Institution of Gas Engineers & Managers
Influence of Microstructural Morphology on Hydrogen Embrittlement in a Medium-Mn Steel Fe-12Mn-3Al-0.05C
Aug 2019
Publication
The ultrafine-grained (UFG) duplex microstructure of medium-Mn steel consists of a considerable amount of austenite and ferrite/martensite achieving an extraordinary balance of mechanical properties and alloying cost. In the present work two heat treatment routes were performed on a cold-rolled medium-Mn steel Fe-12Mn-3Al-0.05C (wt.%) to achieve comparable mechanical properties with different microstructural morphologies. One heat treatment was merely austenite-reverted-transformation (ART) annealing and the other one was a successive combination of austenitization (AUS) and ART annealing. The distinct responses to hydrogen ingression were characterized and discussed. The UFG martensite colonies produced by the AUS + ART process were found to be detrimental to ductility regardless of the amount of hydrogen which is likely attributed to the reduced lattice bonding strength according to the H-enhanced decohesion (HEDE) mechanism. With an increase in the hydrogen amount the mixed microstructure (granular + lamellar) in the ART specimen revealed a clear embrittlement transition with the possible contribution of HEDE and H-enhanced localized plasticity (HELP) mechanisms.
Hydrogen for Heating? Decarbonization Options for Households in the United Kingdom in 2050
Dec 2020
Publication
The heating sector makes up 10% of the United Kingdom’s carbon footprint and residential homes account for a majority of demand. At present central heating from a natural gas-fired boiler is the most common system in the UK but low or zero-carbon hydrogen and renewable electricity are the two primary energy replacement options to reduce the carbon footprint. An important consideration is how using either energy source would affect heating costs. This assessment projects the costs for a typical single-family UK household and climate performance in 2050 using low-GHG or GHG-neutral hydrogen renewable electricity or a combination of both. The cost of using boilers or fuel cells in 2050 with two types of hydrogen are assessed: produced via steam-methane reforming (SMR) combined with carbon capture and storage (CCS) and electrolysis using zero-carbon renewable electricity. The costs of heat pumps the most promising heating technology for the direct use of renewable electricity are also assessed in two scenarios: a heat pump only and a hybrid heat pump with an auxiliary hydrogen boiler.
You can download this document from the International Council On Clean Transportation website linked here
You can download this document from the International Council On Clean Transportation website linked here
Life Cycle Assessment of Substitute Natural Gas Production from Biomass and Electrolytic Hydrogen
Feb 2021
Publication
The synthesis of a Substitute Natural Gas (SNG) that is compatible with the gas grid composition requirements by using surplus electricity from renewable energy sources looks a favourable solution to store large quantities of electricity and to decarbonise the gas grid network while maintaining the same infrastructure. The most promising layouts for SNG production and the conditions under which SNG synthesis reduces the environmental impacts if compared to its fossil alternative is still largely untapped. In this work six different layouts for the production of SNG and electricity from biomass and fluctuating electricity are compared from the environmental point of view by means of Life Cycle Assessment (LCA) methodology. Global Warming Potential (GWP) Cumulative Energy Demand (CED) and Acidification Potential (AP) are selected as impact indicators for this analysis. The influence of key LCA methodological aspects on the conclusions is also explored. In particular two different functional units are chosen: 1 kg of SNG produced and 1 MJ of output energy (SNG and electricity). Furthermore different approaches dealing with co-production of electricity are also applied. The results show that the layout based on hydrogasification has the lowest impacts on all the considered cases apart from the GWP and the CED with SNG mass as the functional unit and the avoided burden approach. Finally the selection of the multifunctionality approach is found to have a significant influence on technology ranking.
The Influence of Degradation Effects in Proton Exchange Membrane Fuel Cells on Life Cycle Assessment Modelling and Environmental Impact Indicators
Apr 2022
Publication
Although proton exchange membrane fuel cell (PEMFC) systems are expected to have lower environmental impacts in the operational phase compared to conventional energy conversion systems there are still certain economic operational and environmental setbacks. Durability under a wide range of operating conditions presents a challenge because degradation processes affect the PEMFC efficiency. Typically life cycle assessment (LCA) of PEMFC systems do not include performance degradation. Thus a novel semi-empirical PEMFC model is developed which includes degradation effects caused by different operational regimes (dynamic and steady-state). The model is integrated into LCA through life cycle inventory (LCI) to achieve a more realistic and accurate evaluation of environmental impacts. Verification of the model clearly showed that the use of existing LCI models underestimates the environmental impacts. This is especially evident when green hydrogen is used in PEMFC operational phase where manufacturing phase and maintenance (stack replacements) become more influential. Input parameters of the model can be modified to reflect technological improvements (e.g. platinum loading or durability) and evaluate the effects of future scenarios.
Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting
Jul 2019
Publication
A study was performed to investigate the hydrogen embrittlement behavior of 18-Ni 300 maraging steel produced by selective laser melting and subjected to different heat treatment strategies. Hydrogen was pre-charged into the tensile samples by an electro-chemical method at the constant current density of 1 A m−2 and 50 A m−2 for 48 h at room temperature. Charged and uncharged specimens were subjected to tensile tests and the hydrogen concentration was eventually analysed using quadrupole mass spectroscopy. After tensile tests uncharged maraging samples showed fracture surfaces with dimples. Conversely in H-charged alloys quasi-cleavage mode fractures occurred. A lower concentration of trapped hydrogen atoms and higher elongation at fracture were measured in the H-charged samples that were subjected to solution treatment prior to hydrogen charging compared to the as-built counterparts. Isothermal aging treatment performed at 460 °C for 8 h before hydrogen charging increased the concentration of trapped hydrogen giving rise to higher hydrogen embrittlement susceptibility.
Experimental Investigation of the Effect of Hydrogen on Fracture Toughness of 2.25Cr-1Mo-0.25V Steel and Welds after Annealing
Mar 2018
Publication
Hydrogen embrittlement (HE) is a critical issue that hinders the reliability of hydrogenation reactors. Hence it is of great significance to investigate the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and weld. In this work the fracture behavior of 2.25Cr-1Mo-0.25V steel and welds was studied by three-point bending tests under hydrogen-free and hydrogen-charged conditions. The immersion charging method was employed to pre-charge hydrogen inside specimen and the fracture toughness of these joints was evaluated quantitatively. The microstructure and grain size of the specimens were observed by scanning electron microscopy (SEM) and by metallurgical microscopy to investigate the HE mechanisms. It was found that fracture toughness for both the base metal (BM) and the weld zone (WZ) significantly decreased under hydrogen-charged conditions due to the coexistence of the hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP) mechanisms. Moreover the formation and growth of primary voids were observed in the BM leading to a superior fracture toughness. In addition the BM compared to the WZ shows superior resistance to HE because the finer grain size in the BM leads to a larger grain boundary area thus distributing more of the diffusive hydrogen trapped in the grain boundary and reducing the hydrogen content.
Global Energy Transformation: A Roadmap to 2050
Apr 2019
Publication
Dolf Gielen,
Ricardo Gorini,
Nicholas Wagner,
Rodrigo Leme,
Laura Gutierrez,
Gayathri Prakash,
Elisa Asmelash,
Luis Janeiro,
Giacomo Gallina,
Guilia Vale,
Lorenzo Sani,
Xavier Garcia Casals,
Rabia Ferroukhi,
Bishal Parajuli,
Jinlei Feng,
Eva Alexandri,
Unnada Chewpreecha,
Mary Goldman,
Sophie Heald,
Jon Stenning,
Hector Pollitt,
Celia García-Baños and
Michael Renner
Increased use of renewable energy combined with intensified electrification could prove decisive for the world to meet key climate goals by 2050. This study from the International Renewable Energy Agency (IRENA) highlights immediately deployable cost-effective options for countries to fulfil climate commitments and limit the rise of global temperatures. The envisaged energy transformation would also reduce net costs and bring significant socio-economic benefits such as increased economic growth job creation and overall welfare gains.<br/>The report – the second under the Global Energy Transformation banner – expands IRENA’s comprehensive roadmap which examines technology pathways and policy implications to ensure a sustainable energy future. Ramping up electricity to over half of the global energy mix (up from one-fifth currently) in combination with renewables would reduce the use of fossil fuels responsible for most greenhouse-gas emissions.
Hydrogen Trapping Behavior in Vanadium Microalloyed TRIP-Assisted Annealed Martensitic Steel
Jun 2019
Publication
Transformation induced plasticity (TRIP)-assisted annealed martensitic (TAM) steel combines higher tensile strength and elogangtion and has been increasingly used but appears to bemore prone to hydrogen embrittlement (HE). In this paper the hydrogen trapping behavior and HE of TRIP-assisted annealed martensitic steels with different vanadium additions had been investigated by means of hydrogen charging and slow strain rate tensile tests (SSRT) microstructral observartion and thermal desorption mass spectroscope (TDS). Hydrogen charging test results indicates that apparent hydrogen diffusive index Da is 1.94 × 10−7/cm2·s−1 for 0.21 wt.% vanadium steel while the value is 8.05 × 10−7/cm2·s−1 for V-free steel. SSRT results show that the hydrogen induced ductility loss ID is 76.2% for 0.21 wt.%V steel compared with 86.5% for V-free steel. The trapping mechanism of the steel containing different V contents is analyzed by means of TDS and Transmission electron microscope (TEM) observations. It is found out that the steel containing 0.21 wt.%V can create much more traps for hydrogen trapping compared with lower V steel which is due to vanadium carbide (VC) precipitates acting as traps capturing hydrogen atoms.The relationship between hydrogen diffusion and hydrogentrapping mechanism is discussed in details.
Scottish Hydrogen Assessment
Dec 2020
Publication
During 2020 the Scottish Government in partnership with Highlands and Islands Enterprise and Scottish Enterprise commissioned Arup and E4Tech to carry out a hydrogen assessment to deepen our evidence base in order to inform our policies on hydrogen going forward. The assessment aims to investigate how and where hydrogen may fit within the evolving energy system technically geographically and economically. To assist in this consideration a key part of the Hydrogen Assessment is the development of distinct viable scenarios for hydrogen deployment in Scotland and the economic assessment of those scenarios.<br/>From our assessment it is clear that hydrogen is not just an energy and emissions reduction opportunity; it could also have an important role in generating new economic opportunities in Scotland. The assessment forms an important part of the evidence base that informed the development of the Hydrogen Policy Statement.
Scottish Offshore Wind to Green Hydrogen Opportunity Assessment
Dec 2020
Publication
Initial assessment of Scotland’s opportunity to produce green hydrogen from offshore wind
Summary of Key Findings
Summary of Key Findings
- Scotland has an abundant offshore wind resource that has the potential to be a vital component in our net zero transition. If used to produce green hydrogen offshore wind can help abate the emissions of historically challenging sectors such as heating transport and industry.
- The production of green hydrogen from offshore wind can help overcome Scotland’s grid constraints and unlock a massive clean power generation resource creating a clean fuel for Scottish industry and households and a highly valuable commodity to supply rapidly growing UK and European markets.
- The primary export markets for Scottish green hydrogen are expected to be in Northern Europe (Germany Netherlands & Belgium). Strong competition to supply these markets is expected to come from green hydrogen produced from solar energy in Southern Europe and North Africa.
- Falling wind and electrolyser costs will enable green hydrogen production to be cost-competitive in the key transport and heat sectors by 2032. Strategic investment in hydrogen transportation and storage is essential to unlocking the economic opportunity for Scotland.
- Xodus’ analysis supports a long-term outlook of LCoH falling towards £2/kg with an estimated reference cost of £2.3 /kg in 2032 for hydrogen delivered to shore.
- Scotland has extensive port and pipeline infrastructure that can be repurposed for hydrogen export to the rest of UK and to Europe. Pipelines from the ‘90s are optimal for this purpose as they are likely to retain acceptable mechanical integrity and have a metallurgy better suited to hydrogen service. A more detailed assessment of export options should be performed to provide a firm foundation for early commercial green hydrogen projects.
- There is considerable hydrogen supply chain overlap with elements of parallel sectors most notably the oil and gas offshore wind and subsea engineering sectors. Scotland already has a mature hydrocarbon supply chain which is engaged in supporting green hydrogen. However a steady pipeline of early projects supported by a clear financeable route to market will be needed to secure this supply chain capability through to widescale commercial deployment.
- There are gaps in the Scottish supply chain in the areas of design manufacture and maintenance of hydrogen production storage and transportation systems. Support including apprenticeships will be needed to develop indigenous skills and capabilities in these areas.
- The development of green hydrogen from offshore wind has the potential to create high value jobs a significant proportion which are likely to be in remote rural/coastal communities located close to offshore wind resources. These can serve as an avenue for workers to redeploy and develop skills learned from oil and gas in line with Just Transition principles.
Recent Advances in Biomass Pretreatment Technologies for Biohydrogen Production
Jan 2022
Publication
Hydrogen is an economical source of clean energy that has been utilized by industry for decades. In recent years demand for hydrogen has risen significantly. Hydrogen sources include water electrolysis hydrocarbon steam reforming and fossil fuels which emit hazardous greenhouse gases and therefore have a negative impact on global warming. The increasing worldwide population has created much pressure on natural fuels with a growing gap between demand for renewable energy and its insufficient supply. As a result the environment has suffered from alarming increases in pollution levels. Biohydrogen is a sustainable energy form and a preferable substitute for fossil fuel. Anaerobic fermentation photo fermentation microbial and enzymatic photolysis or combinations of such techniques are new approaches for producing biohydrogen. For cost-effective biohydrogen production the substrate should be cheap and renewable. Substrates including algal biomass agriculture residue and wastewaters are readily available. Moreover substrates rich in starch and cellulose such as plant stalks or agricultural waste or food industry waste such as cheese whey are reported to support dark- and photo-fermentation. However their direct utilization as a substrate is not recommended due to their complex nature. Therefore they must be pretreated before use to release fermentable sugars. Various pretreatment technologies have been established and are still being developed. This article focuses on pretreatment techniques for biohydrogen production and discusses their efficiency and suitability including hybrid-treatment technology
Establishing a Hydrogen Economy: The Future of Energy 2035
May 2019
Publication
The next few decades are expected to be among the most transformative the energy sector has ever seen. Arup envisages a world with a much more diverse range of heating sources and with significantly lower emissions and renewable energy powering transport.<br/>As part of this the establishment of a strong hydrogen economy is a very real opportunity and is within reaching distance. Our report uses the UK as a case study example and explores the challenges and opportunities for hydrogen in the context of the whole energy system.<br/>Read about the progress already being made in using hydrogen for transport and heat. And the need to progress policy and collaboration between government the private sector and other stakeholders to shape future demand change consumer perception and create the strong supply chains needed to allow the hydrogen economy to thrive.
Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel
Apr 2020
Publication
The present research focuses on the investigation of an in situ hydrogen charging effect during Crack Tip Opening Displacement testing (CTOD) on the fracture toughness properties of X65 pipeline steel. This grade of steel belongs to the broader category of High Strength Low Alloy Steels (HSLA) and its microstructure consists of equiaxed ferritic and bainitic grains with a low volume fraction of degenerated pearlite islands. The studied X65 steel specimens were extracted from pipes with 19.15 mm wall thickness. The fracture toughness parameters were determined after imposing the fatigue pre-cracked specimens on air on a specific electrolytic cell under a slow strain rate bending loading (according to ASTM G147-98 BS7448 and ISO12135 standards). Concerning the results of this study in the first phase the hydrogen cations’ penetration depth the diffusion coefficient of molecular and atomic hydrogen and the surficial density of blisters were determined. Next the characteristic parameters related to fracture toughness (such as J KQ CTODel CTODpl) were calculated by the aid of the Force-Crack Mouth Open Displacement curves and the relevant analytical equations.
Baking Effect on Desorption of Diffusible Hydrogen and Hydrogen Embrittlement on Hot-Stamped Boron Martensitic Steel
Jun 2019
Publication
Recently hot stamping technology has been increasingly used in automotive structural parts with ultrahigh strength to meet the standards of both high fuel efficiency and crashworthiness. However one issue of concern regarding these martensitic steels which are fabricated using a hot stamping procedure is that the steel is highly vulnerable to hydrogen delayed cracking caused by the diffusible hydrogen flow through the surface reaction of the coating in a furnace atmosphere. One way to make progress in understanding hydrogen delayed fractures is to elucidate an interaction for desorption with diffusible hydrogen behavior. The role of diffusible hydrogen on delayed fractures was studied for different baking times and temperatures in a range of automotive processes for hot-stamped martensitic steel with aluminum- and silicon-coated surfaces. It was clear that the release of diffusible hydrogen is effective at higher temperatures and longer times making the steel less susceptible to hydrogen delayed fractures. Using thermal desorption spectroscopy the phenomenon of the hydrogen delayed fracture was attributed to reversible hydrogen in microstructure sites with low trapping energy.
World Energy Transitions Outlook: 1.5°C Pathway
Mar 2021
Publication
Dolf Gielen,
Ricardo Gorini,
Rodrigo Leme,
Gayathri Prakash,
Nicholas Wagner,
Luis Janeiro,
Sean Collins,
Maisarah Kadir,
Elisa Asmelash,
Rabia Ferroukhi,
Ulrike Lehr,
Xavier Garcia Casals,
Diala Hawila,
Bishal Parajuli,
Elizabeth Press,
Paul Durrant,
Seungwoo Kang,
Martina Lyons,
Carlos Ruiz,
Trish Mkutchwa,
Emanuele Taibi,
Herib Blanco,
Francisco Boshell,
Arina Anise,
Elena Ocenic,
Roland Roesch,
Gabriel Castellanos,
Gayathri Nair,
Barbara Jinks,
Asami Miketa,
Michael Taylor,
Costanza Strinati,
Michael Renner and
Deger Saygin
The World Energy Transitions Outlook preview outlines a pathway for the world to achieve the Paris Agreement goals and halt the pace of climate change by transforming the global energy landscape. This preview presents options to limit global temperature rise to 1.5°C and bring CO2 emissions closer to net zero by mid-century offering high-level insights on technology choices investment needs and the socio-economic contexts of achieving a sustainable resilient and inclusive energy future.
Meeting CO2 reduction targets by 2050 will require a combination of: technology and innovation to advance the energy transition and improve carbon management; supportive and proactive policies; associated job creation and socio-economic improvements; and international co-operation to guarantee energy availability and access.
Among key findings:
This preview identifies opportunities to support informed policy and decision making to establish a new global energy system. Following this preview and aligned with the UN High-Level Dialogue process the International Renewable Energy Agency (IRENA) will release the full report which will provide a comprehensive vision and accompanying policy measures for the transition.
Meeting CO2 reduction targets by 2050 will require a combination of: technology and innovation to advance the energy transition and improve carbon management; supportive and proactive policies; associated job creation and socio-economic improvements; and international co-operation to guarantee energy availability and access.
Among key findings:
- Proven technologies for a net-zero energy system already largely exist today. Renewable power green hydrogen and modern bioenergy will dominate the world of energy of the future.
- A combination of technologies is needed to keep us on a 1.5°C climate pathway. These include increasingly efficient energy production to ensure economic growth; decarbonised power systems that are dominated by renewables; increased use of electricity in buildings industry and transport to support decarbonisation; expanded production and use of green hydrogen synthetic fuels and feedstocks; and targeted use of sustainably sourced biomass.
- In anticipation of the coming energy transition financial markets and investors are already directing capital away from fossil fuels and towards other energy technologies including renewables.
- Energy transition investment will have to increase by 30% over planned investment to a total of USD 131 trillion between now and 2050 corresponding to USD 4.4 trillion on average every year.
- National social and economic policies will play fundamental roles in delivering the energy transition at the speed required to restrict global warming to 1.5°C.
This preview identifies opportunities to support informed policy and decision making to establish a new global energy system. Following this preview and aligned with the UN High-Level Dialogue process the International Renewable Energy Agency (IRENA) will release the full report which will provide a comprehensive vision and accompanying policy measures for the transition.
A Numerical Performance Study of a Fixed-bed Reactor for Methanol Synthesis by CO2 Hydrogenation
Mar 2021
Publication
Synthetic fuels are needed to replace their fossil counterparts for clean transport. Presently their production is still inefficient and costly. To enhance the process of methanol production from CO2 and H2 and reduce its cost a particle-resolved numerical simulation tool is presented. A global surface reaction model based on the Langmuir-Hinshelwood-Hougen-Watson kinetics is utilized. The approach is first validated against standard benchmark problems for non-reacting and reacting cases. Next the method is applied to study the performance of methanol production in a 2D fixed-bed reactor under a range of parameters. It is found that methanol yield enhances with pressure catalyst loading reactant ratio and packing density. The yield diminishes with temperature at adiabatic conditions while it shows non-monotonic change for the studied isothermal cases. Overall the staggered and the random catalyst configurations are found to outperform the in-line system.
Power-to-liquid via Synthesis of Methanol, DME or Fischer–Tropsch-fuels: A Review
Jul 2020
Publication
The conversion of H2 and CO2 to liquid fuels via Power-to-Liquid (PtL) processes is gaining attention. With their higher energy densities compared to gases the use of synthetic liquid fuels is particularly interesting in hard-to-abate sectors for which decarbonisation is difficult. However PtL poses new challenges for the synthesis: away from syngas-based continuously run large-scale plants towards more flexible small-scale concepts with direct CO2-utilisation. This review provides an overview of state of the art synthesis technologies as well as current developments and pilot plants for the most prominent PtL routes for methanol DME and Fischer–Tropsch-fuels. It should serve as a benchmark for future concepts guide researchers in their process development and allow a technological evaluation of alternative reactor designs. In the case of power-to-methanol and power-to-FT-fuels several pilot plants have been realised and the first commercial scale plants are planned or already in operation. In comparison power-to-DME is much less investigated and in an earlier stage of development. For methanol the direct CO2 hydrogenation offers advantages through less by-product formation and lower heat development. However increased water formation and lower equilibrium conversion necessitate new catalysts and reactor designs. While DME synthesis offers benefits with regards to energy efficiency operational experience from laboratory tests and pilot plants is still missing. Furthermore four major process routes for power-to-DME are possible requiring additional research to determine the optimal concept. In the case of Fischer–Tropsch synthesis catalysts for direct CO2 utilisation are still in an early stage. Consequently today’s Fischer–Tropsch-based PtL requires a shift to syngas benefiting from advances in co-electrolysis and reverse water-gas shift reactor design.
Hydrogen Station Technology Development Review Through Patent Analysis
May 2018
Publication
This study is a review of hydrogen station patents using the Derwent Innovation system and also a secondary screening. This was undertaken by the researchers to better understand and identify hydrogen station trends. The review focuses on analyzing the developing trends of patent technologies associated with a hydrogen station. The results of the review indicated that the countries with the major distribution of patents were Japan China the USA and Europe. Japan is leading the developmental trajectory of hydrogen stations. The results of the analysis found the leading developers of these patented technologies are Kobe Steel Nippon Oil Toyota and Honda. Other active patent developers analyzed include Linde Hyundai and Texaco. The review concludes with a suggestion that using a patent analysis methodology is a good starting point to identify evaluate and measure the trend in hydrogen station commercial development.
Observation of the Hydrogen Dispersion by Using Raman Scattering Measurement and Increase of Measurable Distance
Sep 2017
Publication
Preparing for the arrival of the hydrogen society it is necessary to develop suitable sensors to use hydrogen safely. There are many methods to know the hydrogen concentration by using conventional sensors but it is difficult to know the behavior of hydrogen gas from long distance. This study measured hydrogen dispersion by using Raman scattering light. Generally some delays occur when using conventional sensors but there are almost no delays by using the new Raman sensor. In the experiments 6mm & 1mm diameter holes are used as a spout nozzle to change initial velocities. To ensure the result a special sheets are used which turns transparent when it detected hydrogen and visualized the hydrogen behaviour. As a result the behaviour of the hydrogen gas in the small container was observed. In addition measurable distance is increased by the improvement of the device.
Non-steady Characteristics of Dispersion and Ignitability for High-pressurized Hydrogen Jet Discharged From a Pinhole
Sep 2017
Publication
Hydrogen gas concentrations and jet velocities were measured downstream by a high response speed flame ionization detector and PIV (Particle Image Velocimetry) in order to investigate the characteristics of dispersion and ignitability for 40–82 MPa high-pressurized hydrogen jet discharged from a nozzle with 0.2 mm diameter. The light emitted from both OH radical and water vapor species yielded from hydrogen combustion ignited by an electric spark were recorded by two high speed cameras. From the results the empirical formula concerning the relationships for time-averaged concentrations concentration fluctuations and ignition probability were obtained to suggest that they would be independent of hydrogen discharge pressure.
No more items...