- Home
- A-Z Publications
- Publications
Publications
Leakage-type-based Analysis of Accidents Involving Hydrogen Fueling Stations in Japan and USA
Aug 2016
Publication
To identify the safety issues associated with hydrogen fuelling stations incidents at such stations in Japan and the USA were analyzed considering the regulations in these countries. Leakage due to the damage and fracture of main bodies of apparatuses and pipes in Japan and the USA is mainly caused by design error that is poorly planned fatigue. Considering the present incidents in these countries adequate consideration of the usage environment in the design is very important. Leakage from flanges valves and seals in Japan is mainly caused by screw joints. If welded joints are to be used in hydrogen fuelling stations in Japan strength data for welded parts should be obtained and pipe thicknesses should be reduced. Leakage due to other factors e.g. external impact in Japan and the USA is mainly caused by human error. To realize self-serviced hydrogen fuelling stations safety measures should be developed to prevent human error by fuel cell vehicle users.
On Numerical Simulation of Liquefied and Gaseous Hydrogen Releases at Large Scales
Sep 2005
Publication
The large eddy simulation (LES) model developed at the University of Ulster has been applied to simulate releases of 5.11 m3 liquefied hydrogen (LH2) in open atmosphere and gaseous hydrogen (GH2) in 20-m3 closed vessel. The simulations of a spill of liquefied hydrogen confirmed the advantage of LES application to reproduce experimentally observed eddy structure of hydrogen-air cloud. The inclination angle of simulated cloud is close to experimentally reported 300. The processes of two phase hydrogen release and heat transfer were simplified by inflow of gaseous hydrogen with temperature 20 K equal to boiling point. It is shown that difference in inflow conditions geometry and grid resolution affects simulation results. It is suggested that phenomenon of air condensationevaporation in the cloud in temperature range 20-90 K should be accounted for in future. The simulations reproduced well experimental data on GH2 release and transport in 20-m3 vessel during 250 min including a phenomenon of hydrogen concentration growth at the bottom of the vessel. Higher experimental hydrogen concentration at the bottom is assumed to be due to non-uniformity of temperature of vessel walls generating additional convection. The comparison of convective and diffusion terms in Navie-Stokes equations has revealed that a value of convective term is more than order of magnitude prevail over a value of turbulent diffusion term. It is assumed that the hydrogen transport to the bottom of the vessel is driven by the remaining chaotic flow velocities superimposed on stratified hydrogen concentration field. Further experiments and simulations with higher accuracy have to be performed to confirm this phenomenon. It has been demonstrated that hydrogen-air mixture became stratified in about 1 min after release was completed. However one-dimensional models are seen not capable to reproduce slow transport of hydrogen during long period of time characteristic for scenarios such as leakage in a garage.
Numerical Studies of Dispersion and Flammable Volume of Hydrogen in Enclosures
Sep 2007
Publication
Hydrogen dispersion in an enclosure is numerically studied using simple analytical solutions and a large-eddy-simulation based CFD code. In simple calculations the interface height and temperature rise of the upper layer are obtained based on mass and energy conservation and the centreline hydrogen volume fraction is derived from similarity solutions of buoyant jets. The calculated centreline hydrogen volume fraction using the two methods agree with each other; however discrepancies are found for the calculated total flammable volume as a result of the inability of simple calculations in taking into account local mixing and diffusion. The CFD model in contrast is found to be capable of correctly reproducing the diffusion and stratification phenomena during the mixing stage.
UK Hydrogen Economy: Debate Pack
Dec 2020
Publication
A Westminster Hall debate on the UK hydrogen economy has been scheduled for Thursday 17 December 2020 at 3.00pm. The debate will be led by Alexander Stafford MP. This House of Commons Library debate pack provides background information and press and parliamentary coverage of the issues.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.
Emerging Electrochemical Energy Conversion and Storage Technologies
Sep 2014
Publication
Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management conservation and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost life time and performance leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells large format lithium-ion batteries electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi-billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies which will have substantial impact on the environment and the way we produce and utilize energy are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.
Net Zero – Technical Report
May 2019
Publication
This technical report accompanies the ‘Net Zero’ advice report which is the Committee’s recommendation to the UK Government and Devolved Administrations on the date for a net-zero emissions target in the UK and revised long-term targets in Scotland and Wales.<br/>The conclusions in our advice report are supported by detailed analysis that has been carried out for each sector of the economy plus consideration of F-gas emissions and greenhouse gas removals. The purpose of this technical report is to lay out that analysis.
Life Cycle Assessments on Battery Electric Vehicles and Electrolytic Hydrogen: The Need for Calculation Rules and Better Databases on Electricity
May 2021
Publication
LCAs of electric cars and electrolytic hydrogen production are governed by the consumption of electricity. Therefore LCA benchmarking is prone to choices on electricity data. There are four issues: (1) leading Life Cycle Impact (LCI) databases suffer from inconvenient uncertainties and inaccuracies (2) electricity mix in countries is rapidly changing year after year (3) the electricity mix is strongly fluctuating on an hourly and daily basis which requires time-based allocation approaches and (4) how to deal with nuclear power in benchmarking. This analysis shows that: (a) the differences of the GHG emissions of the country production mix in leading databases are rather high (30%) (b) in LCA a distinction must be made between bundled and unbundled registered electricity certificates (RECs) and guarantees of origin (GOs); the residual mix should not be applied in LCA because of its huge inaccuracy (c) time-based allocation rules for renewables are required to cope with periods of overproduction (d) benchmarking of electricity is highly affected by the choice of midpoints and/or endpoint systems and (e) there is an urgent need for a new LCI database based on measured emission data continuously kept up-to-date transparent and open access.
Thermal Loading Cases of Hydrogen High Pressure Storage Cylinders
Sep 2007
Publication
Composite cylinders with metal liner are used for the storage of compressed hydrogen in automotive application. These hybrid pressure cylinders are designed for a nominal working pressure of up to 70 MPa. They also have to withstand a temperature range between -40°C and +85°C according GRPE draft [1] and for short periods up to a maximum temperature of 140°C during filling (fast filling) [2]. In order to exploit the material properties efficiently with a high degree of lightweight optimization and a high level of safety on the same time a better understanding of the structural behavior of hybrid designs is necessary. Work on this topic has been carried out in the frame of a work package on safety aspects and regulation (Subproject SAR) of the European IP StorHy (www.storhy.net). The temperature influence on the composite layers is distinctive due to there typical polymer material behavior. The stiffness of the composite layer is a function of temperature which influences global strains and stress levels (residual stresses) in operation. In order to do an accurate fatigue assessment of composite hybrid cylinders a realistic modeling of a representative temperature load is needed. For this climate data has been evaluated which were collected in Europe over a period of 30 years [3]. Assuming that the temperature follows a Gaussian (normal) distribution within the assessed period of 30 years it is possible to generate a frequency distribution for different temperature classes for the cold extreme and the hot extreme. Combining these distributions leads to the overall temperature range distribution (frequency over temperature classes). The climatic temperature influence the filling temperature and the pressure load have to be considered in combination with the operation profile of the storage cylinder to derive a complete load vector for an accurate assessment of the lifetime and safety level.
How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality
Nov 2021
Publication
Transformation of road transport sector through replacing of internal combustion vehicles with zero-emission technologies is among key challenges to achievement of climate neutrality by 2050. In a constantly developing economy the demand for transport services increases to ensure continuity in the supply chain and passenger mobility. Deployment of electric technologies in the road transport sector involves both businesses and households its pace depends on the technological development of zero-emission vehicles presence of necessary infrastructure and regulations on emission standards for new vehicles entering the market. Thus this study attempts to estimate how long combustion vehicles will be in use and what the state of the fleet will be in 2050. For obtainment of results the TR3E partial equilibrium model was used. The study simulates the future fleet structure in passenger and freight transport. The results obtained for Poland for the climate neutrality (NEU) scenario show that in 2050 the share of vehicles using fossil fuels will be ca. 30% in both road passenger and freight transport. The consequence of shifts in the structure of the fleet is the reduction of CO2 emissions ca. 80% by 2050 and increase of the transport demand for electricity and hydrogen.
Hydrogen Taskforce: The Role of Hydrogen in Delivering Net Zero
Feb 2020
Publication
Hydrogen is essential to the UK meeting its net zero emissions target. We must act now to scale hydrogen solutions and achieve cost effective deep decarbonisation. With the support of Government UK industry is ready to deliver.
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System
Jan 2021
Publication
Pathways leading to a carbon neutral future for the German energy system have to deal with the expected phase-out of coal-fired power generation in addition to the shutdown of nuclear power plants and the rapid ramp-up of photovoltaics and wind power generation. An analysis of the expected impact on electricity market security of supply and system stability must consider the European context because of the strong coupling—both from an economic and a system operation point of view—through the cross-border power exchange of Germany with its neighbors. This analysis complemented by options to improve the existing development plans is the purpose of this paper. We propose a multilevel energy system modeling including electricity market network congestion management and system stability to identify challenges for the years 2023 and 2035. Out of the results we would like to highlight the positive role of innovative combined heat and power (CHP) solutions securing power and heat supply the importance of a network congestion management utilizing flexibility from sector coupling and the essential network extension plans. Network congestion and reduced security margins will become the new normal. We conclude that future energy systems require expanded flexibilities in combination with forward planning of operation.
Continuous Hydrogen Regeneration Through the Oxygen Vacancy Control of Metal Oxides Using Microwave Irradiation
Nov 2018
Publication
The amount of hydrogen gas generated from metal oxide materials based on a thermochemical water-splitting method gradually reduces as the surface of the metal oxide oxidizes during the hydrogen generation process. To regenerate hydrogen the oxygen reduction process of a metal oxide at high temperatures (1000–2500 °C) is generally required. In this study to overcome the problem of an energy efficiency imbalance in which the required energy of the oxygen reduction process for hydrogen regeneration is higher than the generated hydrogen energy we investigated the possibility of the oxygen reduction of a metal oxide with a low energy using microwave irradiation. For this purpose a macroporous nickel-oxide structure was used as a metal oxide catalyst to generate hydrogen gas and the oxidized surface of the macroporous nickel-oxide structure could be reduced by microwave irradiation. Through this oxidation reduction process ∼750 μmol g−1 of hydrogen gas could be continuously regenerated. In this way it is expected that oxygen-enriched metal oxide materials can be efficiently reduced by microwave irradiation with a low power consumption of <∼4% compared to conventional high-temperature heat treatment and thus can be used for efficient hydrogen generation and regeneration processes in the future.
Hydrogen Embrittlement: Future Directions—Discussion
Jun 2017
Publication
The final session of the meeting consisted of a discussion panel to propose future directions for research in the field of hydrogen embrittlement and the potential impact of this research on public policy.
This article is a transcription of the recorded discussion of ‘Hydrogen Embrittlement: Future Directions’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals Jan 16th–18th 2017. The text is approved by the contributors. H.L. transcribed the session and drafted the manuscript. Y.C. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of ‘Hydrogen Embrittlement: Future Directions’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals Jan 16th–18th 2017. The text is approved by the contributors. H.L. transcribed the session and drafted the manuscript. Y.C. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Energy Innovation Needs Assessment: Heating Cooling
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a systemlevel approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides.1. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization
Feb 2020
Publication
Hydrogen produced in a polymer electrolyte membrane (PEM) electrolyzer must be stored under high pressure. It is discussed whether the gas should be compressed in subsequent gas compressors or by the electrolyzer. While gas compressor stages can be reduced in the case of electrochemical compression safety problems arise for thin membranes due to the undesired permeation of hydrogen across the membrane to the oxygen side forming an explosive gas. In this study a PEM system is modeled to evaluate the membrane-specific total system efficiency. The optimum efficiency is given depending on the external heat requirement permeation cell pressure current density and membrane thickness. It shows that the heat requirement and hydrogen permeation dominate the maximum efficiency below 1.6 V while above the cell polarization is decisive. In addition a pressure-optimized cell operation is introduced by which the optimum cathode pressure is set as a function of current density and membrane thickness. This approach indicates that thin membranes do not provide increased safety issues compared to thick membranes. However operating an N212-based system instead of an N117-based one can generate twice the amount of hydrogen at the same system efficiency while only one compressor stage must be added.
Committee for Climate Change Fifth Carbon Budget: Central Scenario Data
Jul 2016
Publication
This spreadsheet contains data for two future UK scenarios: a "baseline" (i.e. no climate action after 2008 the start of the carbon budget system) and the "central" scenario underpinning the CCC's advice on the fifth carbon budget (the limit to domestic emissions during the period 2028-32).<br/>The central scenario is an assessment of the technologies and behaviours that would prepare for the 2050 target cost-effectively while meeting the other criteria in the Climate Change Act (2008) based on central views of technology costs fuel prices carbon prices and feasibility. It is not prescriptive nor is it the only scenario considered for meeting the carbon budgets. For further details on our scenarios and how they were generated see the CCC report Sectoral scenarios for the Fifth Carbon Budget. The scenario was constructed for the CCC's November 2015 report and has not been further updated for example to reflect outturn data for 2015 or changes to Government policy.
Insight into Anomalous Hydrogen Adsorption on Rare Earth Metal Decorated on 2 Dimensional Hexagonal Boron Nitride a Density Functional Theory Study
Mar 2020
Publication
Hydrogen interaction with metal atoms is of prime focus for many energy related applications like hydrogen storage hydrogen evolution using catalysis etc. Although hydrogen binding with many main group alkaline and transition metals is quite well understood its binding properties with lanthanides are not well reported. In this article by density functional theory studies we show how a rare earth metal cerium binds with hydrogen when decorated over a heteropolar 2D material hexagonal boron nitride. Each cerium adatom is found to bind eight hydrogen molecules which is a much higher number than has been reported for transition metal atoms. However the highest binding energy occurs at four hydrogen molecules. This anomaly therefore is investigated in the present article using first-principles calculations. The number density of hydrogen molecules adsorbed over the cerium adatom is explained by investigating the electronic charge volume interactions owing to a unique geometrical arrangement of the guest hydrogen molecules. The importance of geometrical encapsulation in enhancing electronic interactions is explained.
Alloy and Composition Dependence of Hydrogen Embrittlement Susceptibility in High-strength Steel Fasteners
Jun 2017
Publication
High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility which increases significantly above 1200 MPa and is characterized by a ductile--brittle transition. For a given concentration of hydrogen and at equal strength the critical strength above which the ductile–brittle transition begins can vary due to second-order effects of chemistry tempering temperature and sub-microstructure. Additionally non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa non-conforming quality is often the root cause of real-life failures.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Models of Delivery of Sustainable Public Transportation Services in Metropolitan Areas–Comparison of Conventional, Battery Powered and Hydrogen Fuel-Cell Drives
Nov 2021
Publication
The development of public transport systems is related to the implementation of modern and low-carbon vehicles. Over the last several years there has been a clear progress in this field. The number of electric buses has increased and the first solutions in the area of hydrogen fuel cells have been implemented. Unfortunately the implementation of these technologies is connected with significant financial expenditure. The goal of the article is the analysis of effectiveness of financial investment consisting in the purchase of 30 new public transport buses (together with the necessary infrastructure–charging stations). The analysis has been performed using the NPV method for the period of 10 years. Discount rate was determined on 4% as recommended by the European Commission for this type of project. It is based on the case study of the investment project carried out by Metropolis GZM in Poland. The article determines and compares the efficiency ratios for three investment options-purchase of diesel-powered battery-powered and hydrogen fuel-cell electric vehicles. The results of the analysis indicate that the currently high costs of vehicle purchase and charging infrastructure are a significant barrier for the implementation of battery-powered and hydrogen fuel-cell buses. In order to meet the transport policy goals related to the exchange of traditional bus stock to more eco-friendly vehicles it is necessary to involve public funds for the purpose of financing the investment activities.
Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman
Aug 2021
Publication
Hydrogen production using renewable power is becoming an essential pillar for future sustainable energy sector development worldwide. The Sultanate of Oman is presently integrating renewable power generations with a large share of solar photovoltaic (PV) systems. The possibility of using the solar potential of the Sultanate can increase energy security and contribute to the development of the sustainable energy sector not only for the country but also for the international community. This study presents the hydrogen production potential using solar resources available in the Sultanate. About 15 locations throughout the Sultanate are considered to assess the hydrogen production opportunity using a solar PV system. A rank of merit order of the locations for producing hydrogen is identified. It reveals that Thumrait and Marmul are the most suitable locations whereas Sur is the least qualified. This study also assesses the economic feasibility of hydrogen production which shows that the levelized cost of hydrogen (LCOH) in the most suitable site Thumrait is 6.31 USD/kg. The LCOH in the least convenient location Sur is 7.32 USD/kg. Finally a sensitivity analysis is performed to reveal the most significant influential factor affecting the future’s green hydrogen production cost. The findings indicate that green hydrogen production using solar power in the Sultanate is promising and the LCOH is consistent with other studies worldwide.
No more items...