Institution of Gas Engineers & Managers
Effect of Relative Humidity on Mechanical Degradation of Medium Mn Steels
Mar 2020
Publication
Medium Mn steels have been considered as the next-generation materials for use in the automotive industry due to their excellent strength and ductility balance. To reduce the total weight and improve the safety of vehicles medium Mn steels look forward to a highly promising future. However hydrogen-induced delayed cracking is a concern for the use of high strength steels. This work is focused on the service characteristics of two kinds of medium Mn steels under different relative humidity conditions (40% 60% 80% and 100%). Under normal relative humidity (about 40%) at 25 °C the hydrogen concentration in steel is 0.4 ppm. When exposed to higher relative humidity the hydrogen concentration in steel increases slowly and reaches a stable value about 0.8 ppm. In slow strain rate tensile tests under different relative humidity conditions the tensile strength changed the hydrogen concentration increased and the elongation decreased as well thereby increasing the hydrogen embrittlement sensitivity. In other words the smaller the tensile rate applied the greater the hydrogen embrittlement sensitivity. In constant load tests under different relative humidity conditions the threshold value of the delayed cracking of M7B (‘M’ referring to Mn ‘7’ meaning the content of Mn ‘B’ denoting batch annealing) steel maintains a steady value of 0.82 σb (tensile strength). The threshold value of the delayed cracking of M10B significantly changed along with relative humidity. When relative humidity increased from 60% to 80% the threshold dropped sharply from 0.63 σb to 0.52 σb. We define 80% relative humidity as the ‘threshold humidity’ for M10B.
Modelling the UK Energy System: Practical Insights for Technology Development and Policy Making
Jun 2014
Publication
The Energy Technologies Institute (ETI) has developed an internationally peer-reviewed model of the UK’s national energy system extending across power heat transport and infrastructure. The Energy System Modelling Environment (ESME) is a policy neutral system-wide optimisation model. It models the key technology and engineering choices taking account of cost engineering spatial and temporal factors.
Key points:
Key points:
- A system-wide perspective informed by modelling is highly relevant because complex energy systems are made more inter-dependent by emissions reduction objectives
- Efforts to cut emissions are substitutable across a national energy system encompassing power heat transport and infrastructure.
- Energy systems are subject to key decision points and it is important to make the right choices in major long lived investments
- Policy makers should place policy in a system-wide context.
- Decarbonisation can be achieved affordably (at around 0.6% of GDP) provided that the most cost effective technologies and strategies to reduce emissions are deployed
- A broad portfolio of technologies is needed to deliver emissions reductions with bio-energy and carbon capture and storage of particular system-wide importance
FCH Programme Review Report 2014
Apr 2015
Publication
The 2014 Review is the fourth review of the FCH JU project portfolio. The reviews began in 2011 following a recommendation arising from the interim evaluation of the FCH JU which identified the need to ensure that the FCH JU project portfolio as a whole fulfilled the objectives of the Multi-Annual Implementation or Work Plan.<br/><br/>An international team of leading experts in the FCH field undertakes each review based on (1) The achievements of the portfolio against the strategic objectives and content of the FCH JU’s MAIP/MAWP and the AIP/AWPs as set out for the transportation and energy innovation pillars and the cross-cutting category; (2) The extent to which the portfolio meets the FCH JU’s remit for promoting the horizontal activities of RCS PNR safety life-cycle and socio-economic analysis education and training and public awareness; (3) The portfolio’s effectiveness in promoting linkages and co-operation between projects and between FCH JU-supported projects and those supported by other European instruments the Member States and internationally. Review panels The 2014 review comprised six panels covering a total of 114 projects. Each panel covered between 10 and 24 projects as shown in Table 1 below. The objective was to assess projects within each panel as a sub-portfolio (within the FCH JU portfolio) and not as individual projects although examples of individual projects representing good practice were highlighted.
A Portfolio of Power-Trains for Europe- A Fact Based Analysis
Nov 2010
Publication
This report is prepared by thirty of the largest global car manufacturers oil and gas companies utilities equipment manufacturers NGOs governmental and clean energy organisations with the collaboration of the Fuel Cells and Hydrogen Joint Undertaking.<br/>The analysis compares the economics sustainability and performance of the vehicles and infrastructures needed to reach the 80% decarbonisation goal set by the<br/>European Union and is an unprecedented effort from industry and other stakeholders to analyse the role of the various new car-types in meeting this objective on the basis of proprietary industrial data.
Reducing Emissions in Scotland 2020 Progress Report to the Scottish Parliament
Oct 2020
Publication
Outline
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions
Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020.
Key findings
Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland.
The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.
Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.
Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions
Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020.
Key findings
Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland.
The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.
Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.
Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
Modelling a Kinetic Deviation of the Magnesium Hydrogenation Reaction at Conditions Close to Equilibrium
May 2019
Publication
A model has been derived for the magnesium hydrogenation reaction at conditions close to equilibrium. The reaction mechanism involves an adsorption element where the model is an extension of the Langmuir adsorption model. The concept of site availability (σs) is introduced whereby it has the capability to reduce the reaction rate. To improve representation of σs an adaptable semi-empirical equation has been developed. Supplement to the surface reaction a rate equation has been derived considering resistance effects. It was found that close to equilibrium surface resistance dominated the reaction.
Leakage-type-based Analysis of Accidents Involving Hydrogen Fueling Stations in Japan and USA
Aug 2016
Publication
To identify the safety issues associated with hydrogen fuelling stations incidents at such stations in Japan and the USA were analyzed considering the regulations in these countries. Leakage due to the damage and fracture of main bodies of apparatuses and pipes in Japan and the USA is mainly caused by design error that is poorly planned fatigue. Considering the present incidents in these countries adequate consideration of the usage environment in the design is very important. Leakage from flanges valves and seals in Japan is mainly caused by screw joints. If welded joints are to be used in hydrogen fuelling stations in Japan strength data for welded parts should be obtained and pipe thicknesses should be reduced. Leakage due to other factors e.g. external impact in Japan and the USA is mainly caused by human error. To realize self-serviced hydrogen fuelling stations safety measures should be developed to prevent human error by fuel cell vehicle users.
Validation and Recommendations for CFD and Engineering Modeling of Hydrogen Vented Explosions: Effects of Concentration, Stratification, Obstruction and Vent Area
Oct 2015
Publication
Explosion venting is commonly used in the process industry as a prevention solution to protect equipment or buildings against excessive internal pressure caused by an explosion. This article is dedicated to the validation of FLACS CFD code for the modelling of vented explosions. Analytical engineering models fail when complex cases are considered for instance in the presence of obstacles or H2 stratified mixtures. CFD is an alternative solution but has to be carefully validated. In this study FLACS simulations are compared to published experimental results and recommendations are suggested for their application.
Clean Growth- Transforming Heating Overview of Current Evidence
Dec 2018
Publication
Government has reviewed the evidence base on options for achieving long term heat decarbonisation. This report provides an overview of the key issues arising from our review and seeks to:
- highlight the different characteristics of the main alternative sources of low carbon heat and the approaches to achieving transformational change
- set out strategically important issues ‘strategic inferences’ which we have drawn from the evidence available to help focus the development of our long term policy framework
- identify areas that require further exploration to inform the development of a new long term policy framework for heat
- better understanding of the different options available for decarbonising heating
- a clearer common agenda across industry academia and the public sector to ensure effort and resources are effectively and efficiently applied to long term heat decarbonisation issues
- the strategic inferences identified
- the priority areas requiring further development
- any important omissions
- the parties best placed to deliver in these areas
- opportunities for enhancing co-ordination
Recovery Through Reform: Advancing a Hydrogen Economy While Minimizing Fossil Fuel Subsidies
Feb 2021
Publication
This brief explores recent momentum on hydrogen and evaluates potential implications for subsidies for fossil fuel-based hydrogen given the government's commitments on fossil fuel subsidies.
Spending on hydrogen has the potential to significantly influence the direction taken by the world’s energy systems. In December 2020 Canada unveiled a national hydrogen strategy following the announcement of a strengthened climate plan. The strategy emphasized both blue and green hydrogen. As the government considers whether to provide subsidies for hydrogen we recommend government:
This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Spending on hydrogen has the potential to significantly influence the direction taken by the world’s energy systems. In December 2020 Canada unveiled a national hydrogen strategy following the announcement of a strengthened climate plan. The strategy emphasized both blue and green hydrogen. As the government considers whether to provide subsidies for hydrogen we recommend government:
- Ensure that any subsidies for hydrogen are in line with the government’s commitments to phase out inefficient fossil fuel subsidies by 2025 and meet net-zero by 2050.
- Thoroughly evaluate the potential efficiency of subsidies for hydrogen against robust social environmental and economic criteria. • Improve transparency by publicly reporting on direct spending and tax expenditures for hydrogen production.
- Follow international best practices being set by Canada’s peers. For example Germany and Spain have laid out hydrogen strategies prioritizing green hydrogen.
This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Optimal Design and Operation of Integrated Wind-hydrogen-electricity Networks for Decarbonising the Domestic Transport Sector in Great Britain
Nov 2015
Publication
This paper presents the optimal design and operation of integrated wind-hydrogen-electricity networks using the general mixed integer linear programming energy network model STeMES (Samsatli and Samsatli 2015). The network comprises: wind turbines; electrolysers fuel cells compressors and expanders; pressurised vessels and underground storage for hydrogen storage; hydrogen pipelines and electricity overhead/underground transmission lines; and fuelling stations and distribution pipelines.<br/>The spatial distribution and temporal variability of energy demands and wind availability were considered in detail in the model. The suitable sites for wind turbines were identified using GIS by applying a total of 10 technical and environmental constraints (buffer distances from urban areas rivers roads airports woodland and so on) and used to determine the maximum number of new wind turbines that can be installed in each zone.<br/>The objective is the minimisation of the total cost of the network subject to satisfying all of the demands of the domestic transport sector in Great Britain. The model simultaneously determines the optimal number size and location of each technology whether to transmit the energy as electricity or hydrogen the structure of the transmission network the hourly operation of each technology and so on. The cost of distribution was estimated from the number of fuelling stations and length of the distribution pipelines which were determined from the demand density at the 1 km level.<br/>Results indicate that all of Britain's domestic transport demand can be met by on-shore wind through appropriately designed and operated hydrogen-electricity networks. Within the set of technologies considered the optimal solution is: to build a hydrogen pipeline network in the south of England and Wales; to supply the Midlands and Greater London with hydrogen from the pipeline network alone; to use Humbly Grove underground storage for seasonal storage and pressurised vessels at different locations for hourly balancing as well as seasonal storage; for Northern Wales Northern England and Scotland to be self-sufficient generating and storing all of the hydrogen locally. These results may change with the inclusion of more technologies such as electricity storage and electric vehicles.
A Study on the Joule-Thomson Effect of During Filling Hydrogen in High Pressure Tank
Dec 2022
Publication
With the development of the hydrogen fuel cell automobile industry higher requirements are put forward for the construction of hydrogen energy infrastructure the matching of parameters and the control strategy of hydrogen filling rate in the hydrogenation process of hydrogenation station. Fuel for hydrogen fuel cell vehicles comes from hydrogen refueling stations. At present the technological difficulty of hydrogenation is mainly reflected in the balanced treatment of reducing the temperature rise of hydrogen and shortening the filling time during the fast filling process. The Joule-Thomson (JT) effect occurs when high-pressure hydrogen gas passes through the valve assembly which may lead to an increase in hydrogen temperature. The JT effect is generally reflected by the JT coefficient. According to the high pressure hydrogen in the pressure reducing valve the corresponding JT coefficients were calculated by using the VDW equation RK equation SRK equation and PR equation and the expression of JT effect temperature rise was deduced which revealed the hydrogen temperature variation law in the process of reducing pressure. Make clear the relationship between charging parameters and temperature rise in the process of decompression; the flow and thermal characteristics of hydrogen in the process of decompression are revealed. This study provides basic support for experts to achieve throttling optimization of related pressure control system in hydrogen industry
NanoSIMS Analysis of Hydrogen and Deuterium in Metallic Alloys: Artefacts and Best Practice
Apr 2021
Publication
Hydrogen embrittlement can cause catastrophic failure of high strength alloys yet determining localised hydrogen in the microstructure is analytically challenging. NanoSIMS is one of the few techniques that can map hydrogen and deuterium in metal samples at microstructurally relevant length scales. Therefore it is essential to understand the artefacts and determine the optimum methodology for its reliable detection. An experimental methodology/protocol for NanoSIMS analysis of deuterium (as a proxy for hydrogen) has been established uncovering unreported artefacts and a new approach is presented to minimise these artefacts in mapping hydrogen and deuterium in alloys. This method was used to map deuterium distributions in electrochemically charged austenitic stainless steel and precipitation hardened nickel-based alloys. Residual deuterium contamination was detected in the analysis chamber as a result of deuterium outgassing from the samples and the impact of this deuterium contamination was assessed by a series of NanoSIMS experiments. A new analysis protocol was developed that involves mapping deuterium in the passive oxide layer thus mitigating beam damage effects that may prevent the detection of localised deuterium signals when the surface is highly deuterated.
Influence of Hydrogen for Crack Formation during Mechanical Clinching
Jan 2018
Publication
Hydrogen intrudes into the steel during pickling process which is a pre-processing before a joining process promoting crack formation. In a mechanical clinching which is one of joining method in the automotive industry cracks due to large strain sometimes forms. In order to guarantee reliability it is important to clarify the influence of hydrogen on crack formation of the joint. In this study we clarified the influence of hydrogen for the crack formation on the mechanical clinching. Hydrogen charge was carried out using an electrolytic cathode charge. After the charging mechanical clinching was performed. Mechanical clinching was carried out with steel plate and aluminium alloy plate. To clarify the influence of hydrogen mechanical clinching was conducted without hydrogen charring. To investigate the crack formation the test piece was cut and the cut surface was observed. When the joint was broken during the clinching the fracture surface was observed using an optical microscope and an electron microscope. The load-displacement diagram showed that without hydrogen charging the compressive load increased as the displacement increased. On the other hand the compressive load temporarily decreased with high hydrogen charging suggesting that cracks formed at the time. The cut surface observation showed that interlock was formed in both cases with low hydrogen charging and without hydrogen charging. With low hydrogen charging no cracks were formed in the joint. When high hydrogen charging was performed cracks were formed at the joining point. Fracture analysis showed brittle-like fracture surface. These results indicate that hydrogen induces crack formation in the mechanical clinching.
Validation of Selected Optical Methods for Assessing Polyethylene (PE) Liners Used in High Pressure Vessels for Hydrogen Storage
Jun 2021
Publication
A polyethylene (PE) liner is the basic element in high-pressure type 4 composite vessels designed for hydrogen or compressed natural gas (CNG) storage systems. Liner defects may result in the elimination of the whole vessel from use which is very expensive both at the manufacturing and exploitation stage. The goal is therefore the development of efficient non-destructive testing (NDT) methods to test a liner immediately after its manufacturing before applying a composite reinforcement. It should be noted that the current regulations codes and standards (RC&S) do not specify liner testing methods after manufacturing. It was considered especially important to find a way of locating and assessing the size of air bubbles and inclusions and the field of deformations in liner walls. It was also expected that these methods would be easily applicable to mass-produced liners. The paper proposes the use of three optical methods namely visual inspection digital image correlation (DIC) and optical fiber sensing based on Bragg gratings (FBG). Deformation measurements are validated with finite element analysis (FEA). The tested object was a prototype of a hydrogen liner for high-pressure storage (700 bar). The mentioned optical methods were used to identify defects and measure deformations.
Quantification of Hydrogen in Nanostructured Hydrogenated Passivating Contacts for Silicon Photovoltaics Combining SIMS-APT-TEM: A Multiscale Correlative Approach
Mar 2021
Publication
Multiscale characterization of the hydrogenation process of silicon solar cell contacts based on c-Si/SiOx/nc-SiCx(p) has been performed by combining dynamic secondary ion mass-spectrometry (D-SIMS) atom probe tomography (APT) and transmission electron microscopy (TEM). These contacts are formed by high-temperature firing which triggers the crystallization of SiCx followed by a hydrogenation process to passivate remaining interfacial defects. Due to the difficulty of characterizing hydrogen at the nm-scale the exact hydrogenation mechanisms have remained elusive. Using a correlative TEM-SIMS-APT analysis we are able to locate hydrogen trap sites and quantify the hydrogen content. Deuterium (D) a heavier isotope of hydrogen is used to distinguish hydrogen introduced during hydrogenation from its background signal. D-SIMS is used due to its high sensitivity to get an accurate deuterium-to-hydrogen ratio which is then used to correct deuterium profiles extracted from APT reconstructions. This new methodology to quantify the concentration of trapped hydrogen in nm-scale structures sheds new insights on hydrogen distribution in technologically important photovoltaic materials.
Flame Acceleration and Deflagration-to-Detonation Transition in Hydrogen-Oxygen Mixture in a Channel with Triangular Obstacles
Sep 2021
Publication
Study of flame acceleration and deflagration-to-detonation transition (DDT) in obstructed channels is an important subject of research for hydrogen safety. Experiments and numerical simulations of DDT in channels equipped with triangular obstacles were conducted in this work. High-speed schlieren photography and pressure records were used to study the flame shape changes flame propagation and pressure build up in the experiments. In the simulations the fully compressible reactive Navier–Stokes equations coupled with a calibrated chemical-diffusion model for stoichiometric hydrogen-oxygen mixture were solved using a high-order numerical method. The simulations were in good agreement with the experiments. The results show that the triangular obstacles significantly promote the flame acceleration and provide conditions for the occurrence of DDT. In the early stages of flame acceleration vortices are generated in the gaps between adjacent obstacles which is the main cause for the flame roll-up and distortion. A positive feedback mechanism between the combustiongenerated flow and flame propagation results in the variations of the size and velocity of vortices. The flame-vortex interactions cause flame fragmentation and consequently rapid growth in flame surface area which further lead to flame acceleration. The initially laminar flame then develops into a turbulent flame with the creation of shocks shock-flame interactions and various flame instabilities. The continuously arranged obstacles interact with shocks and flames and help to create environments in which a detonation can develop. Both flame collision and flame-shock interaction can give rise to detonation in the channels with triangular obstacles.
Zero-Emission Pathway for the Global Chemical and Petrochemical Sector
Jun 2021
Publication
The chemical and petrochemical sector relies on fossil fuels and feedstocks and is a major source of carbon dioxide (CO2 ) emissions. The techno-economic potential of 20 decarbonisation options is assessed. While previous analyses focus on the production processes this analysis covers the full product life cycle CO2 emissions. The analysis elaborates the carbon accounting complexity that results from the non-energy use of fossil fuels and highlights the importance of strategies that consider the carbon stored in synthetic organic products—an aspect that warrants more attention in long-term energy scenarios and strategies. Average mitigation costs in the sector would amount to 64 United States dollars (USD) per tonne of CO2 for full decarbonisation in 2050. The rapidly declining renewables cost is one main cause for this low-cost estimate. Renewable energy supply solutions in combination with electrification account for 40% of total emissions reductions. Annual biomass use grows to 1.3 gigatonnes; green hydrogen electrolyser capacity grows to 2435 gigawatts and recycling rates increase six-fold while product demand is reduced by a third compared to the reference case. CO2 capture storage and use equals 30% of the total decarbonisation effort (1.49 gigatonnes per year) where about one-third of the captured CO2 is of biogenic origin. Circular economy concepts including recycling account for 16% while energy efficiency accounts for 12% of the decarbonisation needed. Achieving full decarbonisation in this sector will increase energy and feedstock costs by more than 35%. The analysis shows the importance of renewables-based solutions accounting for more than half of the total emissions reduction potential which was higher than previous estimates.
Analysis of Environmentally Assisted Cracking Processes in Notched Steels Using the Point Method
Sep 2019
Publication
This paper proposes the use of the Point Method (PM) to analyse Environmentally Assisted Cracking (EAC) processes in steels containing U-shaped notches. The PM a methodology included within the Theory of Critical Distances (TCD) has been extensively validated by many authors for the analysis of fracture and fatigue phenomena of different types of materials containing notches. However it has never been applied to other critical or subcritical cracking processes such as EAC or creep crack propagation.<br/>This work provides a PM-based analysis of EAC emanating from notches which is validated by testing CT notched specimens of X80 and S420 steels subjected to aggressive environments under hydrogen embrittlement conditions.<br/>The results reveal that the PM accurately predicts the crack propagation onset condition as well as the evolution of the material’s apparent EAC resistance.
Interaction of Hydrogen with the Bulk, Surface and Subsurface of Crystalline RuO2 from First Principles
Feb 2021
Publication
Hydrogen and its interaction with metal oxide surfaces is of major importance for a wide range of research and applied fields spanning from catalysis energy storage microelectronics to metallurgy. This paper reviews state of the art of first principles calculations on the well-known ruthenium oxide (RuO2) surface in its (110) orientation and its interaction with hydrogen. In addition to it the paper also fills gaps in knowledge with new calculations and results on the (001) surface. Bulk and surface interactions are thoroughly reviewed. This includes systematic analysis of adsorption sites local agglomeration propensity of hydrogen and migration pathways in which literature data and their potential deviations are explained. We notably discuss novel results on propensity for agglomeration of hydrogen within bulk channels [001] oriented in which the proton-like behavior of adsorbed hydrogen hinders further agglomeration in adjacent channels. The paper brings new insights into the migration pathways on the surface and in bulk both exhibiting preferential diffusion paths along the [001] direction. The paper finally investigates the subsurface region. We show that while the subsurface has more stable sites for adsorption compared to bulk its accessibility from the surface shows prohibitive activation barriers inhibiting penetration into subsurface and bulk. We further calculate and discuss adsorption and penetration processes on the alternative RuO2 (001) surface.
No more items...