Iran, Islamic Republic of
Effect of Hydrogen on the Tensile Behavior of Austenitic Stainless Steels 316L Produced by Laser-Powder Bed Fusion
Apr 2021
Publication
Hydrogen was doped in austenitic stainless steel (ASS) 316L tensile samples produced by the laser-powder bed fusion (L-PBF) technique. For this aim an electrochemical method was conducted under a high current density of 100 mA/cm2 for three days to examine its sustainability under extreme hydrogen environments at ambient temperatures. The chemical composition of the starting powders contained a high amount of Ni approximately 12.9 wt.% as a strong austenite stabilizer. The tensile tests disclosed that hydrogen charging caused a minor reduction in the elongation to failure (approximately 3.5% on average) and ultimate tensile strength (UTS; approximately 2.1% on average) of the samples using a low strain rate of 1.2 × 10−4 s−1. It was also found that an increase in the strain rate from 1.2 × 10−4 s−1 o 4.8 ×10−4 s−1 led to a reduction of approximately 3.6% on average for the elongation to failure and 1.7% on average for UTS in the pre-charged samples. No trace of martensite was detected in the X-ray diffraction (XRD) analysis of the fractured samples thanks to the high Ni content which caused a minor reduction in UTS × uniform elongation (UE) (GPa%) after the H charging. Considerable surface tearing was observed for the pre-charged sample after the tensile deformation. Additionally some cracks were observed to be independent of the melt pool boundaries indicating that such boundaries cannot necessarily act as a suitable area for the crack propagation.
Optimization of Geothermal- and Solar-driven Clean Electricity and Hydrogen Production Multi-generation Systems to Address the Energy Nexus
Jan 2022
Publication
Given the limited sources of fossil fuels mankind should find new ways to meet its energy demands. In this regard geothermal and solar energy are acknowledged as reliable safe promising and clean means for this purpose. In this research study a comparative analysis is applied on geothermal and solar-driven multi-generation systems for clean electricity and hydrogen production through energy and exergy assessments. The system consists of an organic Rankine cycle a proton electrolyte membrane electrolyzer and a thermoelectric generator subsystem. The Engineering Equation Solver software has been utilized in order to model the system and obtain the output contours sensitivity analysis and exergy destruction. The results were calculated considering the ambient temperature of Bandar Abbas city as a case study considering the geothermal system due to better performance in comparison to the solar system. According to the sensitivity analysis the turbine efficiency evaporator inlet temperature thermoelectric generator suitability criterion pump efficiency and evaporator inlet mass flow rate are the most influential parameters. Also the exergy analysis showed that the utmost system's exergy destruction is pertinent to the evaporator and the least is related to the pump. In addition the system produces 352816 kWh and 174.913 kg of electrical power and hydrogen during one year.
Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators
Jul 2021
Publication
Transformers are generally considered to be the costliest assets in a power network. The lifetime of a transformer is mainly attributable to the condition of its solid insulation which in turn is measured and described according to the degree of polymerization (DP) of the cellulose. Since the determination of the DP index is complex and time-consuming and requires the transformer to be taken out of service utilities prefer indirect and non-invasive methods of determining the DP based on the byproduct of cellulose aging. This paper analyzes solid insulation degradation by measuring the furan concentration recently introduced methanol and dissolved gases like carbon oxides and hydrogen in the insulating oil. A group of service-aged distribution transformers were selected for practical investigation based on oil samples and different kinds of tests. Based on the maintenance and planning strategy of the power utility and a weighted combination of measured chemical indicators a neural network was also developed to categorize the state of the transformer in certain classes. The method proved to be able to improve the diagnostic capability of chemical indicators thus providing power utilities with more reliable maintenance tools and avoiding catastrophic failure of transformers.
Optimal Scheduling of Multi-energy Type Virtual Energy Storage System in Reconfigurable Distribution Networks for Congestion Management
Jan 2023
Publication
The virtual energy storage system (VESS) is one of the emerging novel concepts among current energy storage systems (ESSs) due to the high effectiveness and reliability. In fact VESS could store surplus energy and inject the energy during the shortages at high power with larger capacities compared to the conventional ESSs in smart grids. This study investigates the optimal operation of a multi-carrier VESS including batteries thermal energy storage (TES) systems power to hydrogen (P2H) and hydrogen to power (H2P) technologies in hydrogen storage systems (HSS) and electric vehicles (EVs) in dynamic ESS. Further demand response program (DRP) for electrical and thermal loads has been considered as a tool of VESS due to the similar behavior of physical ESS. In the market three participants have considered such as electrical thermal and hydrogen markets. In addition the price uncertainties were calculated by means of scenarios as in stochastic programming while the optimization process and the operational constraints were considered to calculate the operational costs in different ESSs. However congestion in the power systems is often occurred due to the extreme load increments. Hence this study proposes a bi-level formulation system where independent system operators (ISO) manage the congestion in the upper level while VESS operators deal with the financial goals in the lower level. Moreover four case studies have considered to observe the effectiveness of each storage system and the simulation was modeled in the IEEE 33-bus system with CPLEX in GAMS.
Exergy and Exergoeconomic Analysis of Hydrogen and Power Cogeneration Using an HTR Plant
Mar 2021
Publication
This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 °C. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 ton/hr 540 °C steam generated in this cycle is sufficient to supply a high-temperature synthesis current source (700 °C) which raises the steam-gas mixture's temperature in the reactor. The proposed technology provides a high rate of hydrogen production (approximately 144.5 ton/hr of standard H2) also up to 25% of the original natural gas in line with existing SMR technology for preparing and heating steam and gas mixtures will be saved. Also exergy analysis results show that the plant's efficiency reaches 78.5% using HTR heat for combined hydrogen and power generation.
Thermal Management System Architecture for Hydrogen-Powered Propulsion Technologies: Practices, Thematic Clusters, System Architectures, Future Challenges, and Opportunities
Jan 2022
Publication
The thermal management system architectures proposed for hydrogen-powered propulsion technologies are critically reviewed and assessed. The objectives of this paper are to determine the system-level shortcomings and to recognise the remaining challenges and research questions that need to be sorted out in order to enable this disruptive technology to be utilised by propulsion system manufacturers. Initially a scientometrics based co-word analysis is conducted to identify the milestones for the literature review as well as to illustrate the connections between relevant ideas by considering the patterns of co-occurrence of words. Then a historical review of the proposed embodiments and concepts dating back to 1995 is followed. Next feasible thermal management system architectures are classified into three distinct classes and its components are discussed. These architectures are further extended and adapted for the application of hydrogen-powered fuel cells in aviation. This climaxes with the assessment of the available evidence to verify the reasons why no hydrogen-powered propulsion thermal management system architecture has yet been approved for commercial production. Finally the remaining research challenges are identified through a systematic examination of the critical areas in thermal management systems for application to hydrogen-powered air vehicles’ engine cooling. The proposed solutions are discussed from weight cost complexity and impact points of view by a system-level assessment of the critical areas in the field.
Modeling of Thermal Performance of a Commercial Alkaline Electrolyzer Supplied with Various Electrical Currents
Nov 2021
Publication
Hydrogen produced by solar and other clean energy sources is an essential alternative to fossil fuels. In this study a commercial alkaline electrolyzer with different cell numbers and electrode areas are simulated for different pressure temperature thermal resistance and electrical current. This alkaline electrolyzer is considered unsteady in simulations and different parameters such as temperature are obtained in terms of time. The obtained results are compared with similar results in the literature and good agreement is observed. Various characteristics of this alkaline electrolyzer as thermoneutral voltage faraday efficiency and cell voltage are calculated and displayed. The outlet heat rate and generated heat rate are obtained as well. The pressure and the temperature in the simulations are between 1 and 100 bar and between 300 and 360 Kelvin respectively. The results show that the equilibrium temperature is reached 2-3 hours after the time when the Alkaline electrolyzer starts to work.
The Role of Clean Hydrogen Value Chain in a Successful Energy Transition of Japan
Aug 2022
Publication
The clean hydrogen in the prioritized value chain platform could provide energy incentives and reduce environmental impacts. In the current study strengths weaknesses opportunities and threats (SWOT) analysis has been successfully applied to the clean hydrogen value chain in different sectors to determine Japan’s clean hydrogen value chain’s strengths weaknesses opportunities and threats as a case study. Japan was chosen as a case study since we believe that it is the only pioneer country in that chain with a national strategy investments and current projects which make it unique in this way. The analyses include evaluations of clean energy development power supply chains regional energy planning and renewable energy development including the internal and external elements that may influence the growth of the hydrogen economy in Japan. The ability of Japan to produce and use large quantities of clean hydrogen at a price that is competitive with fossil fuels is critical to the country’s future success. The implementation of an efficient carbon tax and carbon pricing is also necessary for cost parity. There will be an increasing demand for global policy coordination and inter-industry cooperation. The results obtained from this research will be a suitable model for other countries to be aware of the strengths weaknesses opportunities and threats in this field in order to make proper decisions according to their infrastructures potentials economies and socio-political states in that field.
Design and Simulation Studies of Hybrid Power Systems Based on Photovoltaic, Wind, Electrolyzer, and PEM Fuel Cells
May 2021
Publication
In recent years the need to reduce environmental impacts and increase flexibility in the energy sector has led to increased penetration of renewable energy sources and the shift from concentrated to decentralized generation. A fuel cell is an instrument that produces electricity by chemical reaction. Fuel cells are a promising technology for ultimate energy conversion and energy generation. We see that this system is integrated where we find that the wind and photovoltaic energy system is complementary between them because not all days are sunny windy or night so we see that this system has higher reliability to provide continuous generation. At low load hours PV and electrolysis units produce extra power. After being compressed hydrogen is stored in tanks. The purpose of this study is to separate the Bahr AL-Najaf Area from the main power grid and make it an independent network by itself. The PEM fuel cells were analyzed and designed and it were found that one layer is equal to 570.96 Watt at 0.61 volts and 1.04 A/Cm2 . The number of layers in one stack is designed to be equal to 13 layers so that the total power of one stack is equal to 7422.48 Watt. That is the number of stacks required to generate the required energy from the fuel cells is equal to 203 stk. This study provided an analysis of the hybrid system to cover the electricity demand in the Bahr AL-Najaf region of 1.5 MW the attained hybrid power system TNPC cost was about 9573208 USD whereas the capital cost and energy cost (COE) were about 7750000 USD and 0.169 USD/kWh respectively for one year.
Energy, Exergy, and Economic Analysis of Cryogenic Distillation and Chemical Scrubbing for Biogas Upgrading and Hydrogen Production
Mar 2022
Publication
Biogas is one of the most important sources of renewable energy and hydrogen production which needs upgrading to be functional. In this study two methods of biogas upgrading from organic parts of municipal waste were investigated. For biogas upgrading this article used a 3E analysis and simulated cryogenic separation and chemical scrubbing. The primary goal was to compare thermoeconomic indices and create hydrogen by reforming biomethane. The exergy analysis revealed that the compressor of the refrigerant and recovery column of MEA contributed the most exergy loss in the cryogenic separation and chemical scrubbing. The total exergy efficiency of cryogenic separation and chemical scrubbing was 85% and 84%. The energy analysis revealed a 2.07% lower energy efficiency for chemical scrubbing. The capital energy and total annual costs of chemical absorption were 56.51 26.33 and 54.44 percent lower than those of cryogenic separation respectively indicating that this technology is more economically feasible. Moreover because the thermodynamic efficiencies of the two methods were comparable the chemical absorption method was adopted for hydrogen production. The biomethane steam reforming was simulated and the results indicated that this method required an energy consumption of 90.48 MJ kgH2 . The hydrogen production intensity equaled 1.98 kmoleH2 kmolebiogas via a 79.92% methane conversion.
A Review of Hydrogen as a Fuel in Internal Combustion Engines
Sep 2021
Publication
The demand for fossil fuels is increasing because of globalization and rising energy demands. As a result many nations are exploring alternative energy sources and hydrogen is an efficient and practical alternative fuel. In the transportation industry the development of hydrogen-powered cars aims to maximize fuel efficiency and significantly reduce exhaust gas emission and concentration. The impact of using hydrogen as a supplementary fuel for spark ignition (SI) and compression ignition (CI) engines on engine performance and gas emissions was investigated in this study. By adding hydrogen as a fuel in internal combustion engines the torque power and brake thermal efficiency of the engines decrease while their brake-specific fuel consumption increase. This study suggests that using hydrogen will reduce the emissions of CO UHC CO2 and soot; however NOx emission is expected to increase. Due to the reduction of environmental pollutants for most engines and the related environmental benefits hydrogen fuel is a clean and sustainable energy source and its use should be expanded.
Hydrogen Fuel and Electricity Generation from a New Hybrid Energy System Based on Wind and Solar Energies and Alkaline Fuel Cell
Apr 2021
Publication
Excessive consumption of fossil fuels has led to depletion of reserves and environmental crises. Therefore turning to clean energy sources is essential. However these energy sources are intermittent in nature and have problems meeting long-term energy demand. The option suggested by the researchers is to use hybrid energy systems. The aim of this paper is provide the conceptual configuration of a novel energy cycle based on clean energy resources. The novel energy cycle is composed of a wind turbine solar photovoltaic field (PV) an alkaline fuel cell (AFC) a Stirling engine and an electrolyzer. Solar PV and wind turbine convert solar light energy and wind kinetic energy into electricity respectively. Then the generated electricity is fed to water electrolyzer. The electrolyzer decomposes water into oxygen and hydrogen gases by receiving electrical power. So the fuel cell inlets are provided. Next the AFC converts the chemical energy contained in hydrogen into electricity during electrochemical reactions with by-product (heat). The purpose of the introduced cycle is to generate electricity and hydrogen fuel. The relationships defined for the components of the proposed cycle are novel and is examined for the first time. Results showed that the output of the introduced cycle is 10.5 kW of electricity and its electrical efficiency is 56.9%. In addition the electrolyzer uses 9.9 kW of electricity to produce 221.3 grams per hour of hydrogen fuel. The share of the Stirling engine in the output power of the cycle is 9.85% (1033.7 W) which is obtained from the dissipated heat of the fuel cell. In addition wind turbine is capable of generating an average of 4.1 kW of electricity. However 238.6 kW of cycle exergy is destroyed. Two different scenarios are presented for solar field design.
Modeling of a High Temperature Heat Exchanger to Supply Hydrogen Required by Fuel Cells Through Reforming Process
Sep 2021
Publication
Hydrogen as a clean fuel and a new energy source can be produced by various methods. One of these common and economical methods of hydrogen production is hydrocarbon vapor modification. This research studies hydrogen production using a propane steam reforming process inside a high temperature heat exchanger. The application of this high temperature heat exchanger in the path of the power supply line is a fuel cell stack unit to supply the required hydrogen of the device. The heat exchanger consists of a set of cylindrical tubes housed inside a packed-bed called a reformer. The energy required to perform the reaction is supplied through these tubes in which high temperature gas is injected and the heat exchanger is insulated to prevent energy loss. The results show that at maximum temperature and velocity of hot gases (900 K and 1.5 m s−1 ) complete consumption of propane can be observed before the outlet of the reformer. Also in the mentioned conditions the maximum hydrogen production (above 92%) is obtained. The best permeability under which the system can perform best is 1×10−9 m2.
Computational Intelligence Approach for Modeling Hydrogen Production: A Review
Mar 2018
Publication
Hydrogen is a clean energy source with a relatively low pollution footprint. However hydrogen does not exist in nature as a separate element but only in compound forms. Hydrogen is produced through a process that dissociates it from its compounds. Several methods are used for hydrogen production which first of all differ in the energy used in this process. Investigating the viability and exact applicability of a method in a specific context requires accurate knowledge of the parameters involved in the method and the interaction between these parameters. This can be done using top-down models relying on complex mathematically driven equations. However with the raise of computational intelligence (CI) and machine learning techniques researchers in hydrology have increasingly been using these methods for this complex task and report promising results. The contribution of this study is to investigate the state of the art CI methods employed in hydrogen production and to identify the CI method(s) that perform better in the prediction assessment and optimization tasks related to different types of Hydrogen production methods. The resulting analysis provides in-depth insight into the different hydrogen production methods modeling technique and the obtained results from various scenarios integrating them within the framework of a common discussion and evaluation paper. The identified methods were benchmarked by a qualitative analysis of the accuracy of CI in modeling hydrogen production providing extensive overview of its usage to empower renewable energy utilization.
Optimal Scheduling of a Hydrogen-Based Energy Hub Considering a Stochastic Multi-Attribute Decision-Making Approach
Jan 2023
Publication
Nowadays the integration of multi-energy carriers is one of the most critical matters in smart energy systems with the aim of meeting sustainable energy development indicators. Hydrogen is referred to as one of the main energy carriers in the future energy industry but its integration into the energy system faces different open challenges which have not yet been comprehensively studied. In this paper a novel day-ahead scheduling is presented to reach the optimal operation of a hydrogen-based energy hub based on a stochastic multi-attribute decision-making approach. In this way the energy hub model is first developed by providing a detailed model of Power-to-Hydrogen (P2H) facilities. Then a new multi-objective problem is given by considering the prosumer’s role in the proposed energy hub model as well as the integrated demand response program (IDRP). The proposed model introduces a comprehensive approach from the analysis of the historical data to the final decision-making with the aim of minimizing the system operation cost and carbon emission. Moreover to deal with system uncertainty the scenario-based method is applied to model the renewable energy resources fluctuation. The proposed problem is defined as mixed-integer non-linear programming (MINLP) and to solve this problem a simple augmented e-constrained (SAUGMECON) method is employed. Finally the simulation of the proposed model is performed on a case study and the obtained results show the effectiveness and benefits of the proposed scheme.
Potential of Producing Green Hydrogen in Jordan
Nov 2022
Publication
Green hydrogen is becoming an increasingly important energy supply source worldwide. The great potential for the use of hydrogen as a sustainable energy source makes it an attractive energy carrier. In this paper we discuss the potential of producing green hydrogen in Jordan. Aqaba located in the south of Jordan was selected to study the potential for producing green hydrogen due to its proximity to a water source (i.e. the Red Sea). Two models were created for two electrolyzer types using MATLAB. The investigated electrolyzers were alkaline water (ALK) and polymeric electrolyte membrane (PEM) electrolyzers. The first model was used to compare the required capacity of the PV solar system using ALK and PEM from 2022 to 2025 depending on the learning curves for the development of these technologies. In addition this model was used to predict the total investment costs for the investigated electrolyzers. Then a techno-economic model was constructed to predict the feasibility of using this technology by comparing the use of a PV system and grid electricity as sources for the production of hydrogen. The net present value (NPV) and levelized cost of hydrogen (LCOH) were used as indicators for both models. The environmental effect according to the reduction of CO2 emissions was also taken into account. The annual production of hydrogen was 70.956 million kg. The rate of hydrogen production was 19.3 kg/s and 1783 kg/s for ALK and PEM electrolyzers respectively. The LCOH was 4.42 USD/kg and 3.13 USD/kg when applying electricity from the grid and generated by the PV system respectively. The payback period to cover the capital cost of the PV system was 11 years of the project life with a NPV of USD 441.95 million. Moreover CO2 emissions can be reduced by 3042 tons/year by using the PV as a generation source instead of fossil fuels to generate electricity. The annual savings with respect to the reduction of CO2 emissions was USD 120135.
Impacts of Green Energy Expansion and Gas Import Reduction on South Korea’s Economic Growth: A System Dynamics Approach
Jun 2023
Publication
South Korea ranking ninth among the largest energy consumers and seventh in carbon dioxide emissions from 2016 to 2021 faces challenges in energy security and climate change mitigation. The primary challenge lies in transitioning from fossil fuel dependency to a more sustainable and diversified energy portfolio while meeting the growing energy demand for continued economic growth. This necessitates fostering innovation and investment in the green energy sector. This study examines the potential impact of green energy expansion (through integrating renewable energy and hydrogen production) and gas import reduction on South Korea’s economic growth using a system dynamics approach. The findings indicate that increasing investment in green energy can result in significant growth rates ranging from 7% to 35% between 2025 and 2040. Under the expansion renewable energy scenario (A) suggests steady but sustainable economic growth in the long term while the gas import reduction scenario (B) displays a potential for rapid economic growth in the short term with possible instability in the long term. The total production in Scenario B is USD 2.7 trillion in 2025 and will increase to USD 4.8 trillion by 2040. Scenario C which combines the effects of both Scenarios A and B results in consistently high economic growth rates over time and a substantial increase in total production by 2035–2040 from 20% to 46%. These findings are critical for policymakers in South Korea as they strive for sustainable economic growth and transition to renewable energy.
Multi-objective Optimization of a Cogeneration System Based on Solar Energy for Clean Hydrogen, Cooling, and Electricity Production
Jan 2024
Publication
In an effort to encourage industries to switch from fossil fuels to renewable energy resources for supplying their energy demands the exergy and financial aspects of a thermodynamic energy generation system were studied. The suggested system was modeled by MATLAB commercial software to assess the decision-making parameters affecting power generation cooling capacity and to produce hydrogen. The objective functions of this study were exergy efficiency and cost rate while the temperatures at the inlet of the turbine and the evaporator irradiated solar energy mass flow rate and surface area of the collector were the decision-making variables. The model was optimized via MOPSO and its results were compared with two widely utilized algorithms namely NSGA-II and SPEA-II. The comparison results indicated that MOPSO surpassed other two optimization algorithm resulting in exergy efficiency and cost rate of 2.11 % and 21.14 $/h respectively. According to this method the optimum generated power was equal to 21.01 kW. Eventually this system was utilized and evaluated in the city of Semnan Iran. The performance results of the system in Semnan showed that the annual power output taking into account the changes in radiation and ambient temperature is between 316667.4 and 428080.5 kW. Also the amount of hydrogen production is between 1503.66 and 1534.997 kg.
A Review on the Kinetics of Iron Ore Reduction by Hydrogen
Dec 2021
Publication
A clean energy revolution is occurring across the world. As iron and steelmaking have a tremendous impact on the amount of CO2 emissions there is an increasing attraction towards improving the green footprint of iron and steel production. Among reducing agents hydrogen has shown a great potential to be replaced with fossil fuels and to decarbonize the steelmaking processes. Although hydrogen is in great supply on earth extracting pure H2 from its compound is costly. Therefore it is crucial to calculate the partial pressure of H2 with the aid of reduction reaction kinetics to limit the costs. This review summarizes the studies of critical parameters to determine the kinetics of reduction. The variables considered were temperature iron ore type (magnetite hematite goethite) H2/CO ratio porosity flow rate the concentration of diluent (He Ar N2 ) gas utility annealing before reduction and pressure. In fact increasing temperature H2/CO ratio hydrogen flow rate and hematite percentage in feed leads to a higher reduction rate. In addition the controlling kinetics models and the impact of the mentioned parameters on them investigated and compared concluding chemical reaction at the interfaces and diffusion of hydrogen through the iron oxide particle are the most common kinetics controlling models.
On the Response of a Lean-premixed Hydrogen Combustor to Acoustic and Dissipative-dispersive Entropy Waves
May 2019
Publication
Combustion of hydrogen or hydrogen containing blends in gas turbines and industrial combustors can activate thermoacoustic combustion instabilities. Convective instabilities are an important and yet less investigated class of combustion instability that are caused by the so called “entropy waves”. As a major shortcoming the partial decay of these convective-diffusive waves in the post-flame region of combustors is still largely unexplored. This paper therefore presents an investigation of the annihilating effects due to hydrodynamics heat transfer and flow stretch upon the nozzle response. The classical compact analysis is first extended to include the decay of entropy waves and heat transfer from the nozzle. Amplitudes and phase shifts of the responding acoustical waves are then calculated for subcritical and supercritical nozzles subject to acoustic and entropic forcing. A relation for the stretch of entropy wave in the nozzle is subsequently developed. It is shown that heat transfer and hydrodynamic decay can impart considerable effects on the entropic response of the nozzle. It is further shown that the flow stretching effects are strongly frequency dependent. The results indicate that dissipation and dispersion of entropy waves can significantly influence their conversion to sound and therefore should be included in the entropy wave models.
No more items...