Norway
Hydrogen for Harvesting the Potential of Offshore Wind: A North Sea Case Study
Dec 2023
Publication
Economical offshore wind developments depend on alternatives for cost-efficient transmission of the generated energy to connecting markets. Distance to shore availability of an offshore power grid and scale of the wind farm may impede export through power cables. Conversion to H2 through offshore electrolysis may for certain offshore wind assets be a future option to enable energy export. Here we analyse the cost sensitivity of offshore electrolysis for harvesting offshore wind in the North Sea using a technology-detailed multi-carrier energy system modelling framework for analysis of energy export. We include multiple investment options for electric power and hydrogen export including HVDC cables new hydrogen pipelines tie-in to existing pipelines and pipelines with linepacking. Existing hydropower is included in the modelling and the effect on offshore electrolysis from increased pumping capacity in the hydropower system is analysed. Considering the lack of empirical cost data on offshore electrolysis as well as the high uncertainty in future electricity and H2 prices we analyse the cost sensitivity of offshore electrolysis in the North Sea by comparing costs relative to onshore electrolysis and energy prices relative to a nominal scenario. Offshore electrolysis is shown to be particularly sensitive to the electricity price and an electricity price of 1.5 times the baseline assumption was needed to provide sufficient offshore energy for any significant offshore electrolysis investments. On the other hand too high electricity prices would have a negative impact on offshore electrolysis because the energy is more valuable as electricity even at the cost of increased wind power curtailment. This shows that there is a window-of-opportunity in terms of onshore electricity where offshore electrolysis can play a significant role in the production of H2 . Pumped hydropower increases the maximum installed offshore electrolysis at the optimal electricity and H2 prices and makes offshore electrolysis more competitive at low electricity prices. Linepacking can make offshore electrolysis investments more robust against low H2 and high electricity prices as it allow for more variable H2 production through storing excess energy from offshore. The increased electrolysis capacity needed for variable electrolyser operation and linepacking is installed onshore due to its lower CAPEX compared to offshore installations.
Are Green and Blue Hydrogen Competitive or Complementary? Insights from a Decarbonised European Power System Analysis
Jun 2023
Publication
Hydrogen will be important in decarbonized energy systems. The primary ways to produce low emission hydrogen are from renewable electricity using electrolyzers called green hydrogen and by reforming natural gas and capturing and storing the CO2 known as blue hydrogen. In this study the degrees to which blue and green hydrogen are complementary or competitive are analyzed through a sensitivity analysis on the electrolyzer costs and natural gas price. This analysis is performed on four bases: what is the cost-effective relative share between blue and green hydrogen deployment how their deployment influences the price of hydrogen how the price of CO2 changes with the deployment of these two technologies and whether infrastructure can economically be shared between these two technologies. The results show that the choice of green and blue hydrogen has a tremendous impact where an early deployment of green leads to higher hydrogen costs and CO2 prices in 2030. Allowing for blue hydrogen thus has notable benefits in 2030 giving cheaper hydrogen with smaller wider socioeconomic impacts. In the long term these competitive aspects disappear and green and blue hydrogen can coexist in the European market without negatively influencing one another.
Climate Change Mitigation Potentials of on Grid-connected Power-to-X Fuels and Advanced Biofuels for the European Maritime Transport
Jul 2023
Publication
This study proposes a country-based life-cycle assessment (LCA) of several conversion pathways related 10 to both on grid-connected Power-to-X (PtX) fuels and advanced biofuel production for maritime transport 11 in Europe. We estimate the biomass resource availability (both agricultural and forest residues and 12 second-generation energy crops from abandoned cropland) electricity mix and a future-oriented 13 prospective LCA to assess how future climate change mitigation policies influence the results. Our results 14 indicate that the potential of PtX fuels to achieve well-to-wake greenhouse gas intensities lower than 15 those of fossil fuels is limited to countries with a carbon intensity of the electricity mix below 100 gCO2eq kWh-1 16 . The more ambitious FuelEU Maritime goal could be achieved with PtX only if connected to electricity sources below ca. 17 gCO2eq kWh-1 17 which can become possible for most of the national 18 electricity mix in Europe by 2050 if renewable energy sources will become deployed at large scales. For 19 drop-in and hydrogen-based biofuels biomass residues have a higher potential to reduce emissions than 20 dedicated energy crops. In Europe the potentials of energy supply from all renewable and low-carbon 21 fuels (RLFs) range from 32-149% of the current annual fuel consumption in European maritime transport. 22 The full deployment of RLFs with carbon capture and storage technologies could mitigate up to 184% of 23 the current well-to-wake shipping emissions in Europe. Overall our study highlights how the strategic use 24 of both hydrogen-based biofuels and PtX fuels can contribute to the climate mitigation targetsfor present 25 and future scenarios of European maritime transport.
Microfluidic Storage Capacity and Residual Trapping During Cyclic Injections: Implications for Underground Storage
Apr 2023
Publication
Long-term and large-scale H2 storage is vital for a sustainable H2 economy. Research in underground H2 storage (UHS) in porous media is emerging but the understanding of H2 reconnection and recovery mechanisms under cyclic loading is not yet adequate. This paper reports a qualitative and quantitative investigation of H2 reconnection and recovery mechanisms in repeated injection-withdrawal cycles. Here we use microfluidics to experimentally investigate up to 5 cycles of H2 injection and withdrawal under a range of injection rates at shallow reservoir storage conditions. We find that H2 storage capacities increase with increasing injection rate and range between ~10% and 60%. The residual H2 saturation is in the same range between cycles (30e40%) but its distribution in the pore space visually appears to be hysteretic. In most cases the residually trapped H2 reconnects in the subsequent injection cycle predominantly in proximity to the large pore clusters. Our results provide valuable experimental data to advance the understanding of multiple H2 injection cycles in UHS schemes.
Assessing the Implications of Hydrogen Blending on the European Energy System towards 2050
Dec 2023
Publication
With the aim of reducing carbon emissions and seeking independence from Russian gas in the wake of the conflict in Ukraine the use of hydrogen in the European Union is expected to rise in the future. In this regard hydrogen transport via pipeline will become increasingly crucial either through the utilization of existing natural gas infrastructure or the construction of new dedicated hydrogen pipelines. This study investigates the effects of hydrogen blending in existing pipelines on the European energy system by the year 2050 by introducing hydrogen blending sensitivities to the Global Energy System Model (GENeSYS-MOD). Results indicate that hydrogen demand in Europe is inelastic and limited by its high costs and specific use cases with hydrogen production increasing by 0.17% for 100%-blending allowed compared to no blending allowed. The availability of hydrogen blending has been found to impact regional hydrogen production and trade with countries that can utilize existing natural gas pipelines such as Norway experiencing an increase in hydrogen and synthetic gas exports from 44.0 TWh up to 105.9 TWh in 2050 as the proportion of blending increases. Although the influence of blending on the overall production and consumption of hydrogen in Europe is minimal the impacts on the location of production and dependence on imports must be thoroughly evaluated in future planning efforts.
Renewable Hydrogen and Synthetic Fuels Versus Fossil Fuels for Trucking, Shipping and Aviation: A Holistic Cost Model
Aug 2023
Publication
Potential carbon neutrality of the global trucking shipping and aviation sectors by 2050 could be achieved by substituting fossil fuels with renewable hydrogen and synthetic fuels. To investigate the economic impact of fuel substitution over time a holistic cost model is developed and applied to three case studies in Norway an early adopter of carbon-neutral freight transport. The model covers the value chains from local electricity and fuel production (hydrogen ammonia Fischer–Tropsch e-fuel) to fuel consumption for long-haul trucking short-sea shipping and mid-haul aviation. The estimates are internally consistent and allow cross-mode and cross-fuel comparisons that set this work apart from previous studies more narrowly focused on a given transport mode or fuel. The model contains 150 techno-economic parameters to identify which components along the value chains drive levelized costs. This paper finds a cost reduction potential for renewable fuels of 41% to 68% until 2050 but carbon-neutral transport will suffer asymmetric cost disadvantages. Fuel substitution is most expensive in short-sea shipping followed by mid-haul aviation and long-haul trucking. Cost developments of electricity direct air capture of carbon vehicle expenses and fuel-related payload losses are significant drivers.
Modelling of Fast Fueling of Pressurized Hydrogen Tanks for Maritime Applications
Apr 2023
Publication
This paper studies fast fueling of gaseous hydrogen into large hydrogen (H2) tanks suitable for maritime applications. Three modeling methods have been developed and evaluated: (1) Two-dimensional computational fluid dynamic (CFD) modeling (2) One-dimensional wall discretized modeling and (3) Zero-dimensional modeling. A detailed 2D CFD simulation of a small H2-tank was performed and validated with data from literature and then used to simulate a large H2-tank. Results from the 2D-model show non-uniform temperature distribution inside the large tank but not in the small H2-tank. The 1D-model can predict the mean temperature in small H2-tanks but not the inhomogeneous temperature field in large H2-tanks. The 0D-model is suitable as a screening tool to obtain rough estimates. Results from the modeling of the large H2-tank show that the heat transfer to the wall during fast filling is inhibited by heat conduction in the wall which leads to an unacceptably high mean hydrogen temperature.
Simulating Offshore Hydrogen Production via PEM Electrolysis using Real Power Production Data from a 2.3 MW Floating Offshore Wind Turbine
Mar 2023
Publication
This work presents simulation results from a system where offshore wind power is used to produce hydrogen via electrolysis. Real-world data from a 2.3 MW floating offshore wind turbine and electricity price data from Nord Pool were used as input to a novel electrolyzer model. Data from five 31-day periods were combined with six system designs and hydrogen production system efficiency and production cost were estimated. A comparison of the overall system performance shows that the hydrogen production and cost can vary by up to a factor of three between the cases. This illustrates the uncertainty related to the hydrogen production and profitability of these systems. The highest hydrogen production achieved in a 31-day period was 17 242 kg using a 1.852 MW electrolyzer (i.e. utilization factor of approximately 68%) the lowest hydrogen production cost was 4.53 $/kg H2 and the system efficiency was in the range 56.1e56.9% in all cases.
Critical and Strategic Materials for Electrolysers, Fuel Cells, Metal Hydrides and Hydrogen Seperation Technologies
May 2024
Publication
This paper provides an in-depth examination of critical and strategic raw materials (CRMs) and their crucial role in the development of electrolyzer and fuel cell technologies within the hydrogen economy. It methodically analyses a range of electrolyzer technologies including alkaline proton-exchange membrane solid-oxide anion-exchange membrane and proton-conducting ceramic systems. Each technology is examined for its specific CRM dependencies operational characteristics and the challenges associated with CRM availability and sustainability. The study further extends to hydrogen storage and separation technologies focusing on the materials employed in high-pressure cylinders metal hydrides and hydrogen separation processes and their CRM implications. A key aspect of this paper is its exploration of the supply and demand dynamics of CRMs offering a comprehensive view that encompasses both the present sttate and future projections. The aim is to uncover potential supply risks understand strategies and identify potential bottlenecks for materials involved in electrolyzer and fuel cell technologies addressing both current needs and future demands as well as supply. This approach is essential for the strategic planning and sustainable development of the hydrogen sector emphasizing the importance of CRMs in achieving expanded electrolyzer capacity leading up to 2050.
Sonochemical and Sonoelectrochemical Production of Hydrogen
Aug 2018
Publication
Reserves of fossil fuels such as coal oil and natural gas on earth are finite. The continuous use and burning of these fossil fuel resources in the industrial domestic and transport sectors has resulted in the extremely high emission of greenhouse gases GHGs (e.g. CO2) and solid particulates into the atmosphere. Therefore it is necessary to explore pollution free and more efficient energy sources in order to replace depleting fossil fuels. The use of hydrogen (H2) as an alternative fuel source is particularly attractive due to its very high specific energy compared to other conventional fuels and its zero GHG emission when used in a fuel cell. Hydrogen can be produced through various process technologies such as thermal electrolytic photolytic and biological processes. Thermal processes include gas reforming renewable liquid and biooil processing biomass and coal gasification; however these processes release a huge amount of greenhouse gases. Production of electrolytic hydrogen from water is an attractive method to produce clean hydrogen. It could even be a more promising technology when combining water electrolysis with power ultrasound to produce hydrogen efficiently where sonication enhances the electrolytic process in several ways such as enhanced mass transfer removal of hydrogen and oxygen (O2) gas bubbles and activation of the electrode surface. In this review production of hydrogen through sonochemical and sonoelectrochemical methods along with a brief description of current hydrogen production methods and power ultrasound are discussed.
Review of Sampling and Analysis of Particulate Matter in Hydrogen Fuel
Sep 2023
Publication
This review presents state-of-the-art for representative sampling of hydrogen from hydrogen refueling stations. Documented sampling strategies are presented as well as examples of commercially available equipment for sampling at the hydrogen refueling nozzle. Filter media used for sampling is listed and the performance of some of the filters evaluated. It was found that the filtration efficiency of 0.2 and 5 mm filters were not significantly different when exposed to 200 and 300 nm particles. Several procedures for gravimetric analysis are presented and some of the challenges are identified to be filter degradation pinhole formation and conditioning of the filter prior to measurement. Lack of standardization of procedures was identified as a limitation for result comparison. Finally the review summarizes results including particulate concentration in hydrogen fuel quality data published. It was found that less than 10% of the samples were in violation with the tolerance limit.
Systems-Based Safety Analysis for Hydrogen-Driven Autonomous Ships
Jun 2024
Publication
In the maritime domain hydrogen fuel cell propulsion and autonomous vessels are two important issues that are yet to be implemented together because of a few challenges. It is obvious that there are several individual safety studies on Maritime Autonomous Surface Ships and hydrogen storage as well as fuel cells based on various risk assessment tools but the combined safety studies that include hydrogen fuel cells on autonomous vessels with recent risk analysis methods are extremely limited. This research chooses the “System-Theoretic Process Analysis” (STPA) method which is a recent method for potential risk identification and mitigation. Both hydrogen and autonomous vessels are analyzed and assessed together with the STPA method. Results are not speculative but rather flexible compared to conventional systems. The study finds a total of 44 unsafe control actions (UCAs) evolved from human and central control unit controllers through STPA. Further the loss scenarios (LS) are identified that lead to those UCAs so that loss scenarios can be assessed and UCAs can be mitigated for safe operation. The objective of this study is to ensure adequate safety for hydrogen fuel cell propulsion on autonomous vessels.
Integration Assessment of Turquoise Hydrogen in the European Energy System
Mar 2024
Publication
Turquoise hydrogen from natural gas pyrolysis has recently emerged as a promising alternative for low-carbon hydrogen production with a high-value pure carbon by-product. However the implications of this technology on the broader energy system are not well understood at present. To close this literature gap this study presents an assessment of the integration of natural gas pyrolysis into a simplified European energy system. The energy system model minimizes the cost by optimizing investment and hourly dispatch of a broad range of electricity and fuel production transmission and storage technologies as well as imports/exports on the global market. Norway is included as a major natural gas producer and Germany as a major energy importer. Results reveal that pyrolysis is economically attractive at modest market shares where the carbon by-product can be sold into highvalue markets for 400 €/ton. However pyrolysis-dominated scenarios that employ methane as a hydrogen carrier also hold promise as they facilitate deep decarbonization without the need for vast expansions of international electricity hydrogen and CO2 transmission networks. The simplicity and security benefits of such pyrolysis-led decarbonization pathways justify the modest 11 % cost premium involved for an energy system where natural gas is the only energy trade vector. In conclusion there is a strong case for turquoise hydrogen in future energy systems and further efforts for commercialization of natural gas pyrolysis are recommended.
Can Hydrogen Storage in Metal Hydrides be Economically Competitive with Compressed and Liquid Hydrogen Storage? A Techno-economical Perspective for the Maritime Sector
Aug 2023
Publication
The aim of this work is to evaluate if metal hydride hydrogen storage tanks are a competitive alternative for onboard hydrogen storage in the maritime sector when compared to compressed gas and liquid hydrogen storage. This is done by modelling different hydrogen supply and onboard storage scenarios and evaluating their levelized cost of hydrogen variables. The levelized cost of hydrogen for each case is calculated considering the main components that are required for the refueling infrastructure and adding up the costs of hydrogen production compression transport onshore storage dispensing and the cost of the onboard tanks when known. The results show that the simpler refueling needs of metal hydride-based onboard tanks result in a significant cost reduction of the hydrogen handling equipment. This provides a substantial leeway for the investment costs of metal hydride-based storage which depending on the scenario can be between 3400 - 7300 EUR/kgH2 while remaining competitive with compressed hydrogen storage.
Spent Coffee Grains (SCG) to Biofuels: A Comparative Techno-economic Evaluation for Hydrogen and Methane Production
Jul 2025
Publication
Environmental concerns regarding greenhouse gases have spurred research into alternative energy sources. One of the most prevalent waste products in the beverage industry is spent coffee grains (SCG) an estimated 60 million tons globally each year. These quantities justify the need to find effective ways to recycle this waste through the adoption of closed-loop circular economies (CE) and sustainable biofuel strategies. One promising approach is the conversion of SCG into biofuels particularly biohydrogen and biomethane through biological processes. However prior to commercialization it is critical to validate its potential profitability via technical and economic analyses such as techno-economic assessment (TEA). To this end in this study the profitability of two scenarios for biohydrogen and biomethane production has been assessed to explore feasible processing routes for SCG valorization. First a two-step dark fermentation and anaerobic digestion (DF-AD) process and second a two-step dark fermentation and photo fermentation (DF-PF) process. The profitability and sensitivity analysis results clarified that Scenario I should be chosen over Scenario II due to its higher net present value (NPV) of 138 million $ internal rate of return (IRR) of 15.3 % gross margin (GM) of 56.9 % return on investment (ROI) of 12.7 % and shorter payback period (PBP) of 6.2 years.
Hydrogen Embrittlement as a Conspicuous Material Challenge - Comprehensive Review and Future Directions
May 2024
Publication
Hydrogen is considered a clean and efficient energy carrier crucial for shapingthe net-zero future. Large-scale production transportation storage and use of greenhydrogen are expected to be undertaken in the coming decades. As the smallest element inthe universe however hydrogen can adsorb on diffuse into and interact with many metallicmaterials degrading their mechanical properties. This multifaceted phenomenon isgenerically categorized as hydrogen embrittlement (HE). HE is one of the most complexmaterial problems that arises as an outcome of the intricate interplay across specific spatialand temporal scales between the mechanical driving force and the material resistancefingerprinted by the microstructures and subsequently weakened by the presence of hydrogen. Based on recent developments in thefield as well as our collective understanding this Review is devoted to treating HE as a whole and providing a constructive andsystematic discussion on hydrogen entry diffusion trapping hydrogen−microstructure interaction mechanisms and consequencesof HE in steels nickel alloys and aluminum alloys used for energy transport and storage. HE in emerging material systems such ashigh entropy alloys and additively manufactured materials is also discussed. Priority has been particularly given to these lessunderstood aspects. Combining perspectives of materials chemistry materials science mechanics and artificial intelligence thisReview aspires to present a comprehensive and impartial viewpoint on the existing knowledge and conclude with our forecasts ofvarious paths forward meant to fuel the exploration of future research regarding hydrogen-induced material challenges.
Superconductivity and Hydrogen Economy: A Roadmap to Synergy
Aug 2022
Publication
Hydrogen as an energy carrier is a promising alternative to fossil fuels and it becomes more and more popular in developed countries as a carbon-free fuel. The low boiling temperature of hydrogen (20 K or −253.15 ◦C) provides a unique opportunity to implement superconductors with a critical temperature above 20 K such as MgB2 or high-temperature superconductors. Superconductors increase efficiency and reduce the loss of energy which could compensate for the high price of LH2 to some extent. Norway is one of the pioneer countries with adequate infrastructure for using liquid hydrogen in the industry especially in marine technology where a superconducting propulsion system can make a remarkable impact on its economy. Using superconductors in the motor of a propulsion system can increase its efficiency from 95% to 98% when the motor operates at full power. The difference in efficiency is even greater when the motor does not work at full power. Here we survey the applications of liquid hydrogen and superconductors and propose a realistic roadmap for their synergy specifically for the Norwegian economy in the marine industry.
A Comparative Analysis of the Efficiency Coordination of Renewable Energy and Electric Vehicles in a Deregulated Smart Power System
Mar 2025
Publication
Deregulation in the energy sector has transformed the power systems with significant use of competition innovation and sustainability. This paper outlines a comparative study of renewable energy sources with electric vehicles (RES-EV) integration in a deregulated smart power system to highlight the learning on system efficiency effectiveness viability and the environment. This study depicts the importance of solar and wind energy in reducing carbon emissions and the challenges of integrating RES into present energy grids. It touches on the aspects of advanced energy storage systems demand-side management (DSM) and smart charging technologies for optimizing energy flows and stabilizing grids because of fluctuating demands. Findings were presented to show that based on specific pricing thresholds hybrid renewable energy systems can achieve grid parity and market competitiveness. Novel contributions included an in-depth exploration of the economic and technical feasibility of integrating EVs at the distribution level improvements in power flow control mechanisms and strategies to overcome challenges in decentralized energy systems. These insights will help policymakers and market participants make headway in the adoption of microgrids and smart grids within deregulated energy systems which is a step toward fostering a sustainable and resilient power sector.
Large-scale Experimental Study of Open, Impinging and Confined Hydrogen Jet Fires
Mar 2025
Publication
Hydrogen tanks used in transportation are equipped with thermal pressure relief devices to prevent a tank rapture in case of fire exposure. The opening of the pressure relief valve in such a scenario would likely result in an impinging and (semi-) confined hydrogen jet fire. Therefore twelve largescale experiments of hydrogen jet fires and one large-scale propane reference experiment have been conducted with various degrees of confinement orientations of the jet and distances from the nozzle to the impinging surface. Infrared and visible light videos temperatures heat fluxes and mass flow rate of hydrogen or propane were recorded in each experiment. It was found that the hydrogen flame can be visible under certain conditions. The main difference between an open impinging jet and an enclosed impinging jet fire is the extent of the high-temperature region in the steel target. During the impinging jet fire test 51% of the exposed target area exceeded 400C while 80% of the comparable area exceeded 400C during the confined jet fire test. A comparison was also made to an enclosed propane jet fire. The temperature distribution during the propane fire was more uniform than during the hydrogen jet fire and the localized hot spot in the impact region as seen in the hydrogen jet fires was not recorded.
Lessons Learned from HIAD 2.0: Inspection and Maintenance to Avoid Hydrogen-induced Material Failures
Feb 2023
Publication
Hydrogen has the potential to make countries energetically self-sufficient and independent in the long term. Nevertheless its extreme combustion properties and its capability of permeating and embrittling most metallic materials produce significant safety concerns. The Hydrogen Incidents and Accidents Database 2.0 (HIAD 2.0) is a public repository that collects data on hydrogen-related undesired events mainly occurred in chemical and process industry. This study conducts an analysis of the HIAD 2.0 database mining information systematically through a computer science approach known as Business Analytics. Moreover several hydrogen-induced ma terial failures are investigated to understand their root causes. As a result a deficiency in planning effective inspection and maintenance activities is highlighted as the common cause of the most severe accidents. The lessons learned from HIAD 2.0 could help to promote a safety culture to improve the abnormal and normal events management and to stimulate a widespread rollout of hydrogen technologies.
No more items...