Publications
Simulation of Thermal Radiation from Hydrogen Under-expanded Jet Fire
Sep 2017
Publication
Thermal hazards from an under-expanded (900 bar) hydrogen jet fire have been numerically investigated. The simulation results have been compared with the flame length and radiative heat flux measured for the horizontal jet fire experiment conducted at INERIS. The release blowdown characteristics have been modelled using the volumetric source as an expanded implementation of the notional nozzle concept. The CFD study employs the realizable k-ε model for turbulence and the Eddy Dissipation Concept for combustion. Radiation has been taken into account through the Discrete Ordinates (DO) model. The results demonstrated good agreement with the experimental flame length. Performance of the model shall be improved to reproduce the radiative properties dynamics during the first stage of the release (time < 10 s) whereas during the remaining blowdown time the simulated radiative heat flux at five sensors followed the trend observed in the experiment.
Corrosion Cracking of Carbon Steels of Different Structure in the Hydrogen Sulfide Environment Under Static Load
Dec 2018
Publication
Hydrogen sulfide corrosion is one of the main reasons of steels destruction in the oil and gas industry. Damages appear as a result of corrosion and hydrogen embrittlement and corrosion cracking occurs when the load is applied. The influence of the steels structure on its stress corrosion cracking under the loads in hydrogen sulfide environment is insufficiently studied. The aim of the study is to determine the influence of the steels structure on its corrosion hydrogenation and corrosion cracking in the NACE hydrogen sulfide solution.<br/>It was established that the corrosion rate and hydrogenation of steel У8 in the NACE solution grows when the structure dispersion increases from perlite to sorbite troostite and martensite. The corrosion rate and hydrogenation of steel 45 are the greatest in pearlite-ferrite while the smallest - in sorbite.<br/>The corrosion of steels У8 and 45 in the NACE solution is localized: the average size of the ulcers is 50 ... 80 μm on the steel У8 and 45 ... 65 μm on steel 45. The depth of ulcers is maximal on the steel У8 with the martensite structure (~ 260 μm) and on the steel 45 with the troostite structure (~ 210 μm).<br/>Static load (σ = 300 MPa) increases the hydrogenation of steels in the hydrogen sulfide environment. The concentration of hydrogen in steel У8 with troostite structure increases by ~ 1.8 times. The concentration of hydrogen in steel 45 with troostite and martensite structures increases by ~ 1.2...1.3 and by ~ 1.4...1.6 times respectively.<br/>The steel У8 with martensite and perlite structures and steel 45 with troostite structure has the lowest resistance to corrosion cracking. Steels destruction depends on both hydrogen permeation and the corrosion localization which leads to the increase of the microelectrochemical heterogeneity of the surfaces.
Experiments on Flame Acceleration and DDT for Stoichiometric Hydrogen/Air Mixture in a Thin Layer Geometry
Sep 2017
Publication
A series of experiments in a thin layer geometry performed at the HYKA test site of the KIT. The experiments on different combustion regimes for lean and stoichiometric H2/air mixtures were performed in a rectangular chamber with dimensions of 20 x 90 x h cm3 where h is the thickness of the layer (h = 1 2 4 6 8 10 mm). Three different layer geometries:
- a smooth channel without obstructions;
- the channel with a metal grid filled 25% of length and
- a metal grid filled 100% of length.
Mn-based Borohydride Synthesized by Ball-milling KBH4 and MnCl2 for Hydrogen Storage
Dec 2013
Publication
In this work a mixed-cation borohydride (K2Mn(BH4)4) with P21/n structure was successfully synthesized by mechanochemical milling of the 2KBH4–MnCl2 sample under argon. The structural and thermal decomposition properties of the borohydride compounds were investigated using XRD Raman spectroscopy FTIR TGA-MS and DSC. Apart from K2Mn(BH4)4 the KMnCl3 and unreacted KBH4 compounds were present in the milled 2KBH4–MnCl2. The two mass loss regions were observed for the milled sample: one was from 100 to 160 °C with a 1.6 ± 0.1 wt% loss (a release of majority hydrogen and trace diborane) which was associated with the decomposition of K2Mn(BH4)4 to form KBH4 boron and finely dispersed manganese; the other was from 165 to 260 °C with a 1.9 ± 0.1 wt% loss (only hydrogen release) which was due to the reaction of KBH4 with KMnCl3 to give KCl boron finely dispersed manganese. Simultaneously the formed KCl could dissolve in KBH4 to yield a K(BH4)xCl1−x solid solution and also react with KMnCl3 to form a new compound K4MnCl6.
Hydrogen Trapping in bcc Iron
May 2020
Publication
Fundamental understanding of H localization in steel is an important step towards theoretical descriptions of hydrogen embrittlement mechanisms at the atomic level. In this paper we investigate the interaction between atomic H and defects in ferromagnetic body-centered cubic (bcc) iron using density functional theory (DFT) calculations. Hydrogen trapping profiles in the bulk lattice at vacancies dislocations and grain boundaries (GBs) are calculated and used to evaluate the concentrations of H at these defects as a function of temperature. The results on H-trapping at GBs enable further investigating H-enhanced decohesion at GBs in Fe. A hierarchy map of trapping energies associated with the most common crystal lattice defects is presented and the most attractive H-trapping sites are identified.
Hydrogen Combustion Experiments in a Vertical Semi-confined Channel
Sep 2017
Publication
Experiments in an obstructed semi-confined vertical combustion channel with a height of 6 m (cross-section 0.4 × 0.4 m) inside a safety vessel of the hydrogen test center HYKA at the Karlsruhe Institute of Technology (KIT) are reported. In the work homogeneous hydrogen-air-mixtures as well as mixtures with different well-defined H2-concentration gradients were ignited either at the top or at the bottom end of the channel. The combustion characteristics were recorded using pressure sensors and sensors for the detection of the flame front that were distributed along the complete channel length. In the tests slow subsonic and fast sonic deflagrations as well as detonations were observed and the conditions for the flame acceleration (FA) to speed of sound and deflagration-to-detonation transition (DDT) are compared with the results of similar experiments performed earlier in a larger semi-confined horizontal channel.
Energy Management Strategy of Hydrogen Fuel Cell/Battery/Ultracapacitor Hybrid Tractor Based on Efficiency Optimization
Dec 2022
Publication
With the application of new energy technology hybrid agricultural machinery has been developed. This article designs a hybrid tractor energy management method to solve the problem of high energy consumption caused by significant load fluctuation of the tractor in field operation. This article first analyzes the characteristics of the hydrogen fuel cell power battery and ultracapacitor and designs a hybrid energy system for the tractor. Second the energy management strategy (EMS) of multi-layer decoupling control based on the Haar wavelet and logic rule is designed to realize the multi-layer decoupling of high-frequency low-frequency and steady-state signals of load demand power. Then the EMS redistributes the decoupled power signals to each energy source. Finally a hardware-in-loop simulation experiment was carried out through the model. The results show that compared with single-layer control strategies such as fuzzy control and power-following control the multi-layer control strategy can allocate the demand power more reasonably and the efficiency of the hydrogen fuel cell is the highest. The average efficiency of the hydrogen fuel cell was increased by 2.87% and 1.2% respectively. Furthermore the equivalent hydrogen consumption of the tractor was reduced by 17.06% and 5.41% respectively within the experimental cycle. It is shown that the multi-layer control strategy considering power fluctuation can improve the vehicle economy based on meeting the power demanded by the whole vehicle load.
Modelling Liquid Hydrogen Release and Spread on Water
Sep 2017
Publication
Consequence modelling of high potential risks of usage and transportation of cryogenic liquids yet requires substantial improvements. Among the cryogenics liquid hydrogen (LH2) needs especial treatments and a comprehensive understanding of spill and spread of liquid and dispersion of vapor. Even though many of recent works have shed lights on various incidents such as spread dispersion and explosion of the liquid over land less focus was given on spill and spread of LH2 onto water. The growing trend in ship transportation has enhanced risks such as ships’ accidental releases and terrorist attacks which may ultimately lead to the release of the cryogenic liquid onto water. The main goal of the current study is to present a computational fluid dynamic (CFD) approach using OpenFOAM to model release and spread of LH2 over water substrate and discuss previous approaches. It also includes empirical heat transfer equations due to boiling and computation of evaporation rate through an energy balance. The results of the proposed model will be potentially used within another coupled model that predicts gas dispersion]. This work presents a good practice approach to treat pool dynamics and appropriate correlations to identify heat flux from different sources. Furthermore some of the previous numerical approaches to redistribute or in some extend manipulate the LH2 pool dynamic are brought up for discussion and their pros and cons are explained. In the end the proposed model is validated by modelling LH2 spill experiment carried out in 1994 at the Research Centre Juelich in Germany.
A Study of Hydrogen Flame Length with Complex Nozzle Geometry
Sep 2017
Publication
The growing number of hydrogen fillings stations and cars increases the need for accurate models to determine risk. The effect on hydrogen flame length was measured by varying the diameter of the spouting nozzle downstream from the chocked nozzle upstream. The results was compared with an existing model for flame length estimations. The experimental rig was setup with sensors that measured accurately temperature mass flow heat radiation and the pressure range from 0.1 to 11 MPa. The flame length was determined with an in-house developed image-processing tool which analyzed a high-speed film of the each experiment. Results show that the nozzle geometry can cause a deviation as high as 50% compared to estimated flame lengths by the model if wrong assumptions are made. Discharge coefficients for different nozzles has been calculated and presented.
Socio-economic Analysis and Quantitative Risk Assessment Methodology for Safety Design of Onboard Storage Systems
Sep 2017
Publication
Catastrophic rupture of onboard hydrogen storage in a fire is a safety concern. Different passive e.g. fireproofing materials the thermally activated pressure relief device (TPRD) and active e.g. initiation of TPRD by fire sensors safety systems are being developed to reduce hazards from and associated risks of high-pressure hydrogen storage tank rupture in a fire. The probability of such low-frequency highconsequences event is a function of fire resistance rating (FRR) i.e. the time before tank without TPRD ruptures in a fire the probability of TPRD failure etc. This safety issue is “confirmed” by observed recently cases of CNG tanks rupture due to blocked or failed to operate TPRD etc. The increase of FRR by any means decreases the probability of tank rupture in a fire particularly because of fire extinction by first responders on arrival at an accident scene.<br/>This study of socio-economic effects of safety applies a quantitative risk assessment (QRA) methodology to an example of hydrogen vehicles with passive tank protection system on roads in London.<br/>The risk is defined here through the cost of human loss per fuel cell hydrogen vehicle (FCHV) fire accident and fatality rate per FCHV per year. The first step in the methodology is the consequence analysis based on validated deterministic engineering tools to estimate the main identified hazards: overpressure in the blast wave at different distances and the thermal hazards from a fireball in the case of catastrophic tank rupture in a fire. The population can be exposed to slight injury serious injury and fatality after an accident. These effects are determined based on criteria by Health and Safety Executive (UK) and a cost metrics is applied to the number of exposed people in these three harm categories to estimate the cost per an accident. The second step in the methodology is either the frequency or the probability analysis. Probabilities of a vehicle fire and failure of the thermally activated pressure relief device are taken from published sources. A vulnerability probit function is employed to calculate the probability of emergency operations’ failure to prevent tank rupture as a function of a storage tank FRR and time of fire brigade arrival. These later results are integrated to estimate the tank rupture frequency and fatality rate. The risk is presented as a function of fire resistance rating.<br/>The QRA methodology allows to calculate the cost of human loss associated with an FCHV fire accident and demonstrates how the increase of FRR of onboard storage as a safety engineering measure would improve socio-economics of FCHV deployment and public acceptance of the technology.
Sizing and Operation of a Pure Renewable Energy Based Electric System through Hydrogen
Nov 2021
Publication
Today in order to reduce the increase of the carbon dioxide emissions a large number of renewable energy resources (RES) are already implemented. Considering both the intermittency and uncertainty of the RES the energy storage system (ESS) is still needed for balancing and stabilizing the power system. Among different existing categories of ESS the hydrogen storage systems (HSS) have the highest energy density and are crucial for the RES integration. In addition RES are located in faraway regions and are often transmitted to the terminal consumption center through HVDC (high voltage direct current) due to its lower power loss. In this paper we present a power supply system that achieves low-carbon emissions through combined HSS and HVDC technology. First the combined HSS and the HVDC model are established. Secondly the rule-based strategy for operating the HSS microgrid is presented. Then an operating strategy for a typical network i.e. the pure RES generation station-HVDC transmission-microgrids is demonstrated. Finally the best sizing capacities for all components are found by the genetic algorithm. The results prove the efficiency of the presented sizing approach for a pure RES electric system.
Estimation of Filling Time for Compressed Hydrogen Refueling
Mar 2019
Publication
In order to facilitate the application of hydrogen energy and ensure its safety the compressed hydrogen storage tank on board needs to be full of hydrogen gas within 3 minutes. Therefore to meet this requirement the effects of refueling parameters on the filling time need to be investigated urgently. For the purpose of solving this issue a novel analytical solution of filling time is obtained from a lumped parameter model in this paper. According to the equation of state for real gas and dimensionless numbers Nu and Re the function relationships between the filling time and the refueling parameters are presented. These parameters include initial temperature initial pressure inflow temperature final temperature and final pressure. These equations are used to fit the reference data the results of fitting show good agreement. Then the values of fitting parameters are further utilized so as to verify the validity of these formulas. We believe this study can contribute to control the hydrogen filling time and ensure the safety during fast filling process.
Structural Health Monitoring Techniques for Damages Detection in Hydrogen Pressure Vessels
Sep 2013
Publication
Damages due to mechanical impacts on the structural integrity of pressure vessels in composite material to store compressed hydrogen can lead to disastrous failures if they are not detected and fixed on time. A wide variety of damage modes in composites such as delamination and fiber breakage introduced by impact is difficult to be detected by conventional methods. Structural Health Monitoring (SHM) provides a system with the ability to detect and interpret adverse changes in a structure like a pressure vessel. Different types of methods will be proposed for damage detection based on comparing signals to baseline recorded from the undamaged structure. Guided wave based diagnosis method is one of the most effective used techniques due to its sensitivity to small defects. The paper pretend to identify the more adequate inspection methods to classify by smart rules based in artificial intelligence the effect of an impact on the structural integrity of the pressure vessel thus improving the level of safety.
Fatigue and Fracture of High-hardenability Steels for Thick-walled Hydrogen Pressure Vessels
Sep 2017
Publication
Stationary pressure vessels for the storage of large volumes of gaseous hydrogen at high pressure (>70 MPa) are typically manufactured from Cr-Mo steels. These steels display hydrogen-enhanced fatigue crack growth but pressure vessels can be manufactured using defect-tolerant design methodologies. However storage volumes are limited by the wall thickness that can be reliably manufactured for quench and tempered Cr-Mo steels typically not more than 25-35 mm. High-hardenability steels can be manufactured with thicker walls which enables larger diameter pressure vessels and larger storage volumes. The goal of this study is to assess the fracture and fatigue response of high hardenability Ni-Cr-Mo pressure vessel steels for use in high-pressure hydrogen service at pressure in excess of 1000 bar. Standardized fatigue crack growth tests were performed in gaseous hydrogen at frequency of 1Hz and for R-ratios in the range of 0.1 to 0.7. Elastic-plastic fracture toughness measurements were also performed. The measured fatigue and fracture behavior is placed into the context of previous studies on fatigue and fracture of Cr-Mo steels for gaseous hydrogen.
Hydrogen Energy
Feb 2007
Publication
The problem of anthropogenically driven climate change and its inextricable link to our global society’s present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century capable of assisting in issues of environmental emissions sustainability and energy security. Hydrogen has the potential to provide for energy in transportation distributed heat and power generation and energy storage systems with little or no impact on the environment both locally and globally. However any transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific technological and socio-economic barriers. This brief report aims to outline the basis of the growing worldwide interest in hydrogen energy and examines some of the important issues relating to the future development of hydrogen as an energy vector.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Non-monotonic Overpressure vs. H2 Concentration Behaviour During Vented Deflagration. Experimental Results
Oct 2015
Publication
Explosion relief panels or doors are often used in industrial buildings to reduce damages caused by gas explosions. Decades of research have contributed to the understanding of the phenomena involved in gas explosions in order to establish an effective method to predict reliably the explosion overpressure. All the methods predict a monotonic increase of the overpressure with the concentration of the gas in the range from the lower explosion limit to the stoichiometric one. Nevertheless in few cases a non-monotonic behaviour of the maximum developed pressure as a function of hydrogen concentration was reported in the literature. The non-monotonic behaviour was also observed during experimental tests performed at the Scalbatraio laboratory at the University of Pisa in a 25 m3 vented combustion test facility with a vent area of 112 m2. This paper presents the results obtained during the tests and investigates the possible explanations of the phenomena.
Safety Concept of a self-sustaining PEM Hydrogen Electrolyzer System
Sep 2013
Publication
Sustainable electricity generation is gaining importance across the globe against the backdrop of ever- diminishing resources and to achieve significant reductions in CO2 emissions. One of the challenges is storing excess energy generated from wind and solar power. Siemens developed an electrolysis system based on proton exchange membrane (PEM) technology enabling large volumes of energy to be stored through the conversion of electrical energy into hydrogen. In developing this new product range Siemens worked intensively on safe operation with a special focus on safety measures (primary secondary and tertiary). Indeed hydrogen is not only a rapidly diffusing gas with a wide range of flammability but frequent lack of information leads to insecurity among the public. Siemens PEM water electrolyzer operates at a working pressure of 50 bar / 5 MPa. The current product generation is being used for demonstration purposes and fits into a 30 ft. / 9.14 m container. Further industrialized product lines up to double-digit medium voltage ranges will be available on the market short- and mid-term. The system is designed to operate self-sustaining. Therefore special features such as back-up and fail-safe mode supported by remote monitoring and access have been implemented. This paper includes Siemens' approach to develop and implement a safety concept for the PEM water electrolyzer leading into the approval and certification by a Notified Body as well as the lessons learnt from test stand and field experience in this new application field
Ignition of Hydrogen-air Mixtures by Moving Heated Particles
Oct 2015
Publication
Studying thermal ignition mechanisms is a key step for evaluating many ignition hazards. In the present work two-dimensional simulations with detailed chemistry are used to study the reaction pathways of the transient flow and ignition of a stoichiometric hydrogen-air mixture by moving hot spheres. For temperatures above the ignition threshold ignition takes place after a short time between the front stagnation point and separation location depending upon the sphere's surface temperature. Closer to the threshold the volume of gas adjacent to the separation region ignites homogeneously after a longer time. These results demonstrate the importance of boundary layer development and flow separation in the ignition process.
Discussion of Lessons Learned from a Hydrogen Release
Sep 2013
Publication
Just in line with any emerging alternative transportation fuel incidents involving hydrogen used as transportation fuel are learning opportunities for this new and growing industry. This paper includes discussion of many topics in hydrogen safety surrounding the installation operation and maintenance of commercial hydrogen stations or compression storage and dispensing systems.
Vented Hydrogen-air Deflagration in a Small Enclosed Volume
Sep 2013
Publication
Since the rapid development of hydrogen stationary and vehicle fuel cells the last decade it is of importance to improve the prediction of overpressure generated during an accidental explosion which could occur in a confined part of the system. To this end small-scale vented hydrogen–air explosions were performed in a transparent cubic enclosure with a volume of 3375 cm3. The flame propagation was followed with a high speed camera and the overpressure inside the enclosure was recorded using high frequency piezoelectric transmitters. The effects of vent area and ignition location on the amplitude of pressure peaks in the enclosed volume were investigated. Indeed vented deflagration generates several pressures peaks according to the configuration and each peak can be the dominating pressure. The parametric study concerned three ignition locations and five square vent sizes.
No more items...