on efficient synthesis conversion storage and transport. A break-even analysis demonstrated that clean energy carriers could be competitive with conventional energy carriers at low renewable energy prices while carbon taxes might be needed to level the playing field. Thereby green iron shows potential to become an important energy carrier for long-distance trade in a globalized clean energy market.
Study on the Use of Fuel Cells in Shipping
Jan 2017
Publication
Fuel Cells are a promising technology in the context of clean power sustainability and alternative fuels for shipping. Different specific developments on Fuel Cells are available today with research and pilot projects under evaluation that have revealed strong potential for further scaled up implementation. The EMSA Study on the use of Fuel Cells in Shipping has been the result of this Agency’s initiative under the agreement of the Commission and in support of EU Member States an important instrument developed in close partnership with DNV-GL.
Notwithstanding the close dependency of Fuel Cell technology and the development of hydrogen fuel solutions different solutions are today in place making use of LNG methanol and other low flashpoint fuels. EMSA participates in support of the Commission in the 2nd phase development of the IGF Code where provisions for Fuel Cells are to be included as a new part of the text.
The EMSA Study on the use of Fuel Cells in Shipping includes a technology and regulatory review identifying gaps to be further explored the selection of the most promising Fuel Cell technologies for shipping and finally a generic Safety Assessment where the selected technologies are evaluated according to Risk & Safety aspects in generic ship design applications.
Notwithstanding the close dependency of Fuel Cell technology and the development of hydrogen fuel solutions different solutions are today in place making use of LNG methanol and other low flashpoint fuels. EMSA participates in support of the Commission in the 2nd phase development of the IGF Code where provisions for Fuel Cells are to be included as a new part of the text.
The EMSA Study on the use of Fuel Cells in Shipping includes a technology and regulatory review identifying gaps to be further explored the selection of the most promising Fuel Cell technologies for shipping and finally a generic Safety Assessment where the selected technologies are evaluated according to Risk & Safety aspects in generic ship design applications.
Benchmark Study for the Simulation of Underground Hydrogen Storage Operations
Aug 2022
Publication
While the share of renewable energy sources increased within the last years with an ongoing upward trend the energy sector is facing the problem of storing large amounts of electrical energy properly. To compensate daily and seasonal fluctuations a sufficient storage system has to be developed. The storage of hydrogen in the subsurface referred to as Underground Hydrogen Storage (UHS) shows potential to be a solution for this problem. Hydrogen produced from excess energy via electrolysis is injected into a subsurface reservoir and withdrawn when required. As hydrogen possesses unique thermodynamic properties many commonly used correlations can not be simply transferred to a system with a high hydrogen content. Mixing processes with the present fluids are essential to be understood to achieve high storage efficiencies. Additionally in the past microbial activity e.g. by methanogenic archaea was observed leading to a changing fluid composition over time. To evaluate the capability of reservoir simulators to cover these processes the present study establishes a benchmark scenario of an exemplary underground hydrogen storage scenario. The benchmark comprises of a generic sandstone gas reservoir and a typical gas storage schedule is defined. Based on this benchmark the present study assesses the capabilities of the commercial simulator Schlumberger ECLIPSE and the open-source simulator DuMux to mimic UHS related processes such as hydrodynamics but also microbial activity. While ECLIPSE offers a reasonable mix of user-friendliness and computation time DuMux allows for a better adjustment of correlations and the implementation of biochemical reactions. The corresponding input data (ECLIPSE format) and relevant results are provided in a repository to allow this simulation study’s reproduction and extension.
No more items...