United Kingdom
Hydrogen Venting Under Variable Flow Conditions
Sep 2011
Publication
Safety distances for hydrogen plumes are currently derived using models developed for hydrocarbon releases. It is well known that hydrogen behaves in a significantly different manner to that of hydrocarbons when released to atmosphere. There are two main aspects involved with the development of safety distances for credible hydrogen releases; the intensity of the thermal radiation from such a plume should it be ignited and the distance downwind from the release point to the point where a flammable mixture with air no longer exists. A number of distinct areas of venting behaviour were investigated; Thermal radiation from ignited plumes from vertical open ended vent pipes Far field radiation measurements for direct comparison with models Thermal radiation from ignited plumes from vertical vent pipes terminating in a T-piece Thermal radiation measurements from ignited hydrogen with a 45 vent termination Hydrogen concentration measurements with a T-piece.
Industrial Decarbonisation Strategy
Mar 2021
Publication
The UK is a world leader in the fight against climate change. In 2019 we became the first major economy in the world to pass laws to end its contribution to global warming by 2050. Reaching this target will require extensive systematic change across all sectors including industry. We must get this change right as the products made by industry are vital to life in the UK and the sector supports local economies across the country.<br/><br/>This strategy covers the full range of UK industry sectors: metals and minerals chemicals food and drink paper and pulp ceramics glass oil refineries and less energy-intensive manufacturing. These businesses account for around one sixth of UK emissions and transformation of their manufacturing processes is key if we are to meet our emissions targets over the coming decades (BEIS Final UK greenhouse gas emissions from national statistics: 1990 to 2018: Supplementary tables 2020).<br/><br/>The aim of this strategy is to show how the UK can have a thriving industrial sector aligned with the net zero target without pushing emissions and business abroad and how government will act to support this. An indicative roadmap to net zero for UK industry based on the content in this strategy is set out at the end of this summary. This strategy is part of a series of publications from government which combined show how the net zero transition will take place across the whole UK economy.
Modelling of Hydrogen Jet Fires Using CFD
Sep 2011
Publication
The computational fluid dynamics (CFD) software FLACS has primarily been developed to model dispersion and explosion phenomena; however models for the simulation of jet fires are under development. The aim is to be able to predict industrial fires efficiently and with good precision. Newly developed models include e.g. flame models for non-premixed flames discrete transfer radiation model as well as soot models. Since the time scales for fire simulations are longer than for explosions the computational speed is important. The recent development of non-compressible and parallel solvers in FLACS may therefore be important to ensure efficiency. Hydrogen flames may be invisible will generate no soot and tend to radiate less than hydrocarbon fuels. Due to high pressure storage the flame lengths can be significant. Simpler jet flame relations can not predict the jet flame interaction with objects and barriers and thus the heat loads on impacted objects. The development of efficient and precise CFD-tools for hydrogen fires is therefore important. In this paper the new models for the simulation of fire are described. These models are currently under development and this manuscript describes the current status of the work. Jet fire experiments performed by Health and Safety Laboratories (HSL) both free jets and impinging jets will also be simulated to evaluate the applicability and validity of the new fire models.
Burning Velocity and Markstein Length Blending Laws for Methane/Air and Hydrogen/Air Blends
Sep 2016
Publication
"Because of the contrasting chemical kinetics of methane and hydrogen combustion the development of blending laws for laminar burning velocity ul and Markstein length for constituent mixtures of CH4/air and H2/air presents a formidable challenge. Guidance is sought through a study of analytical expressions for laminar burning velocity. For the prediction of burning velocities of blends six blending laws were scrutinised. The predictions were compared with the measured burning velocities made by Hu et al. under atmospheric conditions. These covered equivalence ratios ranging from 0.6 to 1.3 and the full fuel range for H2 addition to CH4. This enabled assessments to be made of the predictive accuracy of the six laws. The most successful law is one developed in the course of the present study involving the mass fraction weighting of the product of ul density heat of reaction and specific heat divided by the thermal conductivity of the mixture. There was less success from attempts to obtain a comparably successful blending law for the flame speed Markstein length Lb despite scrutiny of several possibilities. Details are given of two possible approaches one based on the fractional mole concentration of the deficient reactant. A satisfactory empirical law employs mass fraction weighting of the product ulLb.
Safety Assessment of Unignited Hydrogen Discharge from Onboard Storage in Garages with Low Levels of Natural Ventilation
Sep 2011
Publication
This study is driven by the need to understand requirements to safe blow-down of hydrogen onboard storage tanks through a pressure relief device (PRD) inside a garage-like enclosure with low natural ventilation. Current composite tanks for high pressure hydrogen storage have been shown to rupture in 3.5–6.5 min in fire conditions. As a result a large PRD venting area is currently used to release hydrogen from the tank before its catastrophic failure. However even if unignited the release of hydrogen from such PRDs has been shown in our previous studies to result in unacceptable overpressures within the garage capable of causing major damage and possible collapse of the structure. Thus to prevent collapse of the garage in the case of a malfunction of the PRD and an unignited hydrogen release there is a clear need to increase blow-down time by reducing PRD venting area. Calculations of PRD diameter to safely blow-down storage tanks with inventories of 1 5 and 13 kg hydrogen are considered here for a range of garage volumes and natural ventilation expressed in air changes per hour (ACH). The phenomenological model is used to examine the pressure dynamics within a garage with low natural ventilation down to the known minimum of 0.03 ACH. Thus with moderate hydrogen flow rate from the PRD and small vents providing ventilation of the enclosure there will be only outflow from the garage without any air intake from outside. The PRD diameter which ensures that the pressure in the garage does not exceed a value of 20 kPa (accepted in this study as a safe overpressure for civil structures) was calculated for varying garage volumes and natural ventilation (ACH). The results are presented in the form of simple to use engineering nomograms. The conclusion is drawn that PRDs currently available for hydrogen-powered vehicles should be redesigned along with either a change of requirements for the fire resistance rating or innovative design of the onboard storage system as hydrogen-powered vehicles are intended for garage parking. Further research is needed to develop safety strategies and engineering solutions to tackle the problem of fire resistance of onboard storage tanks and requirements to PRD performance. Regulation codes and standards in the field should address this issue.
Innovation Insights Brief 2019: New Hydrogen Economy - Hope or Hype?
Jun 2019
Publication
Hydrogen and fuel cell technologies have experienced cycles of high expectations followed by impractical realities. This time around however falling renewable energy and fuel cell prices stringent climate change requirements and the discrete involvement of China are step changes. The combination of these factors is leading to realistic potential for hydrogen’s role in the Grand Transition.<br/>Having conducted exploratory interviews with leaders from all around the globe the World Energy Council is featuring eight use cases which illustrate hydrogen’s potential. These range from decarbonising hard-to-abate sectors such as heat industry and transport to supporting the integration of renewables and providing an energy storage solution.<br/>Dr Angela Wilkinson Secretary General and former Senior Director Scenarios and Business Insights: “Green and blue hydrogen can refresh those parts of the energy system transition that electrification cannot reach.”<br/>This Innovation Insights Brief is part of a series of publications by the World Energy Council focused on Innovation. In a fast-paced era of disruptive changes this brief aims at facilitating strategic sharing of knowledge between the Council’s members and the other energy stakeholders and policy shapers.
Numerical Modelling of Flame Acceleration and Transition to Detonation in Hydrogen & Air Mixtures with Concentration Gradient
Sep 2017
Publication
Hydrogen gas explosions in homogeneous reactive mixtures have been widely studied both experimentally and numerically. However in practice combustible mixtures are usually inhomogeneous and subject to both vertical and horizontal concentration gradients. There is still very limited understanding of the hydrogen explosion characteristics in such situations. The present numerical investigation aims to study the effect of mixture concentration gradient on the process of Deflagration to Detonation Transition and the effect of different hydrogen concentration gradient in the obstructed channel of hydrogen/air mixtures. An obstructed channel with 30% blockage ratio (BR=30) and three different average hydrogen concentrations of 20 % 30% and 35% have been considered using a specially developed density-based solver within the OpenFOAM toolbox. A high-resolution grid was built with the using adaptive mesh refinement technique providing 10 grid points in half reaction length. The numerical results are in reasonably good agreement with the experimental observations [1]. These studies show that the concentration gradient has a considerable effect on the accelerated flame tip speed and the location of transition to detonation in the obstructed channel. In all the three cases the first localised explosion occurred near the bottom wall where the shock and flame interacted and the mixture was most lean; and the second localised explosion occurred at the top wall due to the reflection of shock and flame front and later develops to form the leading detonation wave. The increase in the fuel concentration was found to increase the flame acceleration (FA) and having a faster transition to detonation.
Operation of UK Gas Appliances with Hydrogen Blended Natural Gas
Sep 2019
Publication
The HyDeploy project has undertaken a programme of work to assess the effect of hydrogen addition on the safety and performance of gas appliances and installations. A representative set of eight appliances have been assessed in laboratory experiments with a range of test gases that explored high and low Wobbe Number and hydrogen concentrations up to 28.4 % mol/mol. Tests have demonstrated that the addition of hydrogen does not affect the key hazard areas of CO production light back flame out or the operation of flame failure devices. It was identified that for some designs of gas fire appliances the operation of the oxygen depletion sensors may be affected by the addition of hydrogen and further studies in this area are planned. A laboratory based study was supported by an onsite testing programme where 133 installations were assessed for gas tightness appliance combustion safety and operation against normal line natural gas G20 reference gas and two hydrogen blended gases. Where installations were gas tight for natural gas analysis showed that no additional leakage occurred with hydrogen blended gases. There were also no issues identified with the combustion performance of appliances and onsite results were in line with those obtained in the laboratory testing programme.
Effects of Oxidants on Hydrogen Spontaneous Ignition: Experiments and Modelling
Sep 2017
Publication
Experiments were performed on the influence of oxidants (air pure oxygen O2 and pure nitrous oxide N2O at atmospheric pressure) in the straight expansion tube after the burst disk on the hydrogen spontaneous ignition. The lowest pressure at which the spontaneous ignition is observed has been researched for a 4 mm diameter tube with a length of 10 cm for the two oxidant gases. The ignition phenomenon is observed with a high speed camera and the external overpressures are measured. Numerical simulations have also been conducted with the high resolution CFD approach detailed chemistry formerly developed by Wen and co-workers. Comparison is made between the predictions and the experimental data.
Political, Economic and Environmental Concerns: Discussion
Jun 2017
Publication
This session concerned the political economic and environmental impact on the hydrogen economy due to hydrogen embrittlement.
This article is a transcription of the recorded discussion of ‘Political economic and environmental concerns’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. G.C.G.S. transcribed the session and F.F.D. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of ‘Political economic and environmental concerns’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. G.C.G.S. transcribed the session and F.F.D. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
European Hydrogen Safety Training Programme for First Responders: Hyresponse Outcomes and Perspectives
Sep 2017
Publication
The paper presents the outcomes of the HyResponse project i.e. the European Hydrogen Safety Training Programme for first responders. The threefold training is described: the content of the educational training is presented the operational training platform and its mock-up real scale transport and hydrogen stationary installations are detailed and the innovative virtual tools and training exercises are highlighted. The paper underlines the outcomes the three pilot sessions as well as the Emergency Response Guide available on the HyResponse’s public website. The next steps for widespread dissemination into the community are discussed.
Simulation of Thermal Radiation from Hydrogen Under-expanded Jet Fire
Sep 2017
Publication
Thermal hazards from an under-expanded (900 bar) hydrogen jet fire have been numerically investigated. The simulation results have been compared with the flame length and radiative heat flux measured for the horizontal jet fire experiment conducted at INERIS. The release blowdown characteristics have been modelled using the volumetric source as an expanded implementation of the notional nozzle concept. The CFD study employs the realizable k-ε model for turbulence and the Eddy Dissipation Concept for combustion. Radiation has been taken into account through the Discrete Ordinates (DO) model. The results demonstrated good agreement with the experimental flame length. Performance of the model shall be improved to reproduce the radiative properties dynamics during the first stage of the release (time < 10 s) whereas during the remaining blowdown time the simulated radiative heat flux at five sensors followed the trend observed in the experiment.
Mn-based Borohydride Synthesized by Ball-milling KBH4 and MnCl2 for Hydrogen Storage
Dec 2013
Publication
In this work a mixed-cation borohydride (K2Mn(BH4)4) with P21/n structure was successfully synthesized by mechanochemical milling of the 2KBH4–MnCl2 sample under argon. The structural and thermal decomposition properties of the borohydride compounds were investigated using XRD Raman spectroscopy FTIR TGA-MS and DSC. Apart from K2Mn(BH4)4 the KMnCl3 and unreacted KBH4 compounds were present in the milled 2KBH4–MnCl2. The two mass loss regions were observed for the milled sample: one was from 100 to 160 °C with a 1.6 ± 0.1 wt% loss (a release of majority hydrogen and trace diborane) which was associated with the decomposition of K2Mn(BH4)4 to form KBH4 boron and finely dispersed manganese; the other was from 165 to 260 °C with a 1.9 ± 0.1 wt% loss (only hydrogen release) which was due to the reaction of KBH4 with KMnCl3 to give KCl boron finely dispersed manganese. Simultaneously the formed KCl could dissolve in KBH4 to yield a K(BH4)xCl1−x solid solution and also react with KMnCl3 to form a new compound K4MnCl6.
Modelling Liquid Hydrogen Release and Spread on Water
Sep 2017
Publication
Consequence modelling of high potential risks of usage and transportation of cryogenic liquids yet requires substantial improvements. Among the cryogenics liquid hydrogen (LH2) needs especial treatments and a comprehensive understanding of spill and spread of liquid and dispersion of vapor. Even though many of recent works have shed lights on various incidents such as spread dispersion and explosion of the liquid over land less focus was given on spill and spread of LH2 onto water. The growing trend in ship transportation has enhanced risks such as ships’ accidental releases and terrorist attacks which may ultimately lead to the release of the cryogenic liquid onto water. The main goal of the current study is to present a computational fluid dynamic (CFD) approach using OpenFOAM to model release and spread of LH2 over water substrate and discuss previous approaches. It also includes empirical heat transfer equations due to boiling and computation of evaporation rate through an energy balance. The results of the proposed model will be potentially used within another coupled model that predicts gas dispersion]. This work presents a good practice approach to treat pool dynamics and appropriate correlations to identify heat flux from different sources. Furthermore some of the previous numerical approaches to redistribute or in some extend manipulate the LH2 pool dynamic are brought up for discussion and their pros and cons are explained. In the end the proposed model is validated by modelling LH2 spill experiment carried out in 1994 at the Research Centre Juelich in Germany.
Socio-economic Analysis and Quantitative Risk Assessment Methodology for Safety Design of Onboard Storage Systems
Sep 2017
Publication
Catastrophic rupture of onboard hydrogen storage in a fire is a safety concern. Different passive e.g. fireproofing materials the thermally activated pressure relief device (TPRD) and active e.g. initiation of TPRD by fire sensors safety systems are being developed to reduce hazards from and associated risks of high-pressure hydrogen storage tank rupture in a fire. The probability of such low-frequency highconsequences event is a function of fire resistance rating (FRR) i.e. the time before tank without TPRD ruptures in a fire the probability of TPRD failure etc. This safety issue is “confirmed” by observed recently cases of CNG tanks rupture due to blocked or failed to operate TPRD etc. The increase of FRR by any means decreases the probability of tank rupture in a fire particularly because of fire extinction by first responders on arrival at an accident scene.<br/>This study of socio-economic effects of safety applies a quantitative risk assessment (QRA) methodology to an example of hydrogen vehicles with passive tank protection system on roads in London.<br/>The risk is defined here through the cost of human loss per fuel cell hydrogen vehicle (FCHV) fire accident and fatality rate per FCHV per year. The first step in the methodology is the consequence analysis based on validated deterministic engineering tools to estimate the main identified hazards: overpressure in the blast wave at different distances and the thermal hazards from a fireball in the case of catastrophic tank rupture in a fire. The population can be exposed to slight injury serious injury and fatality after an accident. These effects are determined based on criteria by Health and Safety Executive (UK) and a cost metrics is applied to the number of exposed people in these three harm categories to estimate the cost per an accident. The second step in the methodology is either the frequency or the probability analysis. Probabilities of a vehicle fire and failure of the thermally activated pressure relief device are taken from published sources. A vulnerability probit function is employed to calculate the probability of emergency operations’ failure to prevent tank rupture as a function of a storage tank FRR and time of fire brigade arrival. These later results are integrated to estimate the tank rupture frequency and fatality rate. The risk is presented as a function of fire resistance rating.<br/>The QRA methodology allows to calculate the cost of human loss associated with an FCHV fire accident and demonstrates how the increase of FRR of onboard storage as a safety engineering measure would improve socio-economics of FCHV deployment and public acceptance of the technology.
Hydrogen Energy
Feb 2007
Publication
The problem of anthropogenically driven climate change and its inextricable link to our global society’s present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century capable of assisting in issues of environmental emissions sustainability and energy security. Hydrogen has the potential to provide for energy in transportation distributed heat and power generation and energy storage systems with little or no impact on the environment both locally and globally. However any transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific technological and socio-economic barriers. This brief report aims to outline the basis of the growing worldwide interest in hydrogen energy and examines some of the important issues relating to the future development of hydrogen as an energy vector.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Self-ignition of Hydrogen-nitrogen Mixtures During High-pressure Release Into Air
Oct 2015
Publication
This paper demonstrates experimental and numerical study on spontaneous ignition of H2–N2 mixtures during high-pressure release into air through the tubes of various diameters and lengths. The mixtures included 5% and 10% (vol.) N2 addition to hydrogen being at initial pressure in range of 4.3–15.9 MPa. As a point of reference pure hydrogen release experiments were performed with use of the same experimental stand experimental procedure and extension tubes. The results showed that N2 addition may increase the initial pressure necessary to self-ignite the mixture as much as 2.12 or 2.85 – times for 5% and 10% N2 addition respectively. Additionally simulations were performed with use of Cantera code (0-D) based on the ideal shock tube assumption and with the modified KIVA3V code (2-D) to establish the main factors responsible for ignition and sustained combustion during the release.
Mixed E-learning and Virtual Reality Pedagogical Approach for Innovative Hydrogen Safety Training for First Responders
Oct 2015
Publication
Within the scope of the HyResponse project the development of a specialised training programme is currently underway. Utilizing an andragogy approach to teaching distance learning is mixed with classroom instructors-led activities while hands-on training on a full-scale simulator is coupled with an innovative virtual reality based experience. Although the course is dedicated mainly to first responders provision has been made to incorporate not only simple table-top and drill exercises but also full-scale training involving all functional emergency response organisations at multi-agency cooperation level. The developed curriculum includes basics of hydrogen safety first responders' procedures and incident management expectations
Safe Operation of Combined Cycle Gas Turbine and Gas Engine Systems Using Hydrogen Rich Fuels
Oct 2015
Publication
This paper describes work performed by a consortium led by the UK Health and Safety Laboratory(HSL)to identify the safe operating conditions for combined cycle power generating systems running on high hydrogen fuels. The work focuses on hydrogen and high hydrogen syngas and biogas waste-stream fuel mixtures which may prove hazardous in the event of a turbine or engine flame out resulting in a flammable fuel mixture entering the hot exhaust system and igniting. The paper describes the project presenting some initial results from this work including the development of large scale experimental facilities on the550 acre HSL site near Buxton Derbyshire UK. It describes the large scale experimental facility which utilises the exhaust gas from a Rolls-Royce Viper jet-engine (converted to run on butane) feeding into a 12 m long 0.60 m diameter instrumented tube at a pre-combustion velocity of 22 m/s. A variable geometry simulated heat exchanger with a 40 %2blockage ratio is present in the tube. Flammable mixtures injected into the tube close to the Viper outlet together with make-up oxygen are then ignited. Extensive optical ionisation temperature and pressure sensors are employed along the length of the tube to measure the pressures and flame speeds resulting from the combustion event. Some preliminary results from the test programme are discussed including deflagration to detonation transitions at high equivalence ratios.
Numerical Simulation of Deflagration-to-detonation Transition in Hydrogen-air Mixtures with Concentration Gradients
Oct 2015
Publication
Flame acceleration in inhomogeneous combustible gas mixture has largely been overlooked despite being relevant to many accidental scenarios. The present study aims to validate our newly developed density-based solver ExplosionFoam for flame acceleration and deflagration-to-detonation transition. The solver is based on the open source computational fluid dynamics (CFD) platform OpenFOAM®. For combustion it uses the hydrogen-air single-step chemistry and the corresponding transport coefficients developed by the authors. Numerical simulations have been conducted for the experimental set up of Ettner et al. [1] which involves flame acceleration and DDT in both homogeneous hydrogen-air mixture as well as an inhomogeneous mixture with concentration gradients in an obstucted channel. The predictions demonstrate good quantitative agreement with the experimental measurements in flame tip position speed and pressure profiles. Qualitatively the numerical simulations reproduce well the flame acceleration and DDT phenomena observed in the experiment. The results have shown that in the computed cases DDT is induced by the interaction of the precursor inert shock wave with the wall close to high hydrogen concentration rather than with the obstacle. Some vortex pairs appear ahead of the flame due to the interaction between the obstacles and the gas flow caused by combustion-induced expansion but they soon disappear after the flame passes through them. Hydrogen cannot be completely consumed especially in the fuel rich region. This is of additional safety concern as the unburned hydrogen can potentially re-ignite once more fresh air is available in an accidental scenario causing subsequent explosions. The results demonstrate the potential of the newly developed density based solver for modelling flame acceleration and DDT in both homogeneous/inhomogeneous hydrogen-air mixture. Further validation needs to be carried out for other mixtures and large-scale cases.
Modelling and Simulation of High-pressure Hydrogen Jets Using H2FC European Cyber-laboratory
Oct 2015
Publication
The Hydrogen and Fuel Cell (H2FC) European research infrastructure cyber-laboratory is a software suite containing ‘modelling’ and ‘engineering’ tools encompassing a wide range of H2FC processes and systems. One of the core aims of the H2FC Cyber-laboratory has been the creation of a state-of-the-art hydrogen CFD modelling toolbox. This paper describes the implementation and validation of this new CFD modelling toolbox in conjunction with a selection of the available ‘Safety’ engineering tools to analyse a high pressure hydrogen release and dispersion scenario. The experimental work used for this validation was undertaken by Shell and the Health and Safety Laboratory (UK). The overall goal of this work is to provide and make readily available a Cyber-laboratory that will be worth maintaining after the end of the H2FC project for the benefit of both the FCH scientific community and industry. This paper therefore highlights how the H2FC Cyber-laboratory which is offered as an open access platform can be used to replicate and analyse real-world scenarios using both numerical engineering tools and through the implementation of CFD modelling techniques.
Blast Wave from Hydrogen Storage Rupture in a Fire
Oct 2015
Publication
This study addresses one of knowledge gaps in hydrogen safety science and engineering i.e. a predictive model for calculation of deterministic separation distances defined by the parameters of a blast wave generated by a high-pressure gas storage tank rupture in a fire. An overview of existing methods to calculate stored in a tank internal (mechanical) energy and a blast wave decay is presented. Predictions by the existing technique and an original model developed in this study which accounts for the real gas effects and combustion of the flammable gas released into the air (chemical energy) are compared against experimental data on high-pressure hydrogen tank rupture in the bonfire test. The main reason for a poor predictive capability of the existing models is the absence of combustion contribution to the blast wave strength. The developed methodology is able to reproduce experimental data on a blast wave decay after rupture of a stand-alone hydrogen tank and a tank under a vehicle. In this study the chemical energy is dynamically added to the mechanical energy and is accounted for in the energy-scaled non-dimensional distance. The fraction of the total chemical energy of combustion released to feed the blast wave is 5% and 9% however it is 1.4 and 30 times larger than the mechanical energy in the stand-alone tank test and the under-vehicle tank test respectively. The model is applied as a safety engineering tool to four typical hydrogen storage applications including onboard vehicle storage tanks and a stand-alone refuelling station storage tank. Harm criteria to people and damage criteria for buildings from a blast wave are selected by the authors from literature to demonstrate the calculation of deterministic separation distances. Safety strategies should exclude effects of fire on stationary storage vessels and require thermal protection of on-board storage to prevent dangerous consequences of high-pressure tank rupture in a fire.
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Experimental Study on Vented Hydrogen Deflagrations in a Low Strength Enclosure
Oct 2015
Publication
This paper describes an experimental programme on vented hydrogen deflagrations which formed part of the Hyindoor project carried out for the EU Fuel Cells and Hydrogen Joint Undertaking. The purpose of this study was to investigate the validity of analytical models used to calculate overpressures following a low concentration hydrogen deflagration. Other aspects of safety were also investigated such as lateral flame length resulting from explosion venting. The experimental programme included the investigation of vented hydrogen deflagrations from a 31 m3 enclosure with a maximum internal overpressure target of 10 kPa (100 mbar). The explosion relief was provided by lightly covered openings in the roof or sidewalls. Uniform and stratified initial hydrogen distributions were included in the test matrix and the location of the ignition source was also varied. The maximum hydrogen concentration used within the enclosure was 14% v/v. The hydrogen concentration profile within the enclosure was measured as were the internal and external pressures. Infrared video images were obtained of the gases vented during the deflagrations. Findings show that the analytical models were generally conservative for overpressure predictions. Flame lengths were found to be far less than suggested by some guidance. Along with the findings the methodology test conditions and corresponding results are presented.
Towards a Set of Design Recommendations for Pressure Relief Devices On-board Hydrogen Vehicles
Oct 2015
Publication
Commercial use of hydrogen on-board fuel cell vehicles necessitates the compression of hydrogen gas up to 700 bar raising unique safety challenges. Potential hazards to be addressed include jet fires from high-pressure hydrogen on-board storage. Previous studies investigated effects of jet fires that occur when pressure relief devices (PRDs) on hydrogen fuel cell vehicles activate. This investigation examines plane jets’ axis switching and flame length accounting for compressibility effects and turbulent combustion near the point of release. Comparison with experimental data and previous plane jet simulation results reveal that combustion process does not affect flow dynamics in compressible region of jet flow. Furthermore a theoretical design of a variable aperture pressure relief device is examined which would enable the blow-down time to be minimized while reducing deterministic separation distances is examined using Computational Fluid Dynamics (CFD) techniques. Design recommendations are suggested for a novel PRD design.
HyDeploy Project - Second Project Progress Report
Dec 2018
Publication
The HyDeploy project seeks to address a key issue for UK customers: how to reduce the carbon they emit in heating their homes. The UK has a world class gas grid delivering heat conveniently and safely to over 83% of homes. Emissions can be reduced by lowering the carbon content of gas through blending with hydrogen. This delivers carbon savings without customers requiring disruptive and expensive changes in their homes. It also provides the platform for deeper carbon savings by enabling wider adoption of hydrogen across the energy system.
This Network Innovation Competition (NIC) funded project seeks to establish the level of hydrogen that can be safely blended with natural gas for transport and use in a UK network. Under its smart energy network innovation demonstration programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with 20%mol of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Such approval is provided as an Exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. Following such approval hydrogen production and grid injection units are to be installed and an extensive trial programme undertaken. Blending hydrogen at 20%mol with natural gas across the UK would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of removing 2.5 million cars from the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This Network Innovation Competition (NIC) funded project seeks to establish the level of hydrogen that can be safely blended with natural gas for transport and use in a UK network. Under its smart energy network innovation demonstration programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with 20%mol of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Such approval is provided as an Exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. Following such approval hydrogen production and grid injection units are to be installed and an extensive trial programme undertaken. Blending hydrogen at 20%mol with natural gas across the UK would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of removing 2.5 million cars from the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Materials Aspects Associated with the Addition of up to 20 mol% Hydrogen into an Existing Natural Gas Distribution Network
Sep 2019
Publication
The introduction of hydrogen into the UK natural gas main has been reviewed in terms of how materials within the gas distribution network may be affected by contact with up to 80% Natural Gas : 20 mol% hydrogen blend at up to 2 barg. A range of metallic polymeric and elastomeric materials in the gas distribution network (GDN) were assessed via a combination of literature review and targeted practical test programmes.
The work considered:
The work considered:
- The effect of hydrogen on metallic materials identified in the network
- The effect of hydrogen on polymeric materials identified in the network
- The effect of hydrogen exposure on polyethylene pipeline techniques (squeeze off and collar electrofusion)
Development of a Hydrogen and Fuel Cell Vehicle Emergency Response National Template
Sep 2013
Publication
The California Fuel Cell Partnership (CaFCP) is currently working with key stakeholders like the US Department of Energy (DOE) and National Fire Protection Association (NFPA) to develop a national template for educating and training first responders about hydrogen fuel cell-powered vehicles (FCV) and hydrogen fuelling infrastructure. Currently there are several existing programs that either have some related FCV/hydrogen material or have plans to incorporate this in the future. To create a robust national emergency responder (ER) program the strongest elements from these existing programs are considered for incorporation into the template. Working with the key stakeholders the national template will be evaluated on a regular basis to ensure accurate and up to date information and resources and effective teaching techniques for the emergency response community. This paper describes the evaluation process discusses elements of the template and reports on the steps and progress to implementation; all in the effort to effectively support the emergency response community as hydrogen infrastructure develops and FCVs are leased or sold.
Hydrogen Wide Area Monitoring of LH2 Releases
Sep 2019
Publication
The characterization of liquid hydrogen (LH2) releases has been identified as an international research priority to expand the safe use of hydrogen as an energy carrier. The elucidation of LH2 release behavior will require the development of dispersion and other models guided and validated by empirical field measurements such as those afforded by Hydrogen Wide Area Monitoring (HyWAM). HyWAM can be defined as the quantitative spatial and temporal three-dimensional monitoring of planned or unintentional hydrogen releases. With support provided through the FCH JU Prenormative Research for the Safe Use of Liquid Hydrogen (PRESLHY) program HSE performed a series of LH2 releases to characterize the dispersion and pooling behavior of cold hydrogen releases. The NREL Sensor Laboratory developed a HyWAM system based upon a distributed array of point sensors that is amenable for profiling cold hydrogen plumes. The NREL Sensor Laboratory and HSE formally committed to collaborate on profiling the LH2 releases. This collaboration included the integration of the NREL HyWAM into the HSE LH2 release hardware. This was achieved through a deployment plan jointly developed by the NREL and HSE personnel. Under this plan the NREL Sensor Laboratory provided multiple HyWAM modules that accommodated 32 sampling points for near-field hydrogen profiling during the HSE PRESLHY LH2 releases. The NREL HyWAM would be utilized throughout the LH2 release study performed under PRESLHY by HSE including Work Package 3 (WP3—Release and Mixing--Rainout) and subsequent work packages (WP4—Ignition and WP5—Combustion). Under the auspices of the PRESLHY WP6 (Implementation) data and findings from the HSE LH2 Releases are to be made available to stakeholders in the hydrogen community. Comprehensive data analysis and dissemination is ongoing but the integration of the NREL HyWAM into the HSE LH2 Release Apparatus and its performance as well as some key outcomes of the LH2 releases in WP3 are presented.
Bioanode and Biocathode Performance in a Microbial Electrolysis Cell
Jan 2017
Publication
The bioanode is important for a microbial electrolysis cell (MEC) and its robustness to maintain its catalytic activity affects the performance of the whole system. Bioanodes enriched at a potential of +0.2 V (vs. standard hydrogen electrode) were able to sustain their oxidation activity when the anode potential was varied from 0.3 up to +1.0 V. Chronoamperometric test revealed that the bioanode produced peak current density of 0.36 A/m2 and 0.37 A/m2 at applied potential 0 and +0.6 V respectively. Meanwhile hydrogen production at the biocathode was proportional to the applied potential in the range from 0.5 to 1.0 V. The highest production rate was 7.4 L H2/(m2 cathode area)/day at 1.0 V cathode potential. A limited current output at the bioanode could halt the biocathode capability to generate hydrogen. Therefore maximum applied potential that can be applied to the biocathode was calculated as 0.84 V without overloading the bioanode
CFD Study of the Unignited and Ignited Hydrogen Releases from TRPD Under a Fuel Cell Car
Oct 2015
Publication
This paper describes a CFD study of a scenario involving the vertical downward release of hydrogen from a thermally-activated pressure relief device (TPRD) under a fuel cell car. The volumetric source model is applied to simulate hydrogen release dynamics during the tank blowdown process. Simulations are conducted for both unignited and ignited releases from onboard storage at 35 MPa and 70 MPa with TPRD orifice 4.2 mm. Results show that after TPRD opening the hazards associated with the release of hydrogen lasts less than two minutes and the most hazardous timeframe occurs within ten seconds of the initiation of the release. The deterministic separation distances for unignited releases are longer than those for ignited releases indicating that the separation distances are dominated by delayed ignition events rather than immediate ignition events. The deterministic separation distances for both unignited and ignited hydrogen downward releases under the car are significantly shorter than those of free jets. To ensure the safety of people a deterministic separation distance of at least 10 m for 35 MPa releases is required. This distance should be increased to 12 m for the 70 MPa release case. To ensure that the concentration of hydrogen is always less than 4% at the location of the air intake of buildings the deterministic separation distance should be at least 11 m for 35 MPa releases and 13 m for 70 MPa releases.
Recent Studies of Hydrogen Embrittlement in Structural Materials
Dec 2018
Publication
Mechanical properties of metals and their alloys are most often determined by interstitial atoms. Hydrogen as one common interstitial element is often found to degrade the fracture behavior and lead to premature or catastrophic failure in a wide range of materials known as hydrogen embrittlement. This topic has been studied for more than a century yet the basic mechanisms of such degradation remain in dispute for many metallic systems. This work attempts to link experimentally and theoretically between failure caused by the presence of hydrogen and second phases lattice distortion and deformation levels.
Clean Energy and the Hydrogen Economy
Jan 2017
Publication
In recent years new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier hydrogen offers a range of benefits for simultaneously decarbonizing the transport residential commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems including fuel cell electric vehicles and micro-combined heat and power devices the use of hydrogen at grid scale requires the challenges of clean hydrogen production bulk storage and distribution to be resolved. Ultimately greater government support in partnership with industry and academia is still needed to realize hydrogen's potential across all economic sectors.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
The Sixth Carbon Budget: The UK's Path to Net Zero
Dec 2020
Publication
The Sixth Carbon Budget report is based on an extensive programme of analysis consultation and consideration by the Committee and its staff building on the evidence published last year for our Net Zero advice. In support of the advice in this report we have also produced:
- A Methodology Report setting out the evidence and methodology behind the scenarios.
- A Policy Report setting out the changes to policy that could drive the changes necessary particularly over the 2020s.
- All the charts and data behind the report as well as a separate dataset for the Sixth Carbon Budget scenarios which sets out more details and data on the pathways than can be included in this report.
- A public Call for Evidence several new research projects three expert advisory groups and deep dives into the roles of local authorities and businesses.
Numerical Study of Spontaneous Ignition in Pressurized Hydrogen Release Through a Length of Tube with Local Contraction
Sep 2011
Publication
Numerical investigations have been conducted on the effect of the internal geometry of a local contraction on the spontaneous ignition of pressurized hydrogen release through a length of tube using a 5th-order WENO scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The auto-ignition and combustion chemistry were accounted for using a 21-step kinetic scheme. It is found that a local contraction can significantly facilitate the occurrence of spontaneous ignition by producing elevated flammable mixture and enhancing turbulent mixing from shock formation reflection and interaction. The first ignition kernel is observed upstream the contraction. It then quickly propagates along the contact interface and transits to a partially premixed flame due to the enhanced turbulent mixing. The partially premixed flames are highly distorted and overlapped with each other. Flame thickening is observed which is due to the merge of thin flames. The numerical predictions suggested that sustained flames could develop for release pressure as low as 25 bar. For the release pressure of 18 bar spontaneous ignition was predicted but the flame was soon quenched. To some extent this finding is consistent with Dryer et al.'s experimental observation in that the minimum release pressure required to induce a spontaneous ignition for the release through a tube with internal geometries is only 20.4 bar.
Ignition of Flammable Hydrogen & Air Mixtures by Controlled Glancing Impacts in Nuclear Waste Decommissioning
Sep 2013
Publication
Conditions are examined under which mechanical stimuli produced by striking controlled blows can result in sparking and ignition of hydrogen in air mixtures. The investigation principally concerns magnesium thermite reaction as the ignition source and focuses on the conditions and thermomechanical parameters that are involved in determining the probability of ignition. It is concluded that the notion of using the kinetic energy of impact as the main criterion in determining whether an ignition event is likely or not is much less useful than considering the parameters which determine the maximum temperature produced in a mechanical stimuli event. The most influential parameter in determining ignition frequency or probability is the velocity of sliding movement during mechanical stimuli. It is also clear that the kinetic energy of a moving hammer head is of lesser importance than the normal force which is applied during contact. This explains the apparent discrepancy in previous studies between the minimum kinetic energy thought to be necessary to allow thermite sparking and gas ignition to occur with drop weight impacts and glancing blow impacts. In any analysis of the likelihood of mechanical stimuli to cause ignition the maximum surface temperature generated should be determined and considered in relation to the temperatures that would be required to initiate hot surface reactions sufficient to cause sparking and ignition.
Non-adiabatic Blowdown Model: A Complimentary Tool for the Safety Design of Tank-TPRD System
Sep 2017
Publication
Previous studies have demonstrated that while blowdown pressure is reproduced well by both adiabatic and isothermal analytical models the dynamics of temperature cannot be predicted well by either model. The reason for the last is heat transfer to cooling during expansion gas from the vessel wall. Moreover when exposed to an external fire the temperature inside the vessel increases i.e. when a thermally activated pressure relief device (TPRD) is still closed with subsequent pressure increase that may lead to a catastrophic rupture of the vessel. The choice of a TPRD exit orifice size and design strategy are challenges: to provide sufficient internal pressure drop in a fire when the orifice size is too small; to avoid flame blow off expected with the decrease of pressure during the blowdown; to decrease flame length of subsequent jet fire as much as possible by the decrease of the orifice size under condition of sufficient fire resistance provisions to avoid pressure peaking phenomenon etc. The adiabatic model of blowdown [1] was developed using the Abel-Nobel equation of state and the original theory of underexpanded jet [2]. According to experimental observations e.g. [3] heat transfer plays a significant role during the blowdown. Thus this study aims to modify the adiabatic blowdown model to include the heat transfer to non-ideal gas. The model accounts for a change of gas temperature inside the vessel due to two “competing” processes: the decrease of temperature due to gas expansion and the increase of temperature due to heat transfer from the surroundings e.g. ambience or fire through the vessel wall. This is taken into account in the system of equations of adiabatic blowdown model through the change of energy conservation equation that accounts for heat from outside. There is a need to know the convective heat transfer coefficient between the vessel wall and the surroundings and wall size and properties to define heat flux to the gas inside the vessel. The non-adiabatic model is validated against available experimental data. The model can be applied as a new engineering tool for the inherently safer design of hydrogen tank-TPRD system.
Monte-Carlo-analysis of Minimum Load Cycle Requirements for Composite Cylinders for Hydrogen
Sep 2017
Publication
Existing regulations and standards for the approval of composite cylinders in hydrogen service are currently based on deterministic criteria (ISO 11119-3 UN GTR No. 13). This paper provides a systematic analysis of the load cycle properties resulting from these regulations and standards. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations the available design range of all concepts is compared. In addition the probability of acceptance for potentially unsafe design types is determined.
Annual Science Review 2019
Mar 2019
Publication
Having a robust evidence base enables us to tackle real issues causing pain and suffering in the workplace. Critically it enables us to better understand developing issues and ways of working to ensure that we support innovation rather than stifle it through lack of knowledge. For example the work on the use of 3D printers in schools demonstrates HSE’s bility to engage and understand the risks to encourage safe innovation in a developing area (see p47).<br/>Other examples in this report show just a selection of the excellent work carried out by our staff often collaborating with others which contributes to improving how we regulate health and safety risks proportionately and effectively.<br/>One of HSEs key priorities is to prevent future cases of occupational lung disease by improving the management and control of hazardous substances. The case study on measuring Respirable Crystalline Silica exposure contributes to this and to recognise developing and future issues such as the work on diacetyl in the coffee industry (see p24 and p39). This type of scientific investigation gives our regulators good trusted information enabling critical decisions on the actions needed to protect workers.<br/>The case study on publishing new guidance on the use of Metalworking Fluids (MWF) demonstrates the important contribution of collaborative science to improving regulation. If used inappropriately exposure to MWF mist can cause serious long-term lung disease and it was recognised that users needed help to control this risk. HSE scientists and regulators worked with industry stakeholders to produce new free guidance which reflects changes in scientific understanding in a practical easy to use guide. As well as enabling users to better manage the risks and as a bonus likely save money it has assisted regulation by providing clear benchmarks for all to judge control against. An excellent example of science contributing to controlling serious health risks (see p22).<br/>These case studies are excellent examples of how science contributes to reducing risk. Hopefully they will inspire you to think about how risk in your workplace could be improved and where further work might be needed.
Potential Development of Renewable Hydrogen Imports to European Markets until 2030
Mar 2022
Publication
This paper considers potential import routes for low-carbon and renewable hydrogen (H2) to main European markets like Germany. In particular it analyses claims made by Hydrogen Europe and subsequently picked up by the European Commission in its Hydrogen Strategy that there will be 40GW of electrolyser capacity in nearby countries providing hydrogen imports to Europe by 2030. The analysis shows that by 2030 potential demand for H2 could be high enough to initiate some limited international hydrogen trade most likely between European countries initially rather than from outside Europe. Geographically a northern hydrogen cluster around Netherlands and NW Germany will be more significant for hydrogen demand while southern Europe is more likely to have surplus low cost renewable power generation. The paper considers potential H2 exporters to Europe including Ukraine and North African countries (in line with the proposal from Hydrogen Europe) as well as Norway and Russia. (The research pre-dates recent political and military tensions between Russia and Ukraine which are likely to influence future development pathways). The supply cost of hydrogen in 2030 is predicted to be in a reasonably (and perhaps surprisingly) narrow band around €3/kg from various sources and supply chains. The paper concludes that overall while imports of hydrogen to Europe are certainly possible in the longer term there are many challenges to be addressed. This conclusion supports the growing consensus that development of low carbon hydrogen certainly within Europe is likely to start within relatively local hydrogen clusters with some limited bilateral trade.
The research paper can be found on their website
The research paper can be found on their website
H2FC SUPERGEN- The Role of Hydrogen and Fuel Cells in Delivering Energy Security for the UK
Mar 2017
Publication
This White Paper has been commissioned by the UK Hydrogen and Fuel Cell (H2FC) SUPERGEN Hub to examine the roles and potential benefits of hydrogen and fuel cell technologies within each sector of future energy systems and the transition infrastructure that is required to achieve these roles. The H2FC SUPERGEN Hub is an inclusive network encompassing the entire UK hydrogen and fuel cells research community with around 100 UK-based academics supported by key stakeholders from industry and government. It is funded by the UK EPSRC research council as part of the RCUK Energy Programme. This paper is the third of four that were published over the lifetime of the Hub with the others examining: (i) low-carbon heat; (ii) energy security; and (iv) economic impacts.
- Hydrogen and fuel cells are now being deployed commercially for mainstream applications.
- Hydrogen can play a major role alongside electricity in the low-carbon economy.
- Hydrogen technologies can support low-carbon electricity systems dominated by intermittent renewables and/or electric heating demand.
- The hydrogen economy is not necessary for hydrogen and fuel cells to flourish.
Effect of Rotation on Ignition Thresholds of Stoichiometric Hydrogen Mixtures
Sep 2017
Publication
Successful transition to a hydrogen economy calls for a deep understanding of the risks associated with its widespread use. Accidental ignition of hydrogen by hot surfaces is one of such risks. In the present study we investigated the effect that rotation has on the reported ignition thresholds by numerically determining the minimum surface temperature required to ignite stoichiometric hydrogen-air using a hot horizontal cylinder rotating at various angular velocities ω. Numerical experiments showed a weak but interesting dependence of the ignition thresholds on rotation: the ignition thresholds increased by 8 K from 931 K to 939 K with increasing angular velocity (0 ≤ ω ≤ 240 rad/s). A further increase to ω = 480 rad/s resulted in a decrease in ignition surface temperature to 935 K. Detailed analysis of the flow patterns inside the vessel and in close proximity to the hot surface brought about by the combined effect of buoyancy and rotation as well as of the distribution of the wall heat flux along the circumference of the cylinder support our previous findings in which regions where temperature gradients are small were found to be prone to ignition.
The Fourth Carbon Budget Review – Part 2 The Cost-effective Path to the 2050 Target
Nov 2013
Publication
This is the second document of a two-part review of the Fourth Carbon Budget which covers 2023 to 2027. The Fourth Carbon Budget agreed by the Government in June 2011 was scheduled to be reviewed in 2014. The first part of the review is available here: The Fourth Carbon Budget Review – part 1: assessment of climate risk and the international response (November 2013).<br/>According to the Climate Change Act 2008 carbon budgets can only be altered if there is a significant change in circumstances upon which the budget was set. Any such change in circumstances must be demonstrated through evidence and analysis.<br/>The Fourth Carbon Budget Review – part 2 considers the impacts of meeting the 2023-2027 budget. The review concludes that the impacts are small and manageable and identifies broader benefits associated with meeting the fourth carbon budget including: improved energy security improved air quality and reduced noise pollution.
Hydrogen in a Low-carbon Economy
Nov 2018
Publication
This report by the Committee on Climate Change (CCC) assesses the potential role of hydrogen in the UK’s low-carbon economy.
It finds that hydrogen:
It finds that hydrogen:
- is a credible option to help decarbonise the UK energy system but its role depends on early Government commitment and improved support to develop the UK’s industrial capability
- can make an important contribution to long-term decarbonisation if combined with greater energy efficiency cheap low-carbon power generation electrified transport and new ‘hybrid’ heat pump systems which have been successfully trialled in the UK
- could replace natural gas in parts of the energy system where electrification is not feasible or is prohibitively expensive for example in providing heat on colder winter days industrial heat processes and back-up power generation
- is not a ‘silver bullet’ solution; the report explores some commonly-held misconceptions highlighting the need for careful planning
- Government must commit to developing a low-carbon heat strategy within the next three years
- Significant volumes of low-carbon hydrogen should be produced in a carbon capture and storage (CCS) ‘cluster’ by 2030 to help the industry grow
- Government must support the early demonstration of the everyday uses of hydrogen in order to establish the practicality of switching from natural gas to hydrogen
- There is low awareness amongst the general public of reasons to move away from natural gas heating to low-carbon alternatives
- A strategy should be developed for low-carbon heavy goods vehicles (HGVs) which encourages a move away from fossil fuels and biofuels to zero-emission solutions by 2050
Quantifying Greenhouse Gas Emissions
Apr 2017
Publication
In this report Quantifying Greenhouse Gas Emissions the Committee on Climate Change assesses how the UK’s greenhouse gas emissions are quantified where uncertainties lie and the implications for setting carbon budgets and measuring progress against climate change targets. The report finds that:
- The methodology for constructing the UK’s greenhouse gas inventory is rigorous but the process for identifying improvements could be strengthened.
- There is high confidence over large parts of the inventory. A small number of sectors contribute most to uncertainty and research efforts should be directed at improving these estimates.
- UK greenhouse gas emissions for 2014 were within ±3% of the estimated level with 95% confidence which is a low level of uncertainty by international standards.
- Methodology revisions in recent years have tended to increase estimated emissions but these changes have been within uncertainty margins.
- Statistical uncertainty in the current greenhouse gas inventory is low but could rise in future.
- Uncertainty also arises from sources of emissions not currently included in the inventory and from potential changes to IPCC guidelines.
- Independent external validation of greenhouse gas emissions is important and new monitoring techniques should be encouraged.
- Government should continue to monitor consumption-based greenhouse gas estimates and support continued research to improve methodology and reduce uncertainty in these estimates.
Reducing Emissions in Northern Ireland
Feb 2019
Publication
In this report the Committee sets out how Northern Ireland can reduce its greenhouse gas emissions between now and 2030 in order to meet UK-wide climate change targets.
The report’s key findings are:
The report’s key findings are:
- Existing policies are not enough to deliver this reduction
- There are excellent opportunities to close this gap and go beyond 35%
- Meeting the cost-effective path to decarbonisation in Northern Ireland will require action across all sectors of the economy and a more joined-up approach
Reducing Emissions in Scotland – 2017 Progress Report
Sep 2017
Publication
The Scottish Act sets a long-term target to reduce emissions of greenhouse gases (GHGs) by at least 80% in 2050 relative to 1990 with an interim target to reduce emissions by 42% in 2020. Secondary legislation passed in October 2010 and October 2011 also set a series of annual emission reduction targets for 2010 to 2022 and 2023 to 2027 respectively. We advised the Scottish Government on annual targets for the period 2028 to 2032 in March 2016 and July 2016.<br/>The report reveals that Scotland’s annual emissions reduction target for 2014 was met with gross Scottish greenhouse gas emissions including international aviation and shipping falling by 8.6% in 2014. This compares to a 7.3% fall for the UK as a whole. Since 1990 gross Scottish emissions have fallen nearly 40% compared to nearly 33% at a UK level.
Reducing Emissions in Scotland – 2018 Progress Report
Sep 2019
Publication
This is the Committee’s seventh report on Scotland’s progress towards meetings emissions targets as requested by Scottish Ministers under the Climate Change (Scotland) Act 2009.
Overall Scotland continues to outperform the rest of the UK in reducing its greenhouse gas emissions but successful strategies for energy and waste mask a lack of progress in other parts of the Scottish economy.
The report shows that Scotland’s total emissions fell by 10% in 2016 compared to 2015. The lion’s share of this latest drop in emissions came from electricity generation.
The key findings are:
Overall Scotland continues to outperform the rest of the UK in reducing its greenhouse gas emissions but successful strategies for energy and waste mask a lack of progress in other parts of the Scottish economy.
The report shows that Scotland’s total emissions fell by 10% in 2016 compared to 2015. The lion’s share of this latest drop in emissions came from electricity generation.
The key findings are:
- Overall Scotland met its annual emissions targets in 2016.
- Scotland’s progress in reducing emissions from the power sector masks a lack of action in other areas particularly transport agriculture forestry and land use.
- Low-carbon heat transport agriculture and forestry sector policies need to improve in order to hit 2032 emissions targets.
- The Scottish Government’s Climate Change Plan – published in February 2018 – now has sensible expectations across each sector to reduce emissions.
Reducing Emissions in Scotland 2019 Progress Report
Dec 2019
Publication
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions.<br/>Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020. Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland. The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.<br/>Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
No more items...