Netherlands
A Review of Recent Developments in Molecular Dynamics Simulations of the Photoelectrochemical Water Splitting Process
Jun 2021
Publication
In this review we provide a short overview of the Molecular Dynamics (MD) method and how it can be used to model the water splitting process in photoelectrochemical hydrogen production. We cover classical non-reactive and reactive MD techniques as well as multiscale extensions combining classical MD with quantum chemical and continuum methods. Selected examples of MD investigations of various aqueous semiconductor interfaces with a special focus on TiO2 are discussed. Finally we identify gaps in the current state-of-the-art where further developments will be needed for better utilization of MD techniques in the field of water splitting.
Evaluation of Selectivity and Resistance to Poisons of Commercial Hydrogen Sensors
Sep 2013
Publication
The development of reliable hydrogen sensors is crucial for the safe use of hydrogen. One of the main concerns of end-users is sensor reliability in the presence of species other than the target gas which can lead to false alarms or undetected harmful situations. In order to assess the selectivity of commercial of the shelf (COTS) hydrogen sensors a number of sensors of different technology types were exposed to various interferent gas species. Cross-sensitivity tests were performed in accordance to the recommendations of ISO 26142:2010 using the hydrogen sensor testing facilities of NREL and JRC-IET. The results and conclusions arising from this study are presented.
Analysis of Hydrogen-powered Propulsion System Alternatives for Diesel-electric Regional Trains
Aug 2022
Publication
Non-electrified regional railway lines with typically employed diesel-electric multiple units require alternative propulsion systems to meet increasingly strict emissions regulations. With the aim to identify an optimal alternative to conventional diesel traction this paper presents a model-based assessment of hydrogen-powered propulsion systems with an internal combustion engine or fuel cells as the prime mover combined with different energy storage system configurations based on lithium-ion batteries and/or double-layer capacitors. The analysis encompasses technology identification design modelling and assessment of alternative powertrains explicitly considering case-related constraints imposed by the infrastructure technical and operational requirements. Using a regional railway network in the Netherlands as a case we investigate the possibilities in converting a conventional benchmark vehicle and provide the railway undertaking and decision-makers with valuable input for planning of future rolling stock investments. The results indicate the highest fuel-saving potential for fuel cell-based hybrid propulsion systems with lithium-ion battery or a hybrid energy storage system that combines both energy storage system technologies. The two configurations also demonstrate the highest reduction of greenhouse gas emissions compared to the benchmark diesel-driven vehicle by about 25% for hydrogen produced by steam methane reforming and about 19% for hydrogen obtained from electrolysis of water with grey electricity.
Photocatalytic Hydrogen Production by Photo-Reforming of Methanol with One-pot Synthesized Pt-containing TiO2 Photocatalysts
Jul 2019
Publication
Functionalization of semiconductors by metallic nanoparticle is considered to be one of the most effective procedure to improve photocatalytic hydrogen production. Photodeposition is frequently used for functionalization but particle sizes and dispersions are still difficult to control. Here Pt functionalization is achieved in a one-pot synthesis. The as-prepared samples are compared to reference materials prepared by conventional photodeposition and our results confirm that small and well-dispersed nanoparticles with superior stability are obtained by one-pot synthesis. The enhanced stability is attributed to a limited leaching of Pt nanoparticles during illumination likely caused by the preferable interaction of small well dispersed Pt nanoparticles with the TiO2 support material. In addition our results demonstrate that Na-residues are detrimental for the photocatalytic performance and washing in acidic solution is mandatory to effectively reduce the sodium contamination.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Supporting Hydrogen Technologies Deployment in EU Regions and Member States: The Smart Specialisation Platform on Energy (S3PEnergy)
May 2018
Publication
In order to maximise European national and regional research and innovation potential the European Union is investing in these fields through different funding mechanisms such as the ESIF or H2020 programme. This investment plan is part of the European 2020 strategy where the concept of Smart Specialisation is also included.<br/>Smart Specialisation is an innovation policy concept designed to promote the efficient and effective use of public investment in regional innovation in order to achieve economic growth. The Smart Specialisation Platform was created to support this concept by assisting regions and Member States in developing implementing and reviewing their research and innovation Smart Specialisation strategies.<br/>The Smart Specialisation Platform comprises several thematic platforms. The thematic Smart Specialisation Platform on energy (S3PEnergy) is a joint initiative of three European Commission services: DG REGIO DG ENER and the Joint Research Centre (JRC). The main objective of the S3PEnergy is to support the optimal and effective uptake of the Cohesion Policy funds for energy and to better align energy innovation activities at national local and regional level through the identification of the technologies and innovative solutions that support in the most cost-effective way the EU energy policy priorities.<br/>In the particular case of hydrogen technologies the activities of the platform are mainly focused on supporting the new Fuel Cells and Hydrogen Joint Undertaking (FCH JU) initiative involving regions and cities. To date more than 80 European cities and regions have committed to participate in this initiative through the signature of a Memorandum of Understanding and more participants are expected to join. S3PEnergy is helping in the identification of potential combination of H2020 funding (provided through FCH JU) and ESIF.<br/>To identify potential synergies among these two funding sources a mapping of the different ESIF opportunities has been performed. In order to map these opportunities Operational Programmes (OPs) and research and innovation strategies for Smart Specialisation (RIS3) of the different European regions and Member States were analysed. The results of this mapping and analysis are presented in this paper."
Expectations as a Key to Understanding Actor Strategies in the Field of Fuel Cell and Hydrogen Vehicles
Feb 2012
Publication
Due to its environmental impact the mobility system is increasingly under pressure. The challenges to cope with climate change air quality depleting fossil resources imply the need for a transition of the current mobility system towards a more sustainable one. Expectations and visions have been identified as crucial in the guidance of such transitions and more specifically of actor strategies. Still it remained unclear why the actors involved in transition activities appear to change their strategies frequently and suddenly. The empirical analysis of the expectations and strategies of three actors in the field of hydrogen and fuel cell technology indicates that changing actor strategies can be explained by rather volatile expectations related to different levels. Our case studies of the strategies of two large car manufacturers and the German government demonstrate that the car manufacturers refer strongly to expectations about the future regime while expectations related to the socio-technical landscape level appear to be crucial for the strategy of the German government.
Development of Risk Mitigation Guidance for Sensor Placement Inside Mechanically Ventilated Enclosures – Phase 1
Sep 2019
Publication
Guidance on Sensor Placement was identified as the top research priority for hydrogen sensors at the 2018 HySafe Research Priority Workshop on hydrogen safety in the category Mitigation Sensors Hazard Prevention and Risk Reduction. This paper discusses the initial steps (Phase 1) to develop such guidance for mechanically ventilated enclosures. This work was initiated as an international collaborative effort to respond to emerging market needs related to the design and deployment equipment for hydrogen infrastructure that is often installed in individual equipment cabinets or ventilated enclosures. The ultimate objective of this effort is to develop guidance for an optimal sensor placement such that when integrated into a facility design and operation will allow earlier detection at lower levels of incipient leaks leading to significant hazard reduction. Reliable and consistent early warning of hydrogen leaks will allow for the risk mitigation by reducing or even eliminating the probability of escalation of small leaks into large and uncontrolled events. To address this issue a study of a real-world mechanically ventilated enclosure containing GH2 equipment was conducted where CFD modelling of the hydrogen dispersion (performed by AVT and UQTR and independently by the JRC) was validated by the NREL Sensor laboratory using a Hydrogen Wide Area Monitor (HyWAM) consisting of a 10-point gas and temperature measurement analyzer. In the release test helium was used as a hydrogen surrogate. Expansion of indoor releases to other larger facilities (including parking structures vehicle maintenance facilities and potentially tunnels) and incorporation into QRA tools such as HyRAM is planned for Phase 2. It is anticipated that results of this work will be used to inform national and international standards such as NFPA 2 Hydrogen Technologies Code Canadian Hydrogen Installation Code (CHIC) and relevant ISO/TC 197 and CEN documents.
A Review at the Role of Storage in Energy Systems with a Focus on Power to Gas and Long-term Storage
Aug 2017
Publication
A review of more than 60 studies (plus m4ore than 65 studies on P2G) on power and energy models based on simulation and optimization was done. Based on these for power systems with up to 95% renewables the electricity storage size is found to be below 1.5% of the annual demand (in energy terms). While for 100% renewables energy systems (power heat mobility) it can remain below 6% of the annual energy demand. Combination of sectors and diverting the electricity to another sector can play a large role in reducing the storage size. From the potential alternatives to satisfy this demand pumped hydro storage (PHS) global potential is not enough and new technologies with a higher energy density are needed. Hydrogen with more than 250 times the energy density of PHS is a potential option to satisfy the storage need. However changes needed in infrastructure to deal with high hydrogen content and the suitability of salt caverns for its storage can pose limitations for this technology. Power to Gas (P2G) arises as possible alternative overcoming both the facilities and the energy density issues. The global storage requirement would represent only 2% of the global annual natural gas production or 10% of the gas storage facilities (in energy equivalent). The more options considered to deal with intermittent sources the lower the storage requirement will be. Therefore future studies aiming to quantify storage needs should focus on the entire energy system including technology vectors (e.g. Power to Heat Liquid Gas Chemicals) to avoid overestimating the amount of storage needed.
Efficient Hydrogen Storage in Defective Graphene and its Mechanical Stability: A Combined Density Functional Theory and Molecular Dynamics Simulation Study
Dec 2020
Publication
A combined density functional theory and molecular dynamics approach is employed to study modifications of graphene at atomistic level for better H2 storage. The study reveals H2 desorption from hydrogenated defective graphene structure V222 to be exothermic. H2 adsorption and desorption processes are found to be more reversible for V222 as compared to pristine graphene. Our study shows that V222 undergoes brittle fracture under tensile loading similar to the case of pristine graphene. The tensile strength of V222 shows slight reduction with respect to their pristine counterpart which is attributed to the transition of sp2 to sp3-like hybridization. The study also shows that the V222 structure is mechanically more stable than the defective graphene structure without chemically adsorbed hydrogen atoms. The current fundamental study thus reveals the efficient recovery mechanism of adsorbed hydrogen from V222 and paves the way for the engineering of structural defects in graphene for H2 storage.
Quantitative Risk Analysis of a Hazardous Jet Fire Event for Hydrogen Transport in Natural Gas Transmission Pipelines
Jan 2021
Publication
With the advent of large-scale application of hydrogen transportation becomes crucial. Reusing the existing natural gas transmission system could serve as catalyst for the future hydrogen economy. However a risk analysis of hydrogen transmission in existing pipelines is essential for the deployment of the new energy carrier. This paper focuses on the individual risk (IR) associated with a hazardous hydrogen jet fire and compares it with the natural gas case. The risk analysis adopts a detailed flame model and state of the art computational software to provide an enhanced physical description of flame characteristics.<br/>This analysis concludes that hydrogen jet fires yield lower lethality levels that decrease faster with distance than natural gas jet fires. Consequently for large pipelines hydrogen transmission is accompanied by significant lower IR. Howbeit ignition effects increasingly dominate the IR for decreasing pipeline diameters and cause hydrogen transmission to yield increased IR in the vicinity of the pipeline when compared to natural gas.
Beyond Haber-Bosch: The Renaissance of the Claude Process
Apr 2021
Publication
Ammonia may be one of the energy carriers in the hydrogen economy. Although research has mostly focused on electrochemical ammonia synthesis this however remains a scientific challenge. In the current article we discuss the feasibility of single-pass thermochemical ammonia synthesis as an alternative to the high-temperature high-pressure Haber-Bosch synthesis loop. We provide an overview of recently developed low temperature ammonia synthesis catalysts as well as an overview of solid ammonia sorbents. We show that the low temperature low pressure single-pass ammonia synthesis process can produce ammonia at a lower cost than the Haber-Bosch synthesis loop for small-scale ammonia synthesis (<40 t-NH3 d−1).
CFD Simulations of Filling and Emptying of Hydrogen Tanks
Jun 2016
Publication
During the filling of hydrogen tanks high temperatures can be generated inside the vessel because of the gas compression while during the emptying low temperatures can be reached because of the gas expansion. The design temperature range goes from −40 °C to 85 °C. Temperatures outside that range could affect the mechanical properties of the tank materials. CFD analyses of the filling and emptying processes have been performed in the HyTransfer project. To assess the accuracy of the CFD model the simulation results have been compared with new experimental data for different filling and emptying strategies. The comparison between experiments and simulations is shown for the temperatures of the gas inside the tank for the temperatures at the interface between the liner and the composite material and for the temperatures on the external surface of the vessel.
Permeation Tests in Type-approval Regulations for Hydrogen Fuelled Vehicles: Analysis and Testing Experiences at the JRC-GASTEF Facility
Jan 2023
Publication
This article presents an analysis of the permeation tests established in the current regulations for the type-approval of on board tanks in hydrogen vehicles. The analysis is done from the point of view of a test maker regarding the preparation for the execution of a permeation test. The article contains a description of the required instrumentation and set-up to carry out a permeation test according to the applicable standards and regulations. Tank conditions at the beginning of the test configuration of permeation chamber duration of the test or permeation rate to be reported are aspects that are not well-defined in regulations. In this paper we examine the challenges when carrying out a permeation test and propose possible solutions to overcome them with the intention of supporting test makers and helping the development of permeation test guidelines.
Review and Survey of Methods for Analysis of Impurities in Hydrogen for Fuel Cell Vehicles According to ISO 14687:2019
Feb 2021
Publication
Gaseous hydrogen for fuel cell electric vehicles must meet quality standards such as ISO 14687:2019 which contains maximal control thresholds for several impurities which could damage the fuel cells or the infrastructure. A review of analytical techniques for impurities analysis has already been carried out by Murugan et al. in 2014. Similarly this document intends to review the sampling of hydrogen and the available analytical methods together with a survey of laboratories performing the analysis of hydrogen about the techniques being used. Most impurities are addressed however some of them are challenging especially the halogenated compounds since only some halogenated compounds are covered not all of them. The analysis of impurities following ISO 14687:2019 remains expensive and complex enhancing the need for further research in this area. Novel and promising analyzers have been developed which need to be validated according to ISO 21087:2019 requirements.
Flexible Power and Biomass-To-Methanol Plants With Different Gasification Technologies
Jan 2022
Publication
The competitiveness of biofuels may be increased by integrating biomass gasification plants with electrolysis units which generate hydrogen to be combined with carbon-rich syngas. This option allows increasing the yield of the final product by retaining a higher amount of biogenic carbon and improving the resilience of the energy sector by favoring electric grid services and sector coupling. This article illustrates a techno-economic comparative analysis of three flexible power and biomass to methanol plants based on different gasification technologies: direct gasification indirect gasification and sorptionenhanced gasification. The design and operational criteria of each plant are conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The methanol production plants include a gasification section syngas cleaning conditioning and compression section methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. Due to the high oxygen demand in the gasifier the direct gasification-based plant obtains a great advantage to be operated between a minimum load to satisfy the oxygen demand at high electricity prices and a maximum load to maximize methanol production at low electricity prices. This allows avoiding large oxygen storages with significant benefits for Capex and safety issues. The analysis reports specific fixed-capital investments between 1823 and 2048 €/kW of methanol output in the enhanced operation and LCOFs between 29.7 and 31.7 €/GJLHV. Economic advantages may be derived from a decrease in the electrolysis capital investment especially for the direct gasification-based plants which employ the greatest sized electrolyzer. Methanol breakeven selling prices range between 545 and 582 €/t with the 2019 reference Denmark electricity price curve and between 484 and 535 €/t with an assumed modified electricity price curve of a future energy mix with increased penetration of intermittent renewables.
Exploring Supply Chain Design and Expansion Planning of China's Green Ammonia Production with an Optimization-based Simulation Approach
Aug 2021
Publication
Green ammonia production as an important application for propelling the upcoming hydrogen economy has not been paid much attention by China the world's largest ammonia producer. As a result related studies are limited. This paper explores potential supply chain design and planning strategies of green ammonia production in the next decade of China with a case study in Inner Mongolia. A hybrid optimization-based simulation approach is applied considering traditional optimization approaches are insufficient to address uncertainties and dynamics in a long-term energy transition. Results show that the production cost of green ammonia will be at least twice that of the current level due to higher costs of hydrogen supply. Production accounts for the largest share of the total expense of green hydrogen (~80 %). The decline of electricity and electrolyser prices are key in driving down the overall costs. In addition by-product oxygen is also considered in the model to assess its economic benefits. We found that by-product oxygen sales could partly reduce the total expense of green hydrogen (~12 % at a price of USD 85/t) but it also should be noted that the volatile price of oxygen may pose uncertainties and risks to the effectiveness of the offset. Since the case study may represent the favourable conditions in China due to the abundant renewable energy resources and large-scale ammonia industry in this region we propose to take a moderate step towards green ammonia production and policies should be focused on reducing the electricity price and capital investments in green hydrogen production. We assume the findings and implications are informative to planning future green ammonia production in China.
Exploring the Possibility of Using Molten Carbonate Fuel Cell for the Flexible Coproduction of Hydrogen and Power
Sep 2021
Publication
Fuel cells are electrochemical devices that are conventionally used to convert the chemical energy of fuels into electricity while producing heat as a byproduct. High temperature fuel cells such as molten carbonate fuel cells and solid oxide fuel cells produce significant amounts of heat that can be used for internal reforming of fuels such as natural gas to produce gas mixtures which are rich in hydrogen while also producing electricity. This opens up the possibility of using high temperature fuel cells in systems designed for flexible coproduction of hydrogen and power at very high system efficiency. In a previous study the flowsheet software Cycle-Tempo has been used to determine the technical feasibility of a solid oxide fuel cell system for flexible coproduction of hydrogen and power by running the system at different fuel utilization factors (between 60 and 95%). Lower utilization factors correspond to higher hydrogen production while at a higher fuel utilization standard fuel cell operation is achieved. This study uses the same basis to investigate how a system with molten carbonate fuel cells performs in identical conditions also using Cycle-Tempo. A comparison is made with the results from the solid oxide fuel cell study.
Benefits of an Integrated Power and Hydrogen Offshore Grid in a Net-zero North Sea Energy System
Jun 2022
Publication
The North Sea Offshore Grid concept has been envisioned as a promising alternative to: 1) ease the integration of offshore wind and onshore energy systems and 2) increase the cross-border capacity between the North Sea region countries at low cost. In this paper we explore the techno-economic benefits of the North Sea Offshore Grid using two case studies: a power-based offshore grid where only investments in power assets are allowed (i.e. offshore wind HVDC/HVAC interconnectors); and a power-and-hydrogen offshore grid where investments in offshore hydrogen assets are also permitted (i.e. offshore electrolysers new hydrogen pipelines and retrofitted natural gas pipelines). In this paper we present a novel methodology in which extensive offshore spatial data is analysed to define meaningful regions via data clustering. These regions are incorporated to the Integrated Energy System Analysis for the North Sea region (IESA-NS) model. In this optimization model the scenarios are run without any specific technology ban and under open optimization. The scenario results show that the deployment of an offshore grid provides relevant cost savings ranging from 1% to 4.1% of relative cost decrease (2.3 bn € to 8.7 bn €) in the power-based and ranging from 2.8% to 7% of relative cost decrease (6 bn € to 14.9 bn €) in the power-and-hydrogen based. In the most extreme scenario an offshore grid permits to integrate 283 GW of HVDC connected offshore wind and 196 GW of HVDC meshed interconnectors. Even in the most conservative scenario the offshore grid integrates 59 GW of HVDC connected offshore wind capacity and 92 GW of HVDC meshed interconnectors. When allowed the deployment of offshore electrolysis is considerable ranging from 61 GW to 96 GW with capacity factors of around 30%.
A Green Hydrogen Energy System: Optimal Control Strategies for Integrated Hydrogen Storage and Power Generation with Wind Energy
Jul 2022
Publication
The intermittent nature of renewable energy resources such as wind and solar causes the energy supply to be less predictable leading to possible mismatches in the power network. To this end hydrogen production and storage can provide a solution by increasing flexibility within the system. Stored hydrogen as compressed gas can either be converted back to electricity or it can be used as feed-stock for industry heating for built environment and as fuel for vehicles. This research is the first to examine optimal strategies for operating integrated energy systems consisting of renewable energy production and hydrogen storage with direct gas-based use-cases for hydrogen. Using Markov decision process theory we construct optimal policies for day-to-day decisions on how much energy to store as hydrogen or buy from or sell to the electricity market and on how much hydrogen to sell for use as gas. We pay special emphasis to practical settings such as contractually binding power purchase agreements varying electricity prices different distribution channels green hydrogen offtake agreements and hydrogen market price uncertainties. Extensive experiments and analysis are performed in the context of Northern Netherlands where Europe’s first Hydrogen Valley is being formed. Results show that gains in operational revenues of up to 51% are possible by introducing hydrogen storage units and competitive hydrogen market-prices. This amounts to a e126000 increase in revenues per turbine per year for a 4.5 MW wind turbine. Moreover our results indicate that hydrogen offtake agreements will be crucial in keeping the energy transition on track.
Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II
Jun 2022
Publication
Biomass gasification is a versatile thermochemical process that can be used for direct energy applications and the production of advanced liquid and gaseous energy carriers. In the present work the results are presented concerning the H2 production at a high purity grade from biomass feedstocks via steam/oxygen gasification. The data demonstrating such a process chain were collected at an innovative gasification prototype plant coupled to a portable purification system (PPS). The overall integration was designed for gas conditioning and purification to hydrogen. By using almond shells as the biomass feedstock from a product gas with an average and stable composition of 40%-v H2 21%-v CO 35%-v CO2 2.5%-v CH4 the PPS unit provided a hydrogen stream with a final concentration of 99.99%-v and a gas yield of 66.4%.
Experimental and Modelling Study of an Electrochemical Hydrogen Compressor
Mar 2019
Publication
The energy world is changing rapidly pushed also by the need for new green energy sources to reduce greenhouse gas emissions. The fast development of renewable energies has created many problems associated with grid management and stability which could be solved with storage systems. The hydrogen economy could be an answer to the need of storage systems and clean fuel for transportation. The Electrochemical Hydrogen Compressor (EHC) is an electrochemical device which could find a place in this scenario giving a solution for the hydrogen purification and compression for storage. This work analyzes through experimental and modeling studies the performance of the EHC in terms of polarization curve Hydrogen Recovery Factor (HRF) and outlet hydrogen purity. The influence of many input parameters such as the total inlet flow rate the hydrogen inlet concentration the contaminant in the feed and the cathode pressure have been investigated. Furthermore the EHC performance have been modelled in a 1D + 1D model implemented in Matlab® solving the Butler-Volmer system of equations numerically. The experimental campaign has shown that high purities can be obtained for the hydrogen separation from N2 and CH4 and purities over 98% feeding He. An increase in the cathode pressure has shown a slight improvement in the obtained purity. A comparison between PSA unit and EHC for a mixture 75% H2 – 25% CH4 at different outlet hydrogen pressure and purity was performed to analyze the energy consumption required. Results show PSA unit is convenient at large scale and high H2 concentration while for low concentration is extremely energy intense. The EHC proved to be worthwhile at small scale and higher outlet hydrogen pressure.
The Effect of Defueling Rate on the Temperature Evolution of On-board Hydrogen Tanks
Jul 2015
Publication
During the driving of a fuel cell car the expansion of the hydrogen along the emptying of the high pressure storage tank produces a cooling of the gas. The hydrogen vessel can experience a fast depressurization during acceleration or under an emergency release. This can result on the one hand in exceeding the low safety temperature limit of 40 C inside the on-board compressed hydrogen tank and on the other hand in the cooling of its walls. In the present paper defueling experiments of two different types of on-board hydrogen tanks (Type III and Type IV) have been performed in all the range of expected defueling rates. The lowest temperatures have been found on the bottom part of the Type IV tank in very fast defuelings. For average driving conditions in both types of vessels the inside gas temperature gets closer to that of the walls and the tank would arrive to the refuelling station at a temperature significantly lower than the ambient temperature.
Insights into Site Evaluation for Underground Hydrogen Storage (UHS) on Gas Mixing-the Effects of Meter-Scale Heterogeniety and Associated Reservoir Characterization Parameters
Feb 2025
Publication
Underground Hydrogen Storage (UHS) as an emerging large-scale energy storage technology has shown great promise to ensure energy security with minimized carbon emission. A set of comprehensive UHS site evaluation criteria based on important factors that affect UHS performances is needed for its potential commercialization. This study focuses on the UHS site evaluation of gas mixing. The economic implications of gas mixing between injected hydrogen gas and the residual or cushion gas in a porous storage reservoir is an emerging problem for Underground Hydrogen Storage (UHS). It is already clear that reservoir scale heterogeneity such as formation structure (e.g. formation dip angle) and facies heterogeneity of the sedimentary rock may considerably affect the reservoir-scale mechanical dispersion-induced gas mixing during UHS in high permeability braided-fluvial systems (a common depleted reservoir type for UHS). Following this finding the current study uses the processmimicking modeling software to build synthetic meandering-fluvial reservoir models. Channel dimensions and the presence of abandoned channel facies are set as testing parameters resulting in 4 simulation cases with 200 realizations. Numerical flow simulations are performed on these models to investigate and compare the effects of reservoir and metre-scale heterogeneity on UHS gas mixing. Through simulation channel dimensions (reservoir-scale heterogeneity) are found to affect the uncertainty of produced gas composition due to mixing (represented by the P10-P90 difference of hydrogen fraction in a produced stream) by up to 42%. The presence of abandoned channel facies (metre-scale heterogeneity) depending on their architectural relationship with meander belts could also influence the gas mixing process to a comparable extent (up to 40%). Moreover we show that there is no clear statistical correlation between gas mixing and typical reservoir characterization parameters such as original gas in place (OGIP) average reservoir permeability and the Dykstra-Parsons coefficient. Instead the average time of travel of all reservoir cells calculated from flow diagnostics shows a negative correlation with the level of gas mixing. These results reveal the importance of 3D reservoir architecture analysis (integration of multiple levels of heterogeneity) to UHS site evaluation on gas mixing in depleted gas reservoirs. This study herein provides valuable insights into UHS site evaluation regarding gas mixing.
Hazard Identification of Hydrogen-Based Alternative Fuels Onboard Ships
Dec 2023
Publication
It is essential to use alternative fuels if we are to reach the emission reduction targets set by the IMO. Hydrogen carriers are classified as zero-emission while having a higher energy density (including packing factor) than pure hydrogen. They are often considered as safe alternative fuels. The exact definition of what safety entails is often lacking both for hydrogen carriers as well as for ship safety. The aim of this study is to review the safety of hydrogen carriers from two perspectives investigating potential connections between the chemical and maritime approaches to safety. This enables a reasoned consideration between safety aspects and other design drivers in ship design and operation. The hydrogen carriers AB NaBH4 KBH4 and two LOHCs (NEC and DBT) are taken into consideration together with a couple reference fuels (ammonia methanol and MDO). After the evaluation of chemical properties related to safety and the scope of the current IMO safety framework it can be concluded that safety remains a vague and non-explicit concept from both perspectives. Therefore further research is required to prove the safe application of hydrogen carriers onboard ships.
Impact of Large-scale Hydrogen Electrification and Retrofitting of Natural Gas Infrastructure on the European Power System
Nov 2023
Publication
In this paper we aim to analyse the impact of hydrogen production decarbonisation and electrification scenarios on the infrastructure development generation mix CO2 emissions and system costs of the European power system considering the retrofit of the natural gas infrastructure. We define a reference scenario for the European power system in 2050 and use scenario variants to obtain additional insights by breaking down the effects of different assumptions. The scenarios were analysed using the European electricity market model COMPETES including a proposed formulation to consider retrofitting existing natural gas networks to transport hydrogen instead of methane. According to the results 60% of the EU’s hydrogen demand is electrified and approximately 30% of the total electricity demand will be to cover that hydrogen demand. The primary source of this electricity would be non-polluting technologies. Moreover hydrogen flexibility significantly increases variable renewable energy investment and production and reduces CO2 emissions. In contrast relying on only electricity transmission increases costs and CO2 emissions emphasising the importance of investing in an H2 network through retrofitting or new pipelines. In conclusion this paper shows that electrifying hydrogen is necessary and cost-effective to achieve the EU’s objective of reducing long-term emissions.
A Design Guide to Tapered Conformable Pressure Tanks for Liquid Hydrogen Storage
Feb 2025
Publication
Liquid hydrogen has the potential to significantly reduce in-flight carbon emissions in the aviation industry. Among the most promising aircraft configurations for future hydrogen-powered aviation are the blended wing body and the pure flying wing configurations. However their tapered and flattened airframe designs pose a challenge in accommodating liquid hydrogen storage tanks. This paper presents a design guide to tapered conformable pressure tanks for liquid hydrogen storage. The proposed tank configurations feature a multi-bubble layout and are subject to low internal differential pressure. The objective is to provide tank designers with simple geometric rules and practical guidelines to simplify the design process of tapered multi-bubble pressure tanks. Various tank configurations are discussed starting with a simple tapered two-bubble tank and advancing to more complex tapered configurations with a multi-segment and multi-bubble layout. A comprehensive design methodology is established providing tank designers with a step-by-step design procedure and highlighting the practical guidelines in each step of the design process.
Voltage Losses in Zero-gap Alkaline Water Electrolysis
Apr 2021
Publication
Reducing the gap between the electrodes and diaphragm to zero is an often adopted strategy to reduce the ohmic drop in alkaline water electrolyzers for hydrogen production. We provide a thorough account of the current–voltage relationship in such a zero-gap configuration over a wide range of electrolyte concentrations and current densities. Included are voltage components that are not often experimentally quantified like those due to bubbles hydroxide depletion and dissolved hydrogen and oxygen. As is commonly found for zero-gap configurations the ohmic resistance was substantially larger than that of the separator. We find that this is because the relatively flat electrode area facing the diaphragm was not active likely due to separator pore blockage by gas the electrode itself and or solid deposits. Over an e-folding time-scale of ten seconds an additional ohmic drop was found to arise likely due to gas bubbles in the electrode holes. For electrolyte concentrations below 0.5 M an overpotential was observed associated with local depletion of hydroxide at the anode. Finally a high supersaturation of hydrogen and oxygen was found to significantly increase the equilibrium potential at elevated current densities. Most of these voltage losses are shown to be easily avoidable by introducing a small 0.2 mm gap greatly improving the performance compared to zero-gap.
Analysing the Prospects of Grid-connected Green Hydrogen Production in Predominantly Fossil-based Countries - A Case Study of South Africa
Aug 2024
Publication
Importing substantial amount of green hydrogen from countries like South Africa which have abundant solar and wind potentials to replace fossil fuels has attracted interest in developed regions. This study analyses South African strategies for improving and decarbonizing the power sector while also producing hydrogen for export. These strategies include the Integrated Resource Plan the Transmission Development Plan Just Energy Transition and Hydrogen Society Roadmap for grid connected hydrogen production in 2030. Results based on an hourly resolution optimisation in Plexos indicate that annual grid-connected hydrogen production of 500 kt can lead to a 20–25% increase in the cost of electricity in scenarios with lower renewable energy penetration due to South African emission constraints by 2030. While the price of electricity is still in acceptable range and the price of hydrogen can be competitive on the international market (2–3 USD/kgH2 for production) the emission factor of this hydrogen is higher than the one of grey hydrogen ranging from 13 to 24 kgCO2/kgh2. When attempting to reach emission factors based on EU directives the three policy roadmaps become unfeasible and free capacity expansion results in significant sixteen-fold increase of wind and seven-fold increase in solar installations compared to 2023 levels by 2030 in South Africa.
Profitability of Hydrogen Production: Assessment of Investments in Electrolyser Under Various Market Circumstances
Aug 2024
Publication
Although hydrogen is increasingly seen as a crucial energy carrier in future zero-carbon energy system a profitable exploitation of electrolysers requires still high amounts of subsidies. To analyze the profitability of electrolysers attention has to be paid not only to the costs but also to the interaction between electricity and hydrogen markets. Using a model of internationally integrated electricity and hydrogen markets this paper analyses the profitability of electrolysers plants in various future market circumstances. We find that in particular the future supply of renewable electricity the demand for electricity as well as the prices of natural gas and carbon strongly affect the profitability of electrolysis. In order to make massive investments in electrolysers profitable with significantly lower subsidy requirements the amount of renewable electricity generation needs to grow strongly and the carbon prices should be higher while the demand for electricity should not increase accordingly. This research underscores the critical role of market conditions in shaping the viability of hydrogen electrolysis providing valuable insights for policymakers and stakeholders in the transition to a zero-carbon energy system.
The Future Role of Offshore Renewable Energy Technologies in the North Sea Energy System
Jul 2024
Publication
Offshore renewables are expected to play a significant role in achieving the ambitious emission targets set by the North Sea countries. Among other factors energy technology costs and their cost reduction potential determine their future role in the energy system. While fixed-bottom offshore wind is well-established and competitive in this region generation costs of other emerging offshore renewable technologies remain high. Hence it is vital to better understand the future role of offshore renewables in the North Sea energy system and the impact of technological learning on their optimal deployments which is not well-studied in the current literature. This study implements an improved framework of integrated energy system analysis to overcome the stated knowledge gap. The approach applies detailed spatial constraints and opportunities of energy infrastructure deployment in the North Sea and also technology cost reduction forecasts of offshore renewables. Both of these parameters are often excluded or overlooked in similar analyses leading to overestimation of benefits and technology deployments in the energy system. Three significant conclusions are derived from this study. First offshore wind plays a crucial role in the North Sea power sector where deployment grows to a maximum of 498 GW by 2050 (222 GW of fixed-bottom and 276 GW of floating wind) from 100 GW in 2030 contributing up to 51% of total power generation and declining cumulative system cost of power and hydrogen system by 4.2% (approx. 40 billion EUR in cost savings) when compared with the slow learning and constrained space use case. Second floating wind deployment is highly influenced by its cost reduction trend and ability to produce hydrogen offshore; emphasizing the importance of investing in floating wind in this decade as the region lacks commercial deployments that would stimulate its cost reduction. Also the maximum floating wind deployment in the North Sea energy system declined by 70% (162 GW from 276 GW) when offshore hydrogen production was avoided while fixed-bottom offshore wind deployment remains unchanged. Lastly the role of other emerging offshore renewables remains limited in all scenarios considered as they are expensive compared to other technology choices in the system. However around 8 GW of emerging technologies was observed in Germany and the Netherlands when the deployment potential of fixed-bottom offshore wind became exhausted.
Lessons Learned from Large Scale Hydrogen Production Project
Sep 2023
Publication
In August 2022 Shell started construction of Holland Hydrogen I (HH I) a 200 MW electrolyser plant in the port of Rotterdam’s industrial zone on Maasvlakte II in the Netherlands. HH I will produce up to 60000 kg of renewable hydrogen per day. The development and demonstration of a safe layout and plant design had been challenging due to ambitious HH I project premises many technical novelties common uncertainties in hydrogen leak effect prediction a lack of large-scale water electrolyzer operating history and limited standardization in this industry sector. This paper provides an industry perspective of the major challenges in commercial electrolyzer plant HSSE risk assessment and risk mitigation work processes required to develop and demonstrate a safe design and it describes lessons learned in this area during the HH I project. Furthermore the paper lists major common gaps in relevant knowledge engineering tools standards and OEM deliverables that need closure to enable future commercial electrolyzer plant projects to develop an economically viable and plant design and layout more efficiently and cost-effectively.
Hydrogen Related Accidents and Lesson Learned from Events Reported in the East Continental Asia
Sep 2023
Publication
Hydrogen as an energy carrier plays an important role in carbon neutrality and energy transition. Hydrogen is the lightest element with a density of only 0.08375 kg/m3 in gaseous form at standard temperature and pressure (STP); as a result hydrogen is usually stored and transported in a highly compressed form. It is prone to leakage and has a very low ignition energy of 0.017 mJ. Safety remains a challenge in the use of hydrogen as an energy source. This paper examines approximately 20 hydrogen-related accidents in China over a 20-year period focusing on the root causes consequences of the accidents and responses to them. These accidents occurred in the production storage transport and application of hydrogen with different causes in different locations and resulting in losses at different scales. Some statistical evaluations were conducted to learn lessons from the accidents. The main objective of this paper is (i) to retrieve a set of hydrogen related incidents from a region which is under-represented in incident repositories (ii) to contribute to a generalised lesson learned from them and (iii) to assist the definition of realistic scenarios for commonly occurring hydrogen accidents.
AMHYCO Project - Advances in H2/CO Combustion, Recombination and Containment Modelling
Sep 2023
Publication
During a severe accident in a nuclear power plant one of the potential threats to the containment is the occurrence of energetic combustion events. In modern plants Severe Accident Management Guidelines (SAMG) as well as dedicated mitigation hardware are in place to minimize/mitigate this combustion risk and thus avoid the release of radioactive material into the environment. Advancements in SAMGs are in the focus of AMHYCO an EU-funded Horizon 2020 project officially launched on October 1st 2020. The project consortium consists of 12 organizations (from six European countries and one from Canada) and is coordinated by the Universidad Politécnica de Madrid (UPM). The progress made in the first two years of the AMHYCO project is here presented. A comprehensive bibliographic review has been conducted providing a common foundation to build the knowledge gained during the project. After an extensive set of accident transients simulated both for phases occurring inside and outside the reactor pressure vessel a set of challenging sequences from the combustion risk perspective for different power plant types were identified. At the same time three generic containment models for the three considered reactor designs have been created to provide the full containment analysis simulations with lumped parameter models 3-dimensional containment codes and CFD codes. In order to further consolidate the model base combustion experiments and performance tests on passive auto-catalytic recombiners under explosion prone H2/CO atmospheres were performed at CNRS (France) and FZJ (Germany). Finally it is worth saying that the experimental data and engineering models generated from the AMHYCO project are useful for other industries outside the nuclear one.
Towards Renewable Hydrogen-based Electrolysis: Alkaline vs Proton Exchange Membrane
Jul 2023
Publication
This paper focuses on the battle for a dominant design for renewable hydrogen electrolysis in which the designs alkaline and proton exchange membrane compete for dominance. First a literature review is performed to determine the most relevant factors that influence technology dominance. Following that a Best Worst Method analysis is conducted by interviewing multiple industry experts. The most important factors appear to be: Price Safety Energy consumption Flexibility Lifetime Stack size and Materials used. The opinion of experts on Proton Exchange Membrane and alkaline electrolyser technologies is slightly skewed in favour of alkaline technologies. However the margin is too small to identify a winner in this technology battle. The following paper contributes to the ongoing research on modelling the process of technology selection in the energy sector.
Selection Criteria and Ranking for Sustainable Hydrogen Production Options
Aug 2022
Publication
This paper aims to holistically study hydrogen production options essential for a sustainable and carbon-free future. This study also outlines the benefits and challenges of hydrogen production methods to provide sustainable alternatives to fossil fuels by meeting the global energy demand and net-zero targets. In this study sixteen hydrogen production methods are selected for sustainability investigation based on seven different criteria. The criteria selected in the comparative evaluation cover various dimensions of hydrogen production in terms of economic technical environmental and thermodynamic aspects for better sustainability. The current study results show that steam methane reforming with carbon capture could provide sustainable hydrogen in the near future while the other technologies’ maturity levels increase and the costs decrease. In the medium- and long-terms photonic and thermal-based hydrogen production methods can be the key to sustainable hydrogen production.
Techno-economic Analysis of Developing an Underground Hydrogen Storage Facility in Depleted Gas Field: A Dutch Case Study
Apr 2023
Publication
Underground hydrogen storage will be an essential part of the future hydrogen infrastructure to provide flexibility and security of supply. Storage in porous reservoirs should complement storage in salt caverns to be able to meet the projected high levels of required storage capacities. To assess its techno-economic feasibility a case study of hydrogen storage in a depleted gas field in the Netherlands is developed. Subsurface modelling is performed and various surface facility design concepts are investigated to calculate the levelized cost of hydrogen storage (LCOHS). Our base case with hydrogen as cushion gas results in an LCOHS of 0.79 EUR/kg (range of 0.58–1.04 EUR/kg). Increasing the number of full-cycle equivalents from 1 to 6 lowers the storage cost to 0.25 EUR/kg. The investment cost of the cushion gas represents 76% of the total cost. With nitrogen as cushion gas LCOHS is reduced to 0.49 EUR/kg (range of 0.42–0.56 EUR/kg).
Hydrogen Fuel Quality from Two Main Production Processes: Steam Methane Reforming and Proton Exchange Membrane Water Electrolysis
Oct 2019
Publication
Thomas Bacquart,
Karine Arrhenius,
Stefan Persijn,
Andrés Rojo,
Fabien Auprêtre,
Bruno Gozlan,
Abigail Morris,
Andreas Fischer,
Arul Murugan,
Sam Bartlett,
Niamh Moore,
Guillaume Doucet,
François Laridant,
Eric Gernot,
Teresa E. Fernandez,
Concepcion Gomez,
Martine Carré,
Guy De Reals and
Frédérique Haloua
The absence of contaminants in the hydrogen delivered at the hydrogen refuelling station is critical to ensure the length life of FCEV. Hydrogen quality has to be ensured according to the two international standards ISO 14687–2:2012 and ISO/DIS 19880-8. Amount fraction of contaminants from the two hydrogen production processes steam methane reforming and PEM water electrolyser is not clearly documented. Twenty five different hydrogen samples were taken and analysed for all contaminants listed in ISO 14687-2. The first results of hydrogen quality from production processes: PEM water electrolysis with TSA and SMR with PSA are presented. The results on more than 16 different plants or occasions demonstrated that in all cases the 13 compounds listed in ISO 14687 were below the threshold of the international standards. Several contaminated hydrogen samples demonstrated the needs for validated and standardised sampling system and procedure. The results validated the probability of contaminants presence proposed in ISO/DIS 19880-8. It will support the implementation of ISO/ DIS 19880-8 and the development of hydrogen quality control monitoring plan. It is recommended to extend the study to other production method (i.e. alkaline electrolysis) the HRS supply chain (i.e. compressor) to support the technology growth.
An Approach for Sizing a PV-battery-electrolyzer-fuel cell Energy System: A Cast Study at a Field Lab
May 2023
Publication
Hydrogen is becoming increasingly popular as a clean secure and affordable energy source for the future. This study develops an approach for designing a PV–battery–electrolyzer–fuel cell energy system that utilizes hydrogen as a long-term storage medium and battery as a short-term storage medium. The system is designed to supply load demand primarily through direct electricity generation in the summer and indirect electricity generation through hydrogen in the winter. The sizing of system components is based on the direct electricity and indirect hydrogen demand with a key input parameter being the load sizing factor which determines the extent to which hydrogen is used to meet seasonal imbalance. Technical and financial indicators are used to assess the performance of the designed system. Simulation results indicate that the energy system can effectively balance the seasonal variation of renewable generation and load demand with the use of hydrogen. Additionally guidelines for achieving self-sufficiency and system sustainability for providing enough power in the following years are provided to determine the appropriate component size. The sensitivity analysis indicates that the energy system can achieve self-sufficiency and system sustainability with a proper load sizing factor from a technical perspective. From an economic perspective the levelized cost of energy is relatively high because of the high costs of hydrogen-related components at this moment. However it has great economic potential for future self-sufficient energy systems with the maturity of hydrogen technologies.
Multi-option Analytical Modeling of Levelised Costs Across Various Hydrogen Supply Chain Nodes
May 2024
Publication
Hydrogen is envisioned to become a fundamental energy vector for the decarbonization of energy systems. Two key factors that will define the success of hydrogen are its sustainability and competitiveness with alternative solutions. One of the many challenges for the proliferation of hydrogen is the creation of a sustainable supply chain. In this study a methodology aimed at assessing the economic feasibility of holistic hydrogen supply chains is developed. Based on the designed methodology a tool which calculates the levelized cost of hydrogen for the different stages of its supply chain: production transmission & distribution storage and conversion is proposed. Each stage is evaluated individually combining relevant technical and economic notions such as learning curves and scaling factors. Subsequently the findings from each stage are combined to assess the entire supply chain as a whole. The tool is then applied to evaluate case studies of various supply chains including large-scale remote and small-scale distributed green hydrogen supply chains as well as conventional steam methane reforming coupled with carbon capture and storage technologies. The results show that both green hydrogen supply chains and conventional methods can achieve a competitive LCOH of around €4/kg in 2030. However the key contribution of this study is the development of the tool which provides a foundation for a comprehensive evaluation of hydrogen supply chains that can be continuously improved through the inputs of additional users and further research on one or more of the interconnected stages.
Calibration Facilities and Test Results for Gas Network Hydrogen and Hydrogen Enriched Natural Gas Flow Meters
Jul 2025
Publication
The transition to a decarbonized gas network requires the adaptation of existing infrastructure to accommodate hydrogen and hydrogen-enriched natural gas. This study presents the development of calibration facilities at NEL VSL and DNV for evaluating the performance of flow meters under hydrogen conditions. Nine flow meters were tested covering applications from household consumption to distribution networks. Results demonstrated that rotary displacement meters and diaphragm meters are typically suitable for hydrogen and hydrogenenriched natural gas domestic and commercial consumers use. Tests results for an orifice meter confirmed that a discharge coefficient calibrated with nitrogen can be reliably used for hydrogen by matching Reynolds numbers. Thermal mass flow meters when not configured for the specific test gas exhibited significant errors emphasizing the necessity of gas-specific calibration and configuration. Turbine meters showed predictable error trends influenced by Reynolds number and bearing friction with natural gas calibration providing reliable hydrogen and hydrogen-enriched natural gas performance in the Reynolds domain. It was confirmed that ultrasonic meter performance varies by manufacturers with some meter models requiring a correction for gas composition bias when used in hydrogen enriched natural gas applications. These findings provide critical experimental data to guide future hydrogen metering standards and infrastructure adaptations supporting the European Union’s goal of integrating hydrogen into the gas network.
Enabling Industrial Decarbonization: A MILP Optimization Model for Low-carbon Hydrogen Supply Chains
Jun 2024
Publication
This study develops a an optimization model focused on the layout and dispatch of a low-carbon hydrogen supply chain. The objective is to identify the lowest Levelized Cost of Hydrogen for a given demand. The model considers various elements including electricity supply from the local grid and renewable sources (photovoltaic and wind) alongside hydrogen production compression storage and transportation to end users. Applied to an industrial case study in Sweden the findings indicate that the major cost components are linked to electricity generation and investment in electrolyzers with the LCOH reaching 5.2 EUR/kgH2 under typical demand conditions. Under scenarios with higher peak demands and greater demand volatility the LCOH increases to 6.8 EUR/kgH2 due to the need for additional renewable energy capacity. These results highlight the critical impact of electricity availability and demand fluctuations on the LCOH emphasizing the complex interdependencies within the hydrogen supply chain. This study provides valuable insights into the feasibility and cost-effectiveness of adopting hydrogen as an energy carrier for renewable electricity in the context of decarbonizing industrial processes in the energy system.
Maximisation of PV Energy Use and Performance Analysis of a Stand-alone PV-hydrogen System
Sep 2023
Publication
The development of clean hydrogen and photovoltaic (PV) systems is lagging behind the goals set in the Net Zero Emissions scenario of the International Energy Agency. For this reason efficient hydrogen production systems powered from renewable energy need to be deployed faster. This work presents an optimization procedure for a stand-alone fully PVpowered alkaline electrolysis system. The approach is based on the Particle Swarm Optimization algorithm to obtain the best configuration of the PV plant that powers the electrolyzer and its compressor. The best configuration is determined with one of three indicators: cost efficiency or wasted energy. The PV plant needs to be oversized 2.63 times with respect to the electrolyzer to obtain minimum cost while for high efficiency this number increases by 2%. Additionally the configuration that minimizes cost wasted energy or maximizes efficiency does not correspond to the configuration that maximizes the annual PV yield. Optimizing for cost results also leads to the best operation of the electrolyzer at partial loads than optimizing for efficiency or wasted energy.
The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage
Jul 2025
Publication
Fluid dispersion directly influences the transport mixing and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters such as pore size throat geometry and connectivity influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence these factors are critical for predicting and controlling flow behavior in the reservoirs. Despite its importance the relationship between pore structure and dispersion remains poorly quantified particularly under elevated flow conditions. To address this gap this study employs pore network modeling (PNM) to investigate the influence of sandstone and carbonate structures on fluid flow properties at the micro-scale. Eleven rock samples comprising seven sandstone and four carbonate were analyzed. Pore network extraction from CT images was used to obtain detailed pore structure parameters and their statistical measures. Pore-scale simulations were conducted across 60 scenarios with varying average interstitial velocities and water as the injected fluid. Effluent hydrogen concentrations were measured to generate elution curves as a function of injected pore volumes (PV). This approach enables the assessment of the relationship between the dispersion coefficient and pore structure parameters across all rock samples at consistent average interstitial velocities. Additionally dispersivity and n-exponent values were calculated and correlated with pore structure parameters.
Interdisciplinary Perspectives on Offshore Energy System Integration in the North Sea: A Systematic Literature Review
Oct 2023
Publication
To facilitate the rapid and large-scale developments of offshore wind energy scholars policymakers and infrastructure developers must start considering its integration into the larger onshore energy system. Such offshore system integration is defined as the coordinated approach to planning and operation of energy generation transport and storage in the offshore energy system across multiple energy carriers and sectors. This article conducts a systematic literature review to identify infrastructure components of offshore energy system integration (including alternative cable connections offshore energy storage and power-to-hydrogen applications) and barriers to their development. An interdisciplinary perspective is provided where current offshore developments require not only mature and economically feasible technologies but equally strong legal and governance frameworks. The findings demonstrate that current literature lacks a holistic perspective on the offshore energy system. To date techno-economic assessments solving challenges of specific infrastructure components prevail over an integrated approach. Nevertheless permitting issues gaps in legal frameworks strict safety and environmental regulations and spatial competition also emerge as important barriers. Overall this literature review emphasizes the necessity of aligning various disciplines to provide a fundamental approach for the development of an integrated offshore energy system. More specifically timely policy and legal developments are key to incentivize technical development and enable economic feasibility of novel components of offshore system integration. Accordingly to maximize real-world application and policy learning future research will benefit from an interdisciplinary perspective.
Opportunities for Production and Utilization of Green Hydrogen in the Philippines
Jun 2021
Publication
The Philippines is exploring different alternative sources of energy to become energy-independent while significantly reducing the country’s greenhouse gas emissions. Green hydrogen from renewable energy is one of the most sustainable alternatives with its application as an energy carrier and as a source of clean and sustainable energy as well as raw material for various industrial processes. As a preliminary study in the country this paper aims to explore different production and utilization routes for a green hydrogen economy in the Philippines. Production from electrolysis includes various available renewable sources consisting of geothermal hydropower wind solar and biomass as well as ocean technology and nuclear energy when they become available in the future. Different utilization routes include the application of green hydrogen in the transportation power generation industry and utility sectors. The results of this study can be incorporated in the development of the pathways for hydrogen economy in the Philippines and can be applied in other emerging economies.
Life Cycle Assessments Use in Hydrogen-related Policies: The Case for a Harmonized Methodology Addressing Multifunctionality
May 2024
Publication
Legislation regulating the sustainability requirements for hydrogen technologies relies more and more on life cycle assessments (LCAs). Due to different scopes and development processes different pieces of EU legislation refer to different LCA methodologies with differences in the way multifunctional processes (i.e. co-productions recycling and energy recovery) are treated. These inconsistencies arise because incentive mechanisms are not standardized across sectors even though the end product hydrogen remains the same. The goal of this paper is to compare the life-cycle greenhouse gas (GHG) emissions of hydrogen from four production pathways depending on the multifunctional approach prescribed by the different EU policies (e.g. using substitution or allocation). The study reveals a large variation in the LCA results. For instance the life-cycle GHG emissions of hydrogen co-produced with methanol is found to vary from 1 kg CO2-equivalent/kg H2 (when mass allocation is considered) to 11 kg CO2-equivalent/kg H2 (when economic allocation is used). These inconsistencies could affect the market (e.g. hydrogen from a certain pathway could be considered sustainable or unsustainable depending on the approach) and the environment (e.g. pathways that do not lead to a global emission reduction could be promoted). To mitigate these potential negative effects we urge for harmonized and strict guidelines to assess the life-cycle GHG emissions of hydrogen technologies in an EU policy context. Harmonization should cover international policies too to avoid the same risks when hydrogen will be traded based on its GHG emissions. The appropriate methodological approach for each production pathway should be chosen by policymakers in collaboration with the LCA community and stakeholders from the industry based on the potential market and environmental consequences of such choice.
Green Hydrogen for Ammonia Production - A Case for the Netherlands
Jul 2023
Publication
An integrated system is studied to supply green hydrogen feedstock for ammonia production in the Netherlands. The system is modeled to compare wind and solar resources when coupled to Alkaline Electrolysis (AEL) and Proton Exchange Membrane Electrolysis (PEMEL) technologies with a compressed hydrogen storage system. The nominal installed capacity of the electrolysis plant is around 2.3 GW with the most suitable energy source offshore wind and the preferred storage technology pressurized tubes. For Alkaline Electrolysis and Proton Exchange Membrane Electrolysis technologies the levelized cost of hydrogen is 5.30 V/kg H2 and 6.03 V/kg H2 respectively.
Simulation and Analysis of Hybrid Hydrogen-battery Renewable Energy Storage for Off-electric-grid Dutch Household System
May 2024
Publication
The intermittency of renewable energy technologies requires adequate storage technologies. Hydrogen systems consisting of electrolysers storage tanks and fuel cells can be implemented as well as batteries. The requirements of the hydrogen purification unit is missing from literature. We measured the same for a 4.5 kW PEM electrolyser to be 0.8 kW for 10 min. A simulation to hybridize the hydrogen system including its purification unit with lithium-ion batteries for energy storage is presented; the batteries also support the electrolyser. We simulated a scenario for operating a Dutch household off-electric-grid using solar and wind electricity to find the capacities and costs of the components of the system. Although the energy use of the purification unit is small it influences the operation of the system affecting the sizing of the components. The battery as a fast response efficient secondary storage system increases the ability of the electrolyser to start up.
Electrocatalysts for the Generation of Hydrogen, Oxygen and Synthesis Gas
Sep 2016
Publication
Water electrolysis is the most promising method for efficient production of high purity hydrogen (and oxygen) while the required power input for the electrolysis process can be provided by renewable sources (e.g. solar or wind). The thus produced hydrogen can be used either directly as a fuel or as a reducing agent in chemical processes such as in Fischer–Tropsch synthesis. Water splitting can be realized both at low temperatures (typically below 100 °C) and at high temperatures (steam water electrolysis at 500– 1000 °C) while different ionic agents can be electrochemically transferred during the electrolysis process (OH− H+ O2− ). Singular requirements apply in each of the electrolysis technologies (alkaline polymer electrolyte membrane and solid oxide electrolysis) for ensuring high electrocatalytic activity and long-term stability. The aim of the present article is to provide a brief overview on the effect of the nature and structure of the catalyst–electrode materials on the electrolyzer’s performance. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The current trends limitations and perspectives for future developments are summarized for the diverse electrolysis technologies of water splitting while the case of CO2/H2O co-electrolysis (for synthesis gas production) is also discussed.
Impact of Capillary Pressure Hysteresis and Injection-withdrawal Scehemes on Performance of Underground Hydrogen Storage
Oct 2023
Publication
Underground hydrogen storage in depleted hydrocarbon reservoirs and aquifers has been proposed as a potential long-term solution to storing intermittently produced renewable electricity as the subsurface formations provide secure and large storage space. Various phenomena can lead to hydrogen loss in subsurface systems with the key cause being the trapping especially during the withdrawal cycle. Capillary trapping in particular is strongly related to the hysteresis phenomena observed in the capillary pressure/saturation and relative-permeability/saturation curves. This paper address two key points: (1) the sole impact of hysteresis in capillary pressure on hydrogen trapping during withdrawal cycles and (2) the dependency of optimal operational parameters (injection/withdrawal flow rate) and the reservoir characteristics such as permeability thickness and wettability of the porous medium on the remaining hydrogen saturation.<br/>Model<br/>To study the capillary hysteresis during underground hydrogen storage Killough [1] model was implemented in the MRST toolbox [2]. A comparative study was performed to quantify the impact of changes in capillary pressure behaviour by including and excluding the hysteresis and scanning curves. Additionally this study investigates the impact of injection/withdrawal rates and the aquifer permeability for various capillary and Bond numbers in a homogeneous system.<br/>Findings<br/>It was found that although the hydrogen storage efficiency is not considerably impacted by the inclusion of the capillary-pressure scanning curves the impact of capillary pressure on the well properties (withdrawal rate and pressure) can become significant. Higher injection and withdrawal rates does not necessarily lead to a better performance in terms of productivity. The productivity enhancement depends on the competition between gravitational capillary and viscous forces. The observed water upconing at relatively high capillary numbers resulted in low hydrogen productivity. highlighting the importance of well design and placement.
Meeting the Challenges of Large-scale Carbon Storage and Hydrogen Production
Mar 2023
Publication
There is a pressing need to rapidly and massively scale up negative carbon strategies such as carbon capture and storage (CCS). At the same time large-scale CCS can enable ramp-up of large-scale hydrogen production a key component of decarbonized energy systems. We argue here that the safest and most practical strategy for dramatically increasing CO2 storage in the subsurface is to focus on regions where there are multiple partially depleted oil and gas reservoirs. Many of these reservoirs have adequate storage capacity are geologically and hydrodynamically well understood and are less prone to injection-induced seismicity than saline aquifers. Once a CO2 storage facility is up and running it can be used to store CO2 from multiple sources. Integration of CCS with hydrogen production appears to be an economically viable strategy for dramatically reducing greenhouse gas emissions over the next decade particularly in oil- and gas-producing countries where there are numerous depleted reservoirs that are potentially suitable for large-scale carbon storage.
Impact on Canadian Residential End Use Appliances with the Introduction of Hydrogen into the Natural Gas Stream - An Application
Sep 2023
Publication
Canada’s commitment to be net-zero by 2050 combined with ATCO’s own Environmental Social and Governance goals has led ATCO to pursue hydrogen blending within the existing natural gas system to reduce CO2 emissions while continuing to provide safe reliable energy service to customers. Utilization of hydrogen in the distribution system is the least-cost alternative for decarbonizing the heating loads in jurisdictions like Alberta where harsh winter climates are encountered and low-carbon hydrogen production can be abundant. ATCO’s own Fort Saskatchewan Hydrogen Blending Project began blending 5% hydrogen by volume to over 2100 customers in the Fall of 2022 and plans to increase the blend rates to 20% hydrogen in 2023. Prior to blending ATCO worked together with DNV to examine the impact of hydrogen blended natural gas to twelve Canadian appliances: range/stove oven garage heater high and medium efficiency furnaces conventional and on demand hot water heaters barbeque clothes dryer radiant heater and two gas fireplaces. The tests were performed not only within the planned blend rates of 0-20% hydrogen but also to higher percentages to determine how much hydrogen can be blended into a system before appliance retrofits would be required. The testing was designed to get insights on safety-related combustion issues such as flash-back burner overheating flame detection and other performance parameters such as emissions and burner power. The experimental results indicate that the radiant heater is the most sensitive appliance for flashback observed at 30 vol% hydrogen in natural gas. At 50% hydrogen the range and the radiant burner of the barbeque tested were found to be sensitive to flashback. All other 9 appliances were found to be robust for flashback with no other short-term issues observed. This paper will detail the findings of ATCO and DNV’s appliance testing program including results on failure mechanisms and sensitivities for each appliance.
Renewable Hydrogen Production: A Techno-economic Comparison of Photoelectrochemical Cells and Photovoltaic-electrolysis
Aug 2020
Publication
The present paper reports a techno-economic analysis of two solar assisted hydrogen production technologies: a photoelectrochemical (PEC) system and its major competitor a photovoltaic system connected to a conventional water electrolyzer (PV-E system). A comparison between these two types was performed to identify the more promising technology based on the levelized cost of hydrogen (LCOH). The technical evaluation was carried out by considering proven designs and materials for the PV-E system and a conceptually design for the PEC system extrapolated to future commercial scale. The LCOH for the off-grid PV-E system was found to be 6.22 $/kgH2 with a solar to hydrogen efficiency of 10.9%. For the PEC system with a similar efficiency of 10% the LCOH was calculated to be much higher namely 8.43 $/kgH2. A sensitivity analysis reveals a great uncertainty in the LCOH of the prospective PEC system. This implies that much effort would be needed for this technology to become competitive on the market. Therefore we conclude that the potential techno-economic benefits that PEC systems offer over PV-E are uncertain and even in the best case limited. While research into photoelectrochemical cells remains of interest it presents a poor case for dedicated investment in the technology’s development and scale-up.
Electricity Supply Configurations for Green Hydrogen Hubs: A European Case Study on Decarbonizing Urban Transport
Aug 2024
Publication
In this study a techno-economic analysis tool for conducting detailed feasibility studies on the deployment of green hydrogen hubs for fuel cell bus fleets is developed. The study evaluates and compares five green hydrogen hub configurations’ operational and economic performance under a typical metropolitan bus fleet refuelling schedule. Each configuration differs based on its electricity sourcing characteristics such as the mix of energy sources capacity sizing financial structure and grid interaction. A detailed comparative analysis of distinct green hydrogen hub configurations for decarbonising a fleet of fuel-cell buses is conducted. Among the key findings is that a hybrid renewable electricity source and hydrogen storage are essential for cost-optimal operation across all configurations. Furthermore bi-directional grid-interactive configurations are the most costefficient and can benefit the electricity grid by flattening the duck curve. Lastly the paper highlights the potential for cost reduction when the fleet refuelling schedule is co-optimized with the green hydrogen hub electricity supply configuration.
Dynamic Hydrogen Demand Forecasting Using Hybrid Time Series Models: Insights for Renewable Energy Systems
Feb 2025
Publication
Hydrogen is gaining traction as a key energy carrier due to its clean combustion high energy content and versatility. As the world shifts towards sustainable energy hydrogen demand is rapidly increasing. This paper introduces a novel hybrid time series modeling approach designed and developed to accurately predict hydrogen demand by mixing linear and nonlinear models and accounting for the impact of non-recurring events and dynamic energy market changes over time. The model incorporates key economic variables like hydrogen price oil price natural gas price and gross domestic product (GDP) per capita. To address these challenges we propose a four-part framework comprising the Hodrick–Prescott (HP) filter the autoregressive fractionally integrated moving average (ARFIMA) model the enhanced empirical wavelet transform (EEWT) and high-order fuzzy cognitive maps (HFCM). The HP filter extracts recurring structural patterns around specific data points and resolves challenges in hybridizing linear and nonlinear models. The ARFIMA model equipped with statistical memory captures linear trends in the data. Meanwhile the EEWT handles non-stationary time series by adaptively decomposing data. HFCM integrates the outputs from these components with ridge regression fine-tuning the HFCM to handle complex time series dynamics. Validation using stochastic non-Gaussian synthetic data demonstrates that this model significantly enhances prediction performance. The methodology offers notable improvements in prediction accuracy and stability compared to existing models with implications for optimizing hydrogen production and storage systems. The proposed approach is also a valuable tool for policy formulation in renewable energy and smart energy transitions offering a robust solution for forecasting hydrogen demand
Preliminary Safety Assessment of a Liquid Hydrogen Storage System for Commercial Aviation
Mar 2025
Publication
The development of liquid hydrogen storage systems is a key aspect to enable future clean air transportation. However safety analysis research for such systems is still limited and is hindered by the limited experience with liquid hydrogen storage in aviation. This paper presents the outcomes of a preliminary safety assessment applied to this new type of storage system accounting for the hazards of hydrogen. The methodology developed is based on hazard identification and frequency evaluation across all system features to identify the most critical safety concerns. Based on the safety assessment a set of safety recommendations concerning different subsystems of the liquid hydrogen storage system is proposed identifying hazard scopes and necessary mitigation actions across various system domains. The presented approach has been proven to be suitable for identifying essential liquid hydrogen hazards despite the novelty of the technology and for providing systematic design recommendations at a relatively early design stage.
Lessons Learned from HIAD 2.0: Inspection and Maintenance to Avoid Hydrogen-induced Material Failures
Feb 2023
Publication
Hydrogen has the potential to make countries energetically self-sufficient and independent in the long term. Nevertheless its extreme combustion properties and its capability of permeating and embrittling most metallic materials produce significant safety concerns. The Hydrogen Incidents and Accidents Database 2.0 (HIAD 2.0) is a public repository that collects data on hydrogen-related undesired events mainly occurred in chemical and process industry. This study conducts an analysis of the HIAD 2.0 database mining information systematically through a computer science approach known as Business Analytics. Moreover several hydrogen-induced ma terial failures are investigated to understand their root causes. As a result a deficiency in planning effective inspection and maintenance activities is highlighted as the common cause of the most severe accidents. The lessons learned from HIAD 2.0 could help to promote a safety culture to improve the abnormal and normal events management and to stimulate a widespread rollout of hydrogen technologies.
Hydrogen Distribution in the Netherlands: Addressing Ambiguities in the Regulatory Framework
Aug 2025
Publication
Hydrogen is increasingly recognized as a key solution for decarbonizing the Dutch energy system particularly within the industrial sector. A national hydrogen network is under development to serve the five major industrial clusters in the Netherlands. However meeting the hydrogen needs of the industries outside these clusters which are collectively known as “Cluster 6” remains difficult. Regulatory unclarity and ambiguity around the hydrogen distribution infrastructure including restrictions on distribution system operators (DSOs) compound these challenges. This study investigates the complex and evolving regulatory landscape for hydrogen distribution across Cluster 6 in the Netherlands using a two-step approach of Institutional Network Analysis (INA) and stakeholder interviews. Findings outline possible pathways for delegating distribution responsibilities in current and future regulatory frameworks while stakeholders report structural and outcome uncertainty limiting their willingness to invest in hydrogen distribution initiatives. The research findings highlight the need for a more coherent regulatory and technical framework to support more effective development of physical hydrogen systems. Policy recommendations include clarification of distributor roles targeted support mechanisms and flexible regulations that can adapt to the rapidly developing hydrogen market.
How Company History and Hydrogen Type Shape Public Trust and Acceptability: A Reputation Management Perspective
Aug 2025
Publication
Hydrogen is gaining interest as a clean energy source from both governments and fossil fuel companies. For hydrogen projects to succeed securing public acceptability is crucial with trust in the implementing actors playing a central role. Drawing from reputation management and attribution theory we experimentally evaluated whether people’s perceptions of energy companies wanting to start producing hydrogen for sustainability reasons differ based on two features of hydrogen production. Specifically we examined the influence of (1) the type of hydrogen (blue versus green) and (2) the energy company’s history in energy production (fossil fuels versus renewables) on perceptions about the companies’ reputation management efforts —that is the belief that companies adopt hydrogen primarily to improve their public image— as well as on levels of trust both overall and specifically in terms of integrity and competence. We further explored whether perceived reputation management explains the effects on trust and whether these factors also shape public acceptability of hydrogen production itself. Results indicated that people perceived the company with a history of working with fossil fuels as trying to improve its reputation more than one associated with renewables and trusted it less. Furthermore perceived reputation management explained the lower (general and integrity-based) trust people had in companies with a past in fossil fuels. For public acceptability of hydrogen the company’s history was not relevant with green hydrogen being more acceptable than blue regardless of which company produced it. We discuss these findings in relation to the literature on public perceptions of hydrogen.
The Many Greenhouse Gas Footprints of Green Hydrogen
Aug 2022
Publication
Green hydrogen could contribute to climate change mitigation but its greenhouse gas footprint varies with electricity source and allocation choices. Using life-cycle assessment we conclude that if electricity comes from additional renewable capacity green hydrogen outperforms fossil-based hydrogen. In the short run alternative uses of renewable electricity likely achieve greater emission reductions.
Prospective LCA of Alkaline and PEM Electrolyser Systems
Nov 2023
Publication
This prospective life cycle assessment (LCA) compares the environmental impacts of alkaline electrolyser (AE) and proton exchange membrane (PEM) electrolyser systems for green hydrogen production with a special focus on the stack components. The study evaluates both baseline and near-future advanced designs considering cradle-to-gate life cycle from material production to operation. The electricity source followed by the stacks are identified as major contributors to environmental impacts. No clear winner emerges between AE and PEM in relation to environmental impacts. The advanced designs show a reduced impact in most categories compared to baseline designs which can mainly be attributed to the increased current density. Advanced green hydrogen production technologies outperform grey and blue hydrogen production technologies in all impact categories except for minerals and metals resource use due to rare earth metals in the stacks. Next to increasing current density decreasing minimal load requirements. improving sustainable mining practices (including waste treatment) and low carbon intensity steel production routes can enhance the environmental performance of electrolyser systems aiding the transition to sustainable hydrogen production.
Alkaline Electrolysis for Green Hydrogen Production: A Novel, Simple Model for Thermo-electrochemical Coupled System Analysis
Dec 2024
Publication
Alkaline water electrolysis (AWE) is the most mature electrochemical technology for hydrogen production from renewable electricity. Thus its mathematical modeling is an important tool to provide new perspectives for the design and optimization of energy storage and decarbonization systems. However current models rely on numerous empirical parameters and neglect variations of temperature and concentration alongside the electrolysis cell which can impact the application and reliability of the simulation results. Thus this study proposes a simple four-parameter semi-empirical model for AWE system analysis which relies on minimal fitting data while providing reliable extrapolation results. In addition the effect of model dimensionality (i.e. 0D 1/2D and 1D) are carefully assessed in the optimization of an AWE system. The results indicate that the proposed model can accurately reproduce literature data from four previous works (R 2 ≥ 0.98) as well as new experimental data. In the system optimization the trade-offs existing in the lye cooling sizing highlight that maintaining a low temperature difference in AWE stacks (76-80°C) leads to higher efficiencies and lower hydrogen costs.
Hydrogen Storage in Depleted Gas Reservoirs with Carbon Dioxide as a Cushion Gas: Exploring a Lateral Gas Seperation Strategy to Reduce Gas Mixing
Jan 2025
Publication
Large-scale H2 storage in depleted hydrocarbon reservoirs offers a practical way to use existing energy infra structure to address renewable energy intermittency. Cushion gases often constitute a large initial investment especially when expensive H2 is used. Cheaper alternatives such as CO2 or in-situ CH4 can reduce costs and in the case of CO2 integrate within carbon capture and storage systems. This study explored cushion and working gas dynamics through numerically modelling a range of storage scenarios in laterally extensive reservoirs – such as those in the Southern North Sea. In all simulations the cushion and working gases were separated laterally to limit contact surface area and therefore mixing. This work provides valuable insights into (i) capacity estima tions of CO2 storage and H2 withdrawal (ii) macro-scale fluid dynamics and (iii) the effects of gas mixing trends on H2 purity. The results underscore key trade-offs between CO2 storage volumes and H2 withdrawal and purity
A Hybrid Robust-stochastic Approach for Optimal Scheduling of Interconnected Hydrogen-based Energy Hubs
Jan 2021
Publication
The energy hub (EH) concept is an efficient way to integrate various energy carriers. Inaddition demand response programmes (DRPs) are complementary to improving anEH's efficiency and increase energy system flexibility. The hydrogen storage system as agreen energy carrier has an essential role in balancing supply and demand preciselysimilar to other storage systems. A hybrid robust‐stochastic approach is applied herein toaddress fluctuations in wind power generation multiple demands and electricity marketprice in a hydrogen‐based smart micro‐energy hub (SMEH) with multi‐energy storagesystems. The proposed hybrid approach enables the operator to manage the existinguncertainties with more flexibility. Also flexible electrical and thermal demands under anintegrated demand response programme (IDRP) are implemented in the proposedSMEH. The optimal scheduling of the hydrogen‐based SMEH problem considering windpower generation and electricity market price fluctuations as well as IDRP is modelledvia a mixed‐integer linear programming problem. Finally the validity and applicability ofthe proposed model are verified through simulation and numerical results.
Determining Onshore or Offshore Hydrogen Storage for Large Offshore Wind Parks: The North Sea Wind Power Hub Case
Aug 2024
Publication
The large-scale integration of renewable energy sources leads to daily and seasonal mismatches between supply and demand and the curtailment of wind power. Hydrogen produced from surplus wind power offers an attractive solution to these challenges. In this paper we consider a large offshore wind park and analyze the need for hydrogen storage at the onshore and offshore sides of a large transportation pipeline that connects the wind park to the mainland. The results show that the pipeline with line pack storage though important for day-to-day fluctuations will not offer sufficient storage capacity to bridge seasonal differences. Furthermore the results show that if the pipeline is sufficiently sized additional storage is only needed on one side of the pipeline which would limit the needed investments. Results show that the policy which determines what part of the wind power is fed into the electricity grid and what part is converted into hydrogen has a significant influence on these seasonal storage needs. Therefore investment decisions for hydrogen systems should be made by considering both the onshore and offshore storage requirements in combination with electricity transport to the mainland.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Impact of an Electrode-diaphragm Gap on Diffusive Hydrogen Crossover in Alkaline Water Electrolysis
Oct 2023
Publication
Hydrogen crossover limits the load range of alkaline water electrolyzers hindering their integration with renewable energy. This study examines the impact of the electrode-diaphragm gap on crossover focusing on diffusive transport. Both finite-gap and zero-gap designs employing the state-of-the-art Zirfon UTP Perl 500 and UTP 220 diaphragms were investigated at room temperature and with a 12 wt% KOH electrolyte. Experimental results reveal a relatively high crossover for a zero-gap configuration which corresponds to supersaturation levels at the diaphragm-electrolyte interface of 8–80 with significant fluctuations over time and between experiments due to an imperfect zero-gap design. In contrast a finite-gap (500 μm) has a significantly smaller crossover corresponding to supersaturation levels of 2–4. Introducing a cathode gap strongly decreases crossover unlike an anode gap. Our results suggest that adding a small cathode-gap can significantly decrease gas impurity potentially increase the operating range of alkaline electrolyzers while maintaining good efficiency.
Green Hydrogen Techno-economic Assessments from Simulated and Measured Solar Photovoltaic Power Profiles
Nov 2024
Publication
Studies estimating the production cost of hydrogen-based fuels known as e-fuels often use renewable power profile time series obtained from open-source simulation tools that rely on meteorological reanalysis and satellite data such as Renewables.ninja or PVGIS. These simulated time series contain errors compared to real on-site measured data which are reflected in e-fuels cost estimates plant design and operational performance increasing the risk of inaccurate plant design and business models. Focusing on solar-powered e-fuels this study aims to quantify these errors using high-quality on-site power production data. A state-of-the-art optimization techno-economic model was used to estimate e-fuel production costs by utilizing either simulated or high-quality measured PV power profiles across four sites with different climates. The results indicate that in cloudy climates relying on simulated data instead of measured data can lead to an underestimation of the fuel production costs by 36 % for a hydrogen user requiring a constant supply considering an original error of 1.2 % in the annual average capacity factor. The cost underestimation can reach 25 % for a hydrogen user operating between 40 % and 100 % load and 17.5 % for a fully flexible user. For comparison cost differences around 20 % could also result from increasing the electrolyser or PV plant costs by around 55 % which highlights the importance of using high-quality renewable power profiles. To support this an open-source collaborative repository was developed to facilitate the sharing of measured renewable power profiles and provide tools for both time series analysis and green hydrogen techno-economic assessments.
Assessment of Hydrogen Transport Aircraft
Sep 2022
Publication
Zero-carbon-dioxide-emitting hydrogen-powered aircraft have in recent decades come back on the stage as promising protagonists in the fght against global warming. The main cause for the reduced performance of liquid hydrogen aircraft lays in the fuel storage which demands the use of voluminous and heavy tanks. Literature on the topic shows that the optimal fuel storage solution depends on the aircraft range category but most studies disagree on which solution is optimal for each category. The objective of this research was to identify and compare possible solutions to the integration of the hydrogen fuel containment system on regional short/medium- and large passenger aircraft and to understand why and how the optimal tank integration strategy depends on the aircraft category. This objective was pursued by creating a design and analysis framework for CS-25 aircraft capable of appreciating the efects that diferent combinations of tank structure fuselage diameter tank layout shape venting pressure and pressure control generate at aircraft level. Despite that no large diferences among categories were found the following main observations were made: (1) using an integral tank structure was found to be increasingly more benefcial with increasing aircraft range/size. (2) The use of a forward tank in combination with the aft one appeared to be always benefcial in terms of energy consumption. (3) The increase in fuselage diameter is detrimental especially when an extra aisle is not required and a double-deck cabin is not feasible. (4) Direct venting has when done efciently a small positive efect. (5) The optimal venting pressure varies with the aircraft confguration performance and mission. The impact on performance from sizing the tank for missions longer than the harmonic one was also quantifed.
Retrofitted Hydrogen-Electric Propulsion Aircraft: Performance Simulation of Critical Operating Conditions
Jan 2025
Publication
Retrofitting regional turboprop aircraft with hydrogen (H2)-electric powertrains using fuel cell systems (FCSs) has gained interest in the last decade. This type of powertrain eliminates CO2 NOx and fine particle emissions during flight as FCSs only emit water. In this context the “Hydrogen Aircraft Powertrain and Storage Systems” (HAPSS) project targets the development of a H2-electric propulsion system for retrofitting Dash 8- 300 series aircraft. The purpose of the study described in this paper is to analyze the performance of the retrofitted H2-electric aircraft during critical operating conditions. Takeoff as well as climb cruise and go-around performances are addressed. The NLR in-house tool MASS (Mission Aircraft and Systems Simulation) was used for the performance analyses. The results show that the retrofitted H2-electric aircraft has a slightly increased takeoff distance compared to the Dash 8-300 and it requires a maximum rated shaft power of 1.9 MW per propeller. A total rated FCS output power of 3.1 MW is sufficient to satisfy the takeoff requirements at the cost of lower cruise altitude and reduced cruise speed as compared to the Dash 8-300. Furthermore a higher-rated FCS is required to achieve the climb performance required for the typical climb profile of the Dash 8-300.
Will Hydrogen and Synthetic Fuels Energize our Future? Their Role in Europe's Climate-neutral Energy System and Power System Dynamics
Aug 2024
Publication
This study evaluates the technoeconomic impacts of direct and indirect electrification on the EU's net-zero emissions target by 2050. By linking the JRC-EU-TIMES long-term energy system model with PLEXOS hourly resolution power system model this research offers a detailed analysis of the interactions between electricity hydrogen and synthetic fuel demand production technologies and their effects on the power sector. It highlights the importance of high temporal resolution power system analysis to capture the synergistic effects of these components often overlooked in isolated studies. Results indicate that direct electrification increases significantly and unimpacted by biomass CCS and nuclear energy assumptions. However indirect electrification in the form of hydrogen varies significantly between 1400 and 2200 TWhH2 by 2050. Synthetic fuels are essential for sector coupling making up 6–12% of total energy consumption by 2050 with the power sector supplying most hydrogen and CO2 for their production. Varying levels of indirect electrification impact electrolysers renewable energy and firm capacities. Higher indirect electrification increases electrolyser capacity factors by 8% leading to more renewable energy curtailment but improves system reliability by reducing 11 TWh unserved energy and increasing flexibility options. These insights inform EU energy policies stressing the need for a balanced approach to electrification biomass use and CCS to achieve a sustainable and reliable net-zero energy system by 2050. We also explore limitations and sensitivities.
Using Hydro-Pneumatic Energy Storage for Improving Offshore Wind-Driven Green Hydrogen Production—A Preliminary Feasibility Study in the Central Mediterranean Sea
Aug 2025
Publication
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant concept without energy storage both under central Mediterranean wind conditions. Numerical simulations were conducted at high temporal resolution capturing 10-min fluctuations of open field measured wind speeds at an equivalent offshore wind turbine (WT) hub height over a full 1-year seasonal cycle. Key findings demonstrate that the HPES system of choice namely the Floating Liquid Piston Accumulator with Sea Water under Compression (FLASC) system significantly reduces Proton Exchange Membrane (PEM) electrolyser (PEMEL) On/Off cycling (with a 66% reduction in On/Off events) while maintaining hydrogen production levels despite the integration of the energy storage system which has a projected round-trip efficiency of 75%. The FLASC-integrated HGE solution also marginally reduces renewable energy curtailment by approximately 0.3% during the 12-month timeframe. Economic analysis reveals that while the FLASC HPES system does introduce an additional capital cost into the energy chain it still yields substantial operational savings exceeding EUR 3 million annually through extended PEM electrolyser lifetime and improved operational efficiency. The Levelized Cost of Hydrogen (LCOH) for the FLASC-integrated HGE system which is estimated to be EUR 18.83/kg proves more economical than a direct wind-to-hydrogen approach with a levelized cost of EUR 21.09/kg of H2 produced. This result was achieved through more efficient utilisation of wind energy interfaced with energy storage as it mitigated the natural intermittency of the wind and increased the lifecycle of the equipment especially that of the PEM electrolysers. Three scenario models were created to project future costs. As electrolyser technologies advance cost reductions would be expected and this was one of the scenarios envisaged for the future. These scenarios reinforce the technical and economic viability of the HGE concept for offshore green hydrogen production particularly in the Mediterranean and in regions having similar moderate wind resources and deeper seas for offshore hybrid sustainable energy systems.
A Systematic Review of Predictive, Optimization, and Smart Control Strategies for Hydrogen-based Building Heating Systems
Nov 2024
Publication
The use of energy in the built environment contributes to over one-third of the world’s carbon emissions. To reduce that effect two primary solutions can be adopted i.e. (i) renovation of old buildings and (ii) increasing the renewable energy penetration. This review paper focuses on the latter. Renewable energy sources typically have an intermittent nature. In other words it is not guaranteed that these sources can be harnessed on demand. Thus complement solutions should be considered to use renewable energy sources efficiently. Hydrogen is recognized as a potential solution. It can be used to store excess energy or be directly exploited to generate thermal energy. Throughout this review various research papers focusing on hydrogen-based heating systems were reviewed analyzed and classified from different perspectives. Subsequently articles related to machine learning models optimization algorithms and smart control systems along with their applications in building energy management were reviewed to outline their potential contributions to reducing energy use lowering carbon emissions and improving thermal comfort for occupants. Furthermore research gaps in the use of these smart strategies in residential hydrogen heating systems were thoroughly identified and discussed. The presented findings indicate that the semi-decentralized hydrogen-based heating systems hold significant potential. First these systems can control the thermal demand of neighboring homes through local substations; second they can reduce reliance on power and gas grids. Furthermore the model predictive control and reinforcement learning approaches outperform other control systems ensuring energy comfort and cost-effective energy bills for residential buildings.
Comprehensive Review of Geomechanics of Underground Hydrogen Storage in Depleted Reservoirs and Salt Caverns
Sep 2023
Publication
Hydrogen is a promising energy carrier for a low-carbon future energy system as it can be stored on a megaton scale (equivalent to TWh of energy) in subsurface reservoirs. However safe and efficient underground hydrogen storage requires a thorough understanding of the geomechanics of the host rock under fluid pressure fluctuations. In this context we summarize the current state of knowledge regarding geomechanics relevant to carbon dioxide and natural gas storage in salt caverns and depleted reservoirs. We further elaborate on how this knowledge can be applied to underground hydrogen storage. The primary focus lies on the mechanical response of rocks under cyclic hydrogen injection and production fault reactivation the impact of hydrogen on rock properties and other associated risks and challenges. In addition we discuss wellbore integrity from the perspective of underground hydrogen storage. The paper provides insights into the history of energy storage laboratory scale experiments and analytical and simulation studies at the field scale. We also emphasize the current knowledge gaps and the necessity to enhance our understanding of the geomechanical aspects of hydrogen storage. This involves developing predictive models coupled with laboratory scale and field-scale testing along with benchmarking methodologies.
A Novel Sustainable Approach for Site Selection of Underground Hydrogen Storage in Poland Using Deep Learning
Jul 2024
Publication
This research investigates the potential of using bedded salt formations for underground hydrogen storage. We present a novel artificial intelligence framework that employs spatial data analysis and multi-criteria decision-making to pinpoint the most appropriate sites for hydrogen storage in salt caverns. This methodology incorporates a comprehensive platform enhanced by a deep learning algorithm specifically a convolutional neural network (CNN) to generate suitability maps for rock salt deposits for hydrogen storage. The efficacy of the CNN algorithm was assessed using metrics such as Mean Absolute Error (MAE) Mean Squared Error (MSE) Root Mean Square Error (RMSE) and the Correlation Coefficient (R2 ) with comparisons made to a real-world dataset. The CNN model showed outstanding performance with an R2 of 0.96 MSE of 1.97 MAE of 1.003 and RMSE of 1.4. This novel approach leverages advanced deep learning techniques to offer a unique framework for assessing the viability of underground hydrogen storage. It presents a significant advancement in the field offering valuable insights for a wide range of stakeholders and facilitating the identification of ideal sites for hydrogen storage facilities thereby supporting informed decisionmaking and sustainable energy infrastructure development.
Hydrogen Storage Solutions for Residential Heating: A Thermodynamic and Economic Analysis with Scale-up Potential
Jul 2024
Publication
The study presents a thermodynamic and economic assessment of different hydrogen storage solutions for heating purposes powered by PV panels of a 10-apartment residential building in Milan and it focuses on compressed hydrogen liquid hydrogen and metal hydride. The technical assessment involves using Python to code thermodynamic models to address technical and thermodynamic performances. The economic analysis evaluates the CAPEX the ROI and the cost per unit of stored hydrogen and energy. The study aims to provide an accurate assessment of the thermodynamic and economic indicators of three of the storage methods introduced in the literature review pointing out the one with the best techno-economic performance for further development and research. The performed analysis shows that compressed hydrogen represents the best alternative but its cost is still too high for small residential applications. Applying the technology to a big system case would enable the solution making it economically feasible.
Impact of Experimentally Measured Relative Permeability Hysteresis on Reservoir-scale Performance of Undergound Hydrogen Storage (UHS)
Jan 2024
Publication
Underground Hydrogen Storage (UHS) is an emerging large-scale energy storage technology. Researchers are investigating its feasibility and performance including its injectivity productivity and storage capacity through numerical simulations. However several ad-hoc relative permeability and capillary pressure functions have been used in the literature with no direct link to the underlying physics of the hydrogen storage and production process. Recent relative permeability measurements for the hydrogen-brine system show very low hydrogen relative permeability and strong liquid phase hysteresis very different to what has been observed for other fluid systems for the same rock type. This raises the concern as to what extend the existing studies in the literature are able to reliably quantify the feasibility of the potential storage projects. In this study we investigate how experimentally measured hydrogen-brine relative permeability hysteresis affects the performance of UHS projects through numerical reservoir simulations. Relative permeability data measured during a hydrogen-water core-flooding experiment within ADMIRE project is used to design a relative permeability hysteresis model. Next numerical simulation for a UHS project in a generic braided-fluvial water-gas reservoir is performed using this hysteresis model. A performance assessment is carried out for several UHS scenarios with different drainage relative permeability curves hysteresis model coefficients and injection/production rates. Our results show that both gas and liquid relative permeability hysteresis play an important role in UHS irrespective of injection/production rate. Ignoring gas hysteresis may cause up to 338% of uncertainty on cumulative hydrogen production as it has negative effects on injectivity and productivity due to the resulting limited variation range of gas saturation and pressure during cyclic operations. In contrast hysteresis in the liquid phase relative permeability resolves this issue to some extent by improving the displacement of the liquid phase. Finally implementing relative permeability curves from other fluid systems during UHS performance assessment will cause uncertainty in terms of gas saturation and up to 141% underestimation on cumulative hydrogen production. These observations illustrate the importance of using relative permeability curves characteristic of hydrogen-brine system for assessing the UHS performances.
Modelling of Hydrogen Dispersion with Effects
Sep 2023
Publication
The paper shows the latest developments of Gexcon’s consequence modelling software EFFECTS with validation based on hydrogen experimental data for different storage conditions and scenarios including liquid hydrogen two-phase jet releases. The effect of atmospheric turbulence on the dispersion and potential worst-case scenarios of hydrogen which are very different from heavy gas releases are discussed. Beside validation for gaseous hydrogen releases a validation study for pressurised liquid hydrogen jet releases including a sensitivity analysis is performed and the results are compared with experimental data.
Benchmark of J55 and X56 Steels on Cracking and Corrosion Effects Under Hydrogen Salt Cavern Boundary Conditions
Feb 2024
Publication
Salt caverns have great potential to store relevant amounts of hydrogen as part of the energy transition. However the durability and suitability of commonly used steels for piping in hydrogen salt caverns is still under research. In this work aging effects focusing on corrosion and cracking patterns of casing steel API 5CT J55 and “H2ready” pipeline steel API 5L X56 were investigated with scanning electron microscopy and energy dispersive X-ray spectroscopy after accelerated stress tests with pressure/temperature cycling under hydrogen salt cavern-like conditions. Compared to dry conditions significant more corrosion by presence of salt ions was detected. However compared to X56 only for J55 an intensification of corrosion and cracking at the surface due to hydrogen atmosphere was revealed. Pronounced surface cracks were observed for J55 over the entire samples. Overall the results strongly suggest that X56 is more resistant than J55 under the conditions of a hydrogen salt cavern.
The Role of Hydrogen in the Ecological Benefits of Ultra Low Sulphur Diesel Production and Use: An LCA Benchmark
Apr 2019
Publication
Desulphurization of oil-based fuels is common practice to mitigate the ecological burden to ecosystems and human health of SOx emissions. In many countries fuels for vehicles are restricted to 10 ppm sulphur. For marine fuels low sulphur contents are under discussion. The environmental impact of desulphurization processes is however quite high: (1) The main current source for industrial hydrogen is Steam Methane Reforming (SMR) with a rather high level of CO2 emissions (2) the hydrotreating process especially below 150 ppm needs a lot of energy. These two issues lead to three research questions: (a) What is the overall net ecological benefit of the current desulphurization practice? (b) At which sulfphur ppm level in the fuel is the additional ecological burden of desulphurization higher than the additional ecological benefit of less SOx pollution from combustion? (c) To what extent can cleaner hydrogen processes improve the ecological benefit of diesel desulphurization? In this paper we use LCA to analyze the processes of hydrotreatment the recovery of sulphur via amine treating of H2S and three processes of hydrogen production: SMR without Carbon Capture and Sequestration (CCS) SMR with 53% and 90% CCS and water electrolysis with two types of renewable energy. The prevention-based eco-costs system is used for the overall comparison of the ecological burden and the ecological benefit. The ReCiPe system was applied as well but appeared not suitable for such a comparison (other damage-based indicators cannot be applied either). The overall conclusion is that (1) the overall net ecological benefit of hydrogen-based Ultra Low Sulphur Diesel is dependent of local conditions but is remarkably high (2) desulphurization below 10 ppm is beneficial for big cities and (3) cleaner production of hydrogen reduces eco-cost by a factor 1.8–3.4.
Recent Progress on Ammonia Cracking Technologies for Scalable Hydrogen Production
Jun 2024
Publication
The global energy transition necessitates the development of technologies enabling cost-effective and scalable conversion of renewable energies into storable and transportable forms. Green ammonia with its high hydrogen storage capacity emerges as a promising carbon-free hydrogen carrier. This article reviews recent progress in industrially relevant catalysts and technologies for ammonia cracking which is a pivotal step in utilizing ammonia as a hydrogen storage material. Catalysts based on Ru Ni Fe Co and Fe–Co are evaluated with Cobased catalysts showing exceptional potential for ammonia cracking. Different reactor technologies and their applications are briefly discussed. This review concludes with perspectives on overcoming existing challenges emphasizing the need for catalyst development effective reactor design and sustainable implementation in the context of the energy transition.
Integration of Solid Oxide Fuel Cell and Internal Combustion Engine for Maritime Applications
Oct 2020
Publication
The current literature on solid oxide fuel cell and internal combustion engine (SOFC-ICE) integration is focused on the application of advanced combustion technologies operating as bottoming cycles to generate a small load share. This integration approach can pose challenges for ships such as restricted dynamic capabilities and large space and weight requirements. Furthermore the potential of SOFC-ICE integration for marine power generation has not been explored. Consequently the current work proposes a novel approach of SOFC-ICE integration for maritime applications which allows for high-efficiency power generation while the SOFC anode-off gas (AOG) is blended with natural gas (NG) and combusted in a marine spark-ignited (SI) engine for combined power generation. The objective of this paper is to investigate the potential of the proposed SOFC-ICE integration approach with respect to system efficiency emissions load sharing space and weight considerations and load response. In this work a verified zero-dimensional (0-D) SOFC model engine experiments and a validated AOG-NG mean value engine model is used. The study found that the SOFC-ICE integration with a 67–33 power split at 750 kWe power output yielded the highest efficiency improvement of 8.3% over a conventional marine natural gas engine. Simulation results showed that promising improvements in efficiency of 5.2% UHC and NOx reductions of about 30% and CO2 reductions of about 12% can be achieved from a 33–67 SOFC-ICE power split with comparatively much smaller increments in size and weight of 1.7 times. Furthermore the study concluded that in the proposed SOFC-ICE system for maritime applications a power split that favours the ICE would significantly improve the dynamic capabilities of the combined system and that the possible sudden and large load changes can be met by the ICE.
Solid Oxide Fuel Cells for Marine Applications
May 2023
Publication
The marine industry must reduce emissions to comply with recent and future regulations. Solid oxide fuel cells (SOFCs) are seenas a promising option for efficient power generation on ships with reduced emissions. However it is unclear how the devices canbe integrated and how this affects the operation of the ship economically and environmentally. This paper reviews studies thatconsider SOFC for marine applications. First this article discusses noteworthy developments in SOFC systems includingpower plant options and fuel possibilities. Next it presents the design drivers for a marine power plant and explores how anSOFC system performs. Hereafter the possibilities for integrating the SOFC system with the ship are examined alsoconsidering economic and environmental impact. The review shows unexplored potential to successfully integrate SOFC withthermal and electrical systems in marine vessels. Additionally it is identified that there are still possibilities to improve marineSOFC systems for which a holistic approach is needed for design at cell stack module and system level. Nevertheless it isexpected that hybridisation is needed for a technically and economically feasible ship. Despite its high cost SOFC systemscould significantly reduce GHG NO X SO X PM and noise emissions in shipping
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Flame Stabilization and Blow-off of Ultra-Lean H2-Air Premixed Flames
Apr 2021
Publication
The manner in which an ultra-lean hydrogen flame stabilizes and blows off is crucial for the understanding and design of safe and efficient combustion devices. In this study we use experiments and numerical simulations for pure H2-air flames stabilized behind a cylindrical bluff body to reveal the underlying physics that make such flames stable and eventually blow-off. Results from CFD simulations are used to investigate the role of stretch and preferential diffusion after a qualitative validation with experiments. It is found that the flame displacement speed of flames stabilized beyond the lean flammability limit of a flat stretchless flame (φ = 0.3) can be scaled with a relevant tubular flame displacement speed. This result is crucial as no scaling reference is available for such flames. We also confirm our previous hypothesis regarding lean limit blow-off for flames with a neck formation that such flames are quenched due to excessive local stretching. After extinction at the flame neck flames with closed flame fronts are found to be stabilized inside a recirculation zone.
Can an Energy Only Market Enable Resource Adequacy in a Decarbonized Power System? A Co-simulation with Two Agent-based-models
Feb 2024
Publication
Future power systems in which generation will come almost entirely from variable Renewable Energy Sources (vRES) will be characterized by weather-driven supply and flexible demand. In a simulation of the future Dutch power system we analyze whether there are sufficient incentives for market-driven investors to provide a sufficient level of security of supply considering the profit-seeking and myopic behavior of investors. We cosimulate two agent-based models (ABM) one for generation expansion and one for the operational time scale. The results suggest that in a system with a high share of vRES and flexibility prices will be set predominantly by the demand’s willingness to pay particularly by the opportunity cost of flexible hydrogen electrolyzers. The demand for electric heating could double the price of electricity in winter compared to summer and in years with low vRES could cause shortages. Simulations with stochastic weather profiles increase the year-to-year variability of cost recovery by more than threefold and the year-to-year price variability by more than tenfold compared to a scenario with no weather uncertainty. Dispatchable technologies have the most volatile annual returns due to high scarcity rents during years of low vRES production and diminished returns during years with high vRES production. We conclude that in a highly renewable EOM investors would not have sufficient incentives to ensure the reliability of the system. If they invested in such a way to ensure that demand could be met in a year with the lowest vRES yield they would not recover their fixed costs in the majority of years.
Carbon Footprint of Hydrogen-powered Inland Shipping: Impacts and Hotspots
Aug 2023
Publication
The shipping sector is facing increasing pressure to implement clean fuels and drivetrains. Especially hydrogen fuel cell drivetrains seem attractive. Although several studies have been conducted to assess the carbon footprint of hydrogen and its application in ships their results remain hard to interpret and compare. Namely it is necessary to include a variety of drivetrain solutions and different studies are based on various assumptions and are expressed in other units. This paper addresses this problem by offering a three-step meta-review of life cycle assessment studies. First a literature review was conducted. Second results from the literature were harmonized to make the different analyses comparable serving cross-examination. The entire life cycle of both the fuels and drivetrains were included. The results showed that the dominant impact was fuel use and related fuel production. And finally life-cycle hot spots have been identified by looking at the effect of specific configurations in more detail. Hydrogen production by electrolysis powered by wind has the most negligible impact. For this ultra-low carbon pathway the modes of hydrogen transport and the use of specific materials and components become relevant.
Lifetime Design, Operation, and Cost Analysis for the Energy System of a Retrofitted Cargo Vessel with Fuel Cells and Batteries
Oct 2024
Publication
Fuel cell-battery electric drivetrains are attractive alternatives to reduce the shipping emissions. This research focuses on emission-free cargo vessels and provides insight on the design lifetime operation and costs of hydrogen-hybrid systems which require further research for increased utilization. A representative round trip is created by analysing one-year operational data based on load ramps and power frequency. A low-pass filter controller is employed for power distribution. For the lifetime cost analysis 14 scenarios with varying capital and operational expenses were considered. The Net Present Value of the retrofitted fuel cell-battery propulsion system can be up to $ 2.2 million lower or up to $ 18.8 million higher than the original diesel mechanical configuration highly dependent on the costs of green hydrogen and carbon taxes. The main propulsion system weights and volumes of the two versions are comparable but the hydrogen tank (68 tons 193 m3 ) poses significant design and safety challenges.
Simulation of DDT in Obstructed Channels: Wavy Channels vs. Fence-type Obstacles
Sep 2023
Publication
The capabilities of an OpenFOAM solver to reproduce the transition of stoichiometric H2-air mixtures to detonation in obstructed 2-D channels were tested. The process is challenging numerically as it involves the ignition of a flame kernel its subsequent propagation and acceleration interaction with obstacles formation of shock waves ahead and detonation onset (DO). Two different obstacle configurations were considered in 10-mm high × 1-m long channels: (i) wavy walls (WW) that mimic the behavior of fencetype obstacles but prevent abrupt area changes. In this case flame acceleration (FA) is strongly affected by shock-flame interactions and DO often results from the compression of the gas present between the accelerating flame front and a converging section of the channel. (ii) Fence-type (FT) obstacles. In this case FA is driven by the increase in flame surface area as a result of the interaction of the flame front with the unburned gas flow field ahead particularly downstream of obstacles; shock-flame interactions play a role at the later stages of FA and DO takes place upon reflection of precursor shocks from obstacles. The effect of initial pressure p0 = 25 50 and 100 kPa at constant blockage ratio (BR = 0.6) was investigated and compared for both configurations. Results show that for the same initial pressure (p0 = 50 kPa) the obstacle configurations could lead to different final propagation regimes: a quasi-detonation for WW and a choked-flame for FT due to the increased losses for the latter. At p0 = 25 kPa however while both configurations result in choked flames WW seem to exhibit larger velocity deficits than FT due to longer flame-precursor shock distances during quasi-steady propagation and to the increased presence of unburnt mixture downstream of the tip of the flame that homogeneously explodes providing additional support to the propagation of the flame.
Energy Use and Greenhouse Gas Emissions of Traction Alternatives for Regional Railways
Feb 2024
Publication
This paper presents a method for estimating Well-to-Wheel (WTW) energy use and greenhouse gas (GHG) emissions attributed to the advanced railway propulsion systems implemented in conjunction with different energy carriers and their production pathways. The analysis encompasses diesel-electric multiple unit vehicles converted to their hybrid-electric plug-in hybrid-electric fuel cell hybrid-electric or battery-electric counterparts combined with biodiesel or hydrotreated vegetable oil (HVO) as the first and second generation biofuels liquefied natural gas (LNG) hydrogen and/or electricity. The method is demonstrated using non-electrified regional railway network with heterogeneous vehicle fleet in the Netherlands as a case. Battery-electric system utilizing green electricity is identified as the only configuration leading to emission-free transport while offering the highest energy use reduction by 65–71% compared to the current diesel-powered hybrid-electric system. When using grey electricity based on the EU2030 production mix these savings are reduced to about 27–39% in WTW energy use and around 68–73% in WTW GHG emissions. Significant reductions in overall energy use and emissions are obtained for the plug-in hybrid-electric concept when combining diesel LNG or waste cooking oil-based HVO with electricity. The remaining configurations that reduce energy use and GHG emissions are hybrid-electric systems running on LNG or HVO from waste cooking oil. The latter led to approximately 88% lower WTW emissions than the baseline for each vehicle type. When produced from natural gas or EU2030-mix-based electrolysis hydrogen negatively affected both aspects irrespective of the prime mover technology. However when produced via green electricity it offers a GHG reduction of approximately 90% for hybrid-electric and fuel cell hybrid-electric configurations with a further reduction of up to 92–93% if combined with green electricity in plug-in hybrid-electric systems. The results indicate that HVO from waste cooking oil could be an effective and instantly implementable transition solution towards carbon–neutral regional trains allowing for a smooth transition and development of supporting infrastructure required for more energy-efficient and environment-friendly technologies.
Coordinating Social Dynamics for Integrating Hydrogen in the Netherlands
Jan 2025
Publication
Integrating hydrogen into energy systems presents challenges involving social dynamics among stakeholders beyond technical considerations. A gap exists in understanding how these dynamics influence the deployment of hydrogen technologies and infrastructure particularly in infrastructure development and market demand for widespread adoption. In the Netherlands despite ambitious strategies and investments comprehensive explanations of social dynamics’ impact on integration processes and market development are lacking. This study addresses this gap by analyzing the hydrogen value chain and stakeholder interactions in the Dutch hydrogen sector. A literature review highlights system integration challenges and the need for decentralized coordination and cross-sector collaboration. Using the Dutch energy grid and its hydrogen initiatives as a case study social network analysis and semi-structured interviews are applied to analyze over 60 hydrogen initiatives involving more than 340 stakeholders. Initiatives are categorized into large-scale centralized and decentralized local types based on scale and stakeholder involvement allowing targeted analysis of stakeholder interactions in different contexts. Findings reveal that centralized networks may limit innovation due to concentrated influence while decentralized networks encourage innovation but require better coordination. These insights guide strategic planning and policymaking in hydrogen energy initiatives aiming to enhance scalability and efficiency of hydrogen technologies for sustainable energy solutions.
Design of Gravimetric Primary Standards for Field-testing of Hydrogen Refuelling Stations
Apr 2020
Publication
The Federal Institute of Metrology METAS developed a Hydrogen Field Test Standard (HFTS) that can be used for field verification and calibration of hydrogen refuelling stations. The testing method is based on the gravimetric principle. The experimental design of the HFTS as well as the description of the method are presented here.
Towards Low-carbon Power Networks: Optimal Location and Sizing of Renewable Energy Sources and Hydrogen Storage
Apr 2024
Publication
This paper proposes a systematic optimization framework to jointly determine the optimal location and sizing decisions of renewables and hydrogen storage in a power network to achieve the transition to low-carbon networks efficiently. We obtain these strategic decisions based on the multi-period alternating current optimal power flow (AC MOPF) problem that jointly analyzes power network renewable and hydrogen storage interactions at the operational level by considering the uncertainty of renewable output seasonality of electricity demand and electricity prices. We develop a tailored solution approach based on second-order cone programming within a Benders decomposition framework to provide globally optimal solutions. In a test case we show that the joint integration of renewable sources and hydrogen storage and consideration of the AC MOPF model significantly reduces the operational cost of the power network. In turn our findings can provide quantitative insights to decision-makers on how to integrate renewable sources and hydrogen storage under different settings of the hydrogen selling price renewable curtailment cost emission tax price and conversion efficiency.
Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors
Jul 2024
Publication
In the quest for a sustainable future energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous metals steel cement lime chemicals fertilisers ceramics and glass. It maps out their current environmental impact and potential for mitigation through innovative strategies. The analysis spans across Spain Greece Germany and the Netherlands highlighting sector-specific ecosystems and the technological breakthroughs shaping them. It addresses the urgency for the industry-wide adoption of electrification the utilisation of green hydrogen biomass bio-based or synthetic fuels and the deployment of carbon capture utilisation and storage to ensure a smooth transition. Investment decisions in EIIs will depend on predictable economic and regulatory landscapes. This analysis discusses the risks associated with continued investment in high-emission technologies which may lead to premature decommissioning and significant economic repercussions. It presents a dichotomy: invest in climate-neutral technologies now or face the closure and offshoring of operations later with consequences for employment. This open discussion concludes that while the technology for near-complete climate neutrality in EIIs exists and is rapidly advancing the higher costs compared to conventional methods pose a significant barrier. Without the ability to pass these costs to consumers the adoption of such technologies is stifled. Therefore it calls for decisive political commitment to support the industry’s transition ensuring a greener more resilient future for Europe’s industrial backbone.
Stakeholder Perspectives on the Scale-up of Green Hydrogen and Electrolyzers
Nov 2023
Publication
Green hydrogen is a promising alternative to fossil fuels. However current production capacities for electrolyzers and green hydrogen are not in line with national political goals and projected demand. Considering these issues we conducted semi-structured interviews to determine the narratives of different stakeholders during this transformation as well as challenges and opportunities for the green hydrogen value chain. We interviewed eight experts with different roles along the green hydrogen value chain ranging from producers and consumers of green hydrogen to electrolyzer manufacturers and consultants as well as experts from the political sphere. Most experts see the government as necessary for scale-up by setting national capacity targets policy support and providing subsidies. However the experts also accuse the governments of delaying development through overregulation and long implementation times for regulations. The main challenges that were identified are the current lack of renewable electricity and demand for green hydrogen. Demand for green hydrogen is influenced by supply costs which partly depend on prices for electrolyzers. However one key takeaway of the interviews is the skeptical assessments by the experts on the currently discussed estimates for price reduction potential of electrolyzers. While demand supply and prices are all factors that influence each other they result in feedback loops in investment decisions for the energy and manufacturing industries. A second key takeaway is that according to the experts current investment decisions in new production capacities are not solely dependent on short-term financial gains but also based on expected first mover advantages. These include experience and market share which are seen as factors for opportunities for future financial gains. Summarized the results present several challenges and opportunities for green hydrogen and electrolyzers and how to address them effectively. These insights contribute to a deeper understanding of the dynamics of the emerging green hydrogen value chain.
Multiperiod Modeling and Optimization of Hydrogen-Based Dense Energy Carrier Supply Chains
Feb 2024
Publication
The production of hydrogen-based dense energy carriers (DECs) has been proposed as a combined solution for the storage and dispatch of power generated through intermittent renewables. Frameworks that model and optimize the production storage and dispatch of generated energy are important for data-driven decision making in the energy systems space. The proposed multiperiod framework considers the evolution of technology costs under different levels of promotion through research and targeted policies using the year 2021 as a baseline. Furthermore carbon credits are included as proposed by the 45Q tax amendment for the capture sequestration and utilization of carbon. The implementation of the mixed-integer linear programming (MILP) framework is illustrated through computational case studies to meet set hydrogen demands. The trade-offs between different technology pathways and contributions to system expenditure are elucidated and promising configurations and technology niches are identified. It is found that while carbon credits can subsidize carbon capture utilization and sequestration (CCUS) pathways substantial reductions in the cost of novel processes are needed to compete with extant technology pathways. Further research and policy push can reduce the levelized cost of hydrogen (LCOH) by upwards of 2 USD/kg.
Techno-economic Analysis of Underground Hydrogen Storage in Europe
Dec 2023
Publication
Hydrogen storage is crucial to developing secure renewable energy systems to meet the European Union’s 2050 carbon neutrality objectives. However a knowledge gap exists concerning the site-specific performance and economic viability of utilizing underground gas storage (UGS) sites for hydrogen storage in Europe. We compile information on European UGS sites to assess potential hydrogen storage capacity and evaluate the associated current and future costs. The total hydrogen storage potential in Europe is 349 TWh of working gas energy (WGE) with site-specific capital costs ranging from $10 million to $1 billion. Porous media and salt caverns boasting a minimum storage capacity of 0.5 TWh WGE exhibit levelized costs of $1.5 and $0.8 per kilogram of hydrogen respectively. It is estimated that future levelized costs associated with hydrogen storage can potentially decrease to as low as $0.4 per kilogram after three experience cycles. Leveraging these techno-economic considerations we identify suitable storage sites.
Techno-economic Assessment of Low-carbon Ammonia as Fuel for the Maritime Sector
Mar 2025
Publication
Low-carbon ammonia has recently received interest as alternative fuel for the maritime sector. This paper presents a techno-economic analysis of the total cost of ownership (TCO) of a Post-Panamax vessel powered by low-carbon ammonia. We also calculate the annual increase in carbon tax needed to compensate for the increment in TCO compared to a vessel powered by very low sulfur fuel oil. The increment in TCO is calculated as function of propulsion efficiency to account for uncertainties in the thermodynamics of ammonia combustion for three different cost scenarios of low-carbon ammonia. We evaluate the benefits and drawbacks of hydrogen and diesel as dual fuel for three types of propulsion systems: a compression ignition engine a spark-ignition engine and a combination of a solid oxide fuel cell (SOFC) system and a spark-ignition engine. We incorporate three different cost levels for ammonia and a variable engine efficiency ranging from 35% to 55%. If the ammonia engine has the efficiency of a conventional marine engine the increment in TCO is 25% in the most optimistic cost scenario. SOFCs can reach a better efficiency and yield no pollutant emissions but the reduction in fuel expenses in comparison to conventional combustion engines only offsets their high investment costs at either low engine efficiency or high fuel prices. The increment in TCO and reduction in GHG emissions depend on whether high combustion efficiencies small dual fuel fractions and low NOx N2O and NH3 emissions can be simultaneously achieved.
The Making of H2-scapes in the Global South: Political Geography Perspectives on an Emergent Field of Research
Feb 2025
Publication
Clean hydrogen is touted as a cornerstone of the global energy transition. It can help to decarbonize hard-to-electrify sectors ship renewable power over great distances and boost energy security. Clean hydrogen’s appeal is increasingly felt in the Global South where countries seek to benefit from production export and consumption opportunities new infrastructures and technological innovations. These geographies are however in the process of taking shape and their associated power configurations spatialities and socio-ecological consequences are yet to be more thoroughly understood and examined. Drawing on political geography perspectives this article proposes the concept of “hydrogen landscape” – or in short H2-scape – to theorize and explore hydrogen transitions as space-making processes imbued with power relations institutional orders and social meanings. In this endeavor it outlines a conceptual framework for understanding the making of H2-scapes and offers three concrete directions for advancing empirical research on hydrogen transitions in the Global South: (1) H2-scapes as resource frontiers; (2) H2-scapes as port-centered arrangements; and (3) H2-scapes as failure. As hydrogen booms in finances projects and visibility the article illuminates conceptual tools and perspectives to think about and facilitate further research on the emergent political geographies of hydrogen transitions particularly in more uneven unequal and vulnerable Global South landscapes.
No more items...