- Home
- A-Z Publications
- Publications
Publications
Valorization and Sequestration of Hydrogen Gas from Biomass Combustion in Solid Waste Incineration NaOH Oxides of Carbon Entrapment Model (SWI-NaOH-OCE Model)
Dec 2019
Publication
The valorization of biomass-based solid wastes for both geotechnical engineering purposes and energy needs has been reviewed to achieve eco-friendly eco-efficient and sustainable engineering and reengineering of civil engineering materials and structures. The objective of this work was to review the procedure developed by SWI-NaOH-OCE Model for the valorization of biomass through controlled direct combustion and the sequestration of hydrogen gas for energy needs. The incineration model gave a lead to the sequestration of emissions released during the direct combustion of biomass and the subsequent entrapment of oxides of carbon and the eventual release of abundant hydrogen gas in the entrapment jar. The generation of geomaterials ash for the purpose of soil stabilization concrete and asphalt modification has encouraged greenhouse emissions but eventually the technology that has been put in place has made it possible to manage and extract these emissions for energy needs. The contribution from researchers has shown that hydrogen sequestration from other sources requires high amount of energy because of the lower energy states of the compounds undergoing thermal decomposition. But this work has presented a more efficient approach to release hydrogen gas which can easily be extracted and stored to meet the energy needs of the future as fuel cell batteries to power vehicles mobile devices robotic systems etc. More so the development of MXene as an exfoliated two-dimensional nanosheets with permeability and filtration selectivity properties which are connected to its chemical composition and structure used in hydrogen gas extraction and separation from its molecular combination has presented an efficient procedure for the production and management of hydrogen gas for energy purposes.
A Critical Time for UK Energy Policy What Must be Done Now to Deliver the UK’s Future Energy System: A Report for the Council for Science and Technology
Oct 2015
Publication
Time is rapidly running out to make the crucial planning decisions and secure investment to keep the UK on track to deliver a reliable affordable and decarbonised energy system to meet future emissions regulation enshrined in the 2008 Climate Change Act according to a report published today by the Royal Academy of Engineering.
Prepared for the Prime Minister's Council for Science and Technology A critical time for UK energy policy details the actions needed now to create a secure and affordable low carbon energy system for 2030 and beyond.
The study looks at the future evolution of the UK’s energy system in the short to medium term. It considers how the system is expected to develop across a range of possible trajectories identified through modelling and scenarios.
The following actions for government are identified as a matter of urgency:
The report notes that the addition of shale gas or tight oil is unlikely to have a major impact on the evolution of the UK's energy system as we already have secure and diverse supplies of hydrocarbons from multiple sources.
Dr David Clarke FREng who led the group that produced the report says: “Updating the UK energy system to meet the ‘trilemma’ of decarbonisation security and affordability is a massive undertaking. Meeting national targets affordably requires substantial decarbonisation of the electricity system by 2030 through a mix of nuclear power CCS and renewables with gas generation for balancing. Beyond 2030 we must then largely decarbonise heat and transport potentially through electrification but also using other options such as hydrogen and biofuels. We also need to adapt our transmission and distribution networks to become ‘smarter’”.
"Failure to plan the development of the whole energy system carefully will result at best in huge increases in the cost of delivery or at worst a failure to deliver. Substantial investment is needed and current investment capacity is fragile. For example in the last month projects like Carlton’s new Trafford CCGT plant have announced further financing delays and the hoped-for investment by Drax in the White Rose CCS demonstrator has been withdrawn. The UK has also dropped four places to 11th in EY’s renewable energy country attractiveness index.”
Link to document download on Royal Society Website
Prepared for the Prime Minister's Council for Science and Technology A critical time for UK energy policy details the actions needed now to create a secure and affordable low carbon energy system for 2030 and beyond.
The study looks at the future evolution of the UK’s energy system in the short to medium term. It considers how the system is expected to develop across a range of possible trajectories identified through modelling and scenarios.
The following actions for government are identified as a matter of urgency:
- enable local or regional whole-system large scale pilot projects to establish real-world examples of how the future system will work. These must move beyond current single technology demonstrators and include all aspects of the energy systems along with consumer behaviour and financial mechanisms
- drive forward new capacity in the three main low carbon electricity generating technologies: nuclear carbon capture and storage (CCS) and offshore wind
- develop policies to accelerate demand reduction especially in domestic heating and introduce smarter demand management
- clarify and stabilise market mechanisms and incentives in order to give industry the confidence to invest.
The report notes that the addition of shale gas or tight oil is unlikely to have a major impact on the evolution of the UK's energy system as we already have secure and diverse supplies of hydrocarbons from multiple sources.
Dr David Clarke FREng who led the group that produced the report says: “Updating the UK energy system to meet the ‘trilemma’ of decarbonisation security and affordability is a massive undertaking. Meeting national targets affordably requires substantial decarbonisation of the electricity system by 2030 through a mix of nuclear power CCS and renewables with gas generation for balancing. Beyond 2030 we must then largely decarbonise heat and transport potentially through electrification but also using other options such as hydrogen and biofuels. We also need to adapt our transmission and distribution networks to become ‘smarter’”.
"Failure to plan the development of the whole energy system carefully will result at best in huge increases in the cost of delivery or at worst a failure to deliver. Substantial investment is needed and current investment capacity is fragile. For example in the last month projects like Carlton’s new Trafford CCGT plant have announced further financing delays and the hoped-for investment by Drax in the White Rose CCS demonstrator has been withdrawn. The UK has also dropped four places to 11th in EY’s renewable energy country attractiveness index.”
Link to document download on Royal Society Website
Power Sector Scenarios for the Fifth Carbon Budget
Oct 2015
Publication
This report sets out scenarios for the UK power sector in 2030 as an input to the Committee’s advice on the fifth carbon budget.<br/>These scenarios are not intended to set out a prescriptive path. Instead they provide a tool for the Committee to verify that its advice can be achieved with manageable impacts in order to meet the criteria set out in the Climate Change Act including competitiveness affordability and energy security.
Methodology of CFD Safety Analysis for Large-Scale Industrial Structures
Sep 2005
Publication
The current work is devoted to problems connected with application of CFD tools for safety analysis of large-scale industrial structures. With the aim to preserve conservatism of overall process of multistage procedure of such analysis special efforts are required. A strategy which has to lead to obtaining of reliable results in CFD analysis is discussed. Different aspects of proposed strategy including: adequate choice of physical and numerical models procedure of validation simulations and problem of ‘under-resolved’ simulations are considered. For physical phenomena which could cause significant uncertainties in the course of scenario simulation an approach which complements CFD simulations by application of auxiliary criteria is presented. Physical basis and applicability of strong flame acceleration and detonation-to-deflagration transition criteria are discussed. In concluding part two examples of application of presented approach for nuclear power plant and workshop cell for hydrogen driven vehicles are presented.
Hydrogen from Natural Gas – The Key to Deep Decarbonisation
Jul 2019
Publication
This Discussion Paper was commissioned by Zukunft ERDGAS to contribute to the debate concerning the deep decarbonisation of the European energy sector required to meet the Paris Agreement targets. Previous discussion papers have put forward decarbonisation pathways that rely heavily on ‘All-Electric’ solutions. These depend predominantly on renewable electricity to deliver decarbonisation of all sectors. This paper offers an alternative to an ‘All-Electric’ solution by building an alternative pathway that allows the inclusion of gas based technologies alongside the ‘All-Electric’ pathway technologies. The new pathway demonstrates that hydrogen from natural gas can be an essential complement to renewable electricity. The pathway also considers the benefits of utilising methane pyrolysis technology in Europe to produce zero carbon hydrogen.
Read the full report at this link
Read the full report at this link
Non-combustion Related Impact of Hydrogen Admixture - Material Compatibility
Jun 2020
Publication
The present document is part of a larger literature survey of this WP aiming to establish the current status of gas utilisation technologies in order to determine the impact of hydrogen (H2) admixture on natural gas (NG) appliances. This part focuses on the non-combustion related aspects of injecting hydrogen in the gas distribution networks within buildings including hydrogen embrittlement of metallic materials chemical compatibility and leakage issues. In the particular conditions of adding natural gas and hydrogen (NG / H2) mixture into a gas distribution network hydrogen is likely to reduce the mechanical properties of metallic components. This is known as hydrogen embrittlement (HE) (Birnbaum 1979). This type of damage takes place once a critical level of stress / strain and hydrogen content coexist in a susceptible microstructure. Currently four mechanisms were identified and will be discussed in detail. The way those mechanisms act independently or together is strongly dependent on the material the hydrogen charging procedure and the mechanical loading type. The main metallic materials used in gas appliances and gas distribution networks are: carbon steels stainless steels copper brass and aluminium alloys (Thibaut 2020). The presented results showed that low alloy steels are the most susceptible materials to hydrogen embrittlement followed by stainless steels aluminium copper and brass alloys. However the relative pressures of the operating conditions of gas distribution network in buildings are low i.e. between 30 to 50 mbar. At those low hydrogen partial pressures it is assumed that a gas mixture composed of NG and up to 50% H2 should not be problematic in terms of HE for any of the metallic materials used in gas distribution network unless high mechanical stress / strain and high stress concentrations are applied. The chemical compatibility of hydrogen with other materials and specifically polyethylene (PE) which is a reference material for the gas industry is also discussed. PE was found to have no corrosion issues and no deterioration or ageing was observed after long term testing in hydrogen gas. The last non-combustion concern related to the introduction of hydrogen in natural gas distribution network is the propensity of hydrogen toward leakage. Indeed the physical properties of hydrogen are different from other gases such as methane or propane and it was observed that hydrogen leaks 2.5 times quicker than methane. This bibliographical report on material deterioration chemical compatibility and leakage concerns coming with the introduction of NG / H2 mixture in the gas distribution network sets the basis for the upcoming experimental work where the tightness of gas distribution network components will be investigated (Task 3.2.3 WP3). In addition tightness of typical components that connect end-user appliances to the local distribution line shall be evaluated as well.
Renewable Hydrogen Production from Butanol: A Review
Dec 2017
Publication
Hydrogen production from butanol is a promising alternative when it is obtained from bio-butanol or bio-oil due to the higher hydrogen content compared to other oxygenates such as methanol ethanol or propanol. Catalysts and operating conditions play a crucial role in hydrogen production. Ni and Rh are metals mainly used for butanol steam reforming oxidative steam reforming and partial oxidation. Additives such as Cu can improve catalytic activity in many folds. Moreover support–metal interaction and catalyst preparation technique also play a decisive role in the stability and hydrogen production capacity of catalyst. Steam reforming technique as an option is more frequently researched due to higher hydrogen production capability in comparison to other thermochemical techniques despite its endothermic nature. The use of the oxidative steam reforming and partial oxidation has the advantages of requiring less energy and longer stability of catalysts. However the hydrogen yield is less. This article brings together and examines the latest research on hydrogen production from butanol via steam reforming oxidative steam reforming and partial oxidation reactions. In addition the review examines a few thermodynamic studies based on sorption-enhanced steam reforming and dry reforming where there is potential for hydrogen extraction.
Requirements for the Safety Assessment for the Approval of a Hydrogen Refueling Station
Sep 2007
Publication
The EC 6th framework research project HyApproval will draft a Handbook which will describe all relevant issues to get approval to construct and operate a Hydrogen Refuelling Station (HRS) for hydrogen vehicles. In WP3 of the HyApproval project it is under investigation which safety information competent authorities require to give a licence to construct an operate an HRS. The paper describes the applied methodology to collect the information from the authorities in 5 EC countries and the USA. The results of the interviews and recommendations for the information to include in the Handbook are presented.
A Roadmap for Financing Hydrogen Refueling Networks – Creating Prerequisites for H2-based Mobility
Sep 2014
Publication
Fuel cell electric vehicles (FCEVs) are zero tailpipe emission vehicles. Their large-scale deployment is expected to play a major role in the de-carbonization of transportation in the European Union (EU) and is therefore an important policy element at EU and Member State level.<br/>For FCEVs to be introduced to the market a network of hydrogen refuelling stations (HRS) first has to exist. From a technological point of view FCEVs are ready for serial production already: Hyundaiand Toyota plan to introduce FCEVs into key markets from 2015 and Daimler Ford and Nissan plan to launch mass-market FCEVs in 2017.<br/>At the moment raising funds for building the hydrogen refuelling infrastructure appears to be challenging.<br/>This study explores options for financing the HRS rollout which facilitate the involvement of private lenders and investors. It presents a number of different financing options involving public-sector bank loans funding from private-sector strategic equity investors commercial bank loans private equity and funding from infrastructure investors. The options outline the various requirements forn accessing these sources of funding with regard to project structure incentives and risk mitigation. The financing options were developed on the basis of discussions with stakeholders in the HRS rollout from industry and with financiers.<br/>This study was prepared by Roland Berger in close contact with European Investment banks and a series of private banks.<br/>This study explores in details the business cases for HRS in Germany and UK. The conclusion can be easily extrapolate to other countries.
Numerical Study of a Highly Under-Expanded Hydrogen Jet
Sep 2005
Publication
Numerical simulations are carried out for a highly under-expanded hydrogen jet resulting from an accidental release of high-pressure hydrogen into the atmospheric environment. The predictions are made using two independent CFD codes namely CFX and KIVA. The KIVA code has been substantially modified by the present authors to enable large eddy simulation (LES). It employs a oneequation sub-grid scale (SGS) turbulence model which solves the SGS kinetic energy equation to allow for more relaxed equilibrium requirement and to facilitate high fidelity LES calculations with relatively coarser grids. Instead of using the widely accepted pseudo-source approach the complex shock structures resulting from the high under-expansion is numerically resolved in a small computational domain above the jet exit. The computed results are used as initial conditions for the subsequent hydrogen jet simulation. The predictions provide insight into the shock structure and the subsequent jet development. Such knowledge is valuable for studying the ignition characteristics of high-pressure hydrogen jets in the safety context.
From Renewable Energy to Sustainable Protein Sources: Advancement, Challenges, and Future Roadmaps
Jan 2022
Publication
The concerns over food security and protein scarcity driven by population increase and higher standards of living have pushed scientists toward finding new protein sources. A considerable proportion of resources and agricultural lands are currently dedicated to proteinaceous feed production to raise livestock and poultry for human consumption. The 1st generation of microbial protein (MP) came into the market as land-independent proteinaceous feed for livestock and aquaculture. However MP may be a less sustainable alternative to conventional feeds such as soybean meal and fishmeal because this technology currently requires natural gas and synthetic chemicals. These challenges have directed researchers toward the production of 2nd generation MP by integrating renewable energies anaerobic digestion nutrient recovery biogas cleaning and upgrading carbon-capture technologies and fermentation. The fermentation of methane-oxidizing bacteria (MOB) and hydrogen-oxidizing bacteria (HOB) i.e. two protein rich microorganisms has shown a great potential on the one hand to upcycle effluents from anaerobic digestion into protein rich biomass and on the other hand to be coupled to renewable energy systems under the concept of Power-to-X. This work compares various production routes for 2nd generation MP by reviewing the latest studies conducted in this context and introducing the state-of-the-art technologies hoping that the findings can accelerate and facilitate upscaling of MP production. The results show that 2nd generation MP depends on the expansion of renewable energies. In countries with high penetration of renewable electricity such as Nordic countries off-peak surplus electricity can be used within MP-industry by supplying electrolytic H2 which is the driving factor for both MOB and HOB-based MP production. However nutrient recovery technologies are the heart of the 2nd generation MP industry as they determine the process costs and quality of the final product. Although huge attempts have been made to date in this context some bottlenecks such as immature nutrient recovery technologies less efficient fermenters with insufficient gas-to-liquid transfer and costly electrolytic hydrogen production and storage have hindered the scale up of MP production. Furthermore further research into techno-economic feasibility and life cycle assessment (LCA) of coupled technologies is still needed to identify key points for improvement and thereby secure a sustainable production system.
Hydrocarbon Production by Continuous Hydrodeoxygenation of Liquid Phase Pyrolysis Oil with Biogenous Hydrogen Rich Synthesis Gas
Feb 2019
Publication
This paper presents a beneficial combination of biomass gasification and pyrolysis oil hydrodeoxygenation for advanced biofuel production. Hydrogen for hydrodeoxygenation (HDO) of liquid phase pyrolysis oil (LPP oil) was generated by gasification of softwood. The process merges dual fluidized bed (DFB) steam gasification which produces a hydrogen rich product gas and the HDO of LPP oil. Synthesis gas was used directly without further cleaning and upgrading by making use of the water gas-shift (WGS) reaction. The water needed for the water gas-shift reaction was provided by LPP oil. HDO was successfully performed in a lab scale over 36 h time on stream (TOS). Competing reactions like the Boudouard reaction and Sabatier reaction were not observed. Product quality was close to Diesel fuel specification according to EN 590 with a carbon content of 85.4 w% and a residual water content of 0.28 w%. The water-gas shift reaction was confirmed by CO/CO2-balance high water consumption and 28% less hydrogen consumption during HDO.
Smart Systems and Heat: Decarbonising Heat for UK homes
Nov 2015
Publication
Around 20% of the nation’s carbon emissions are generated by domestic heating. Analysis of the many ways the energy system might be adapted to meet carbon targets shows that the elimination of emissions from buildings is more cost effective than deeper cuts in other energy sectors such as transport. This effectively means that alternatives need to be found for domestic natural gas heating systems. Enhanced construction standards are ensuring that new buildings are increasingly energy efficient but the legacy building stock of around 26 million homes has relatively poor thermal performance and over 90% are expected to still be in use in 2050. Even if building replacement was seen as desirable the cost is unaffordable and the carbon emissions associated with the construction would be considerable.
YouTube link to accompanying video
YouTube link to accompanying video
Explosion Characteristics of Hydrogen-air and Hydrogen-Oxygen Mixtures at Elevated Pressures
Sep 2005
Publication
An essential problem for the operation of high pressure water electrolyzers and fuel cells is the permissible contamination of hydrogen and oxygen. This contamination can create malfunction and in the worst case explosions in the apparatus and gas cylinders. In order to avoid dangerous conditions the exact knowledge of the explosion characteristics of hydrogen/air and hydrogen/oxygen mixtures is necessary. The common databases e.g. the CHEMSAFE® database published by DECHEMA BAM and PTB contains even a large number of evaluated safety related properties among other things explosion limits which however are mainly measured according to standard procedures under atmospheric conditions.<br/>Within the framework of the European research project “SAFEKINEX” and other research projects the explosion limits explosion pressures and rates of pressure rise (KG values) of H2/air and H2/O2 mixtures were measured at elevated conditions of initial pressures and temperatures by the Federal Institute of Materials Research and Testing (BAM). Empirical equations of the temperature influence could be deduced from the experimental values. An anomaly was found at the pressure influence on the upper explosion limits of H2/O2 and H2/air mixtures in the range of 20 bars. In addition explosion pressures and also rates of pressure rises have been measured for different hydrogen concentrations inside the explosion range. Such data are important for constructive explosion protection measures. Furthermore the mainly used standards for the determination of explosion limits have been compared. Therefore it was interesting to have a look at the systematic differences between the new EN 1839 tube and bomb method ASTM E 681-01 and German DIN 51649-1.
HyDeploy Overview
May 2020
Publication
An overview of the HyDeploy project at Keele University where hydrogen is being blended with natural gas to demonstrate the feasibility of using hydrogen to heat our homes.
Deep Decarbonisation Pathways for Scottish Industries: Research Report
Dec 2020
Publication
The following report is a research piece outlining the potential pathways for decarbonisation of Scottish Industries. Two main pathways are considered hydrogen and electrification with both resulting in similar costs and levels of carbon reduction.
Influence of Carbon Catalysts on the Improvement of Hydrogen Storage Properties in a Body-Centered Cubic Solid Solution Alloy
Jun 2021
Publication
Body-centered cubic (BCC) alloys are considered as promising materials for hydrogen storage with high theoretical storage capacity (H/M ratio of 2). Nonetheless they often suffer from sluggish kinetics of hydrogen absorption and high hydrogen desorption temperature. Carbon materials are efficient hydrogenation catalysts however their influence on the hydrogen storage properties of BCC alloy has not been comprehensively studied. Therefore in this paper composites obtained by milling of carbon catalysts (carbon nanotubes mesoporous carbon carbon nanofibers diamond powder graphite fullerene) and BCC alloy (Ti1.5V0.5) were extensively studied in the non-hydrogenated and hydrogenated state. The structure and microstructure of the obtained materials were studied by scanning and transmission electron microscopes X-ray diffraction (XRD) and Raman spectroscopy. XRD and Raman measurements showed that BCC alloy and carbon structures were in most cases intact after the composite synthesis. The hydrogenation/dehydrogenation studies showed that all of the used carbon catalysts significantly improve the hydrogenation kinetics reduce the activation energy of the dehydrogenation process and decrease the dehydrogenation temperature (by nearly 100 K). The superior kinetic properties were measured for the composite with 5 wt % of fullerene that absorbs 3.3 wt % of hydrogen within 1 min at room temperature.
Hydrogen Impacts on Downstream Installation and Appliances
Nov 2019
Publication
The report analyses the technical impacts to end-users of natural gas in Australian distribution networks when up to 10% hydrogen (by volume) is mixed with natural gas.
The full report can be found at this link.
The full report can be found at this link.
Aqueous Phase Reforming in a Microchannel Reactor: The Effect of Mass Transfer on Hydrogen Selectivity
Aug 2013
Publication
Aqueous phase reforming of sorbitol was carried out in a 1.7 m long 320 mm ID microchannel reactor with a 5 mm Pt-based washcoated catalyst layer combined with nitrogen stripping. The performance of this microchannel reactor is correlated to the mass transfer properties reaction kinetics hydrogen selectivity and product distribution. Mass transfer does not affect the rate of sorbitol consumption which is limited by the kinetics of the reforming reaction. Mass transfer significantly affects the hydrogen selectivity and the product distribution. The rapid consumption of hydrogen in side reactions at the catalyst surface is prevented by a fast mass transfer of hydrogen from the catalyst site to the gas phase in the microchannel reactor. This results in a decrease of the concentration of hydrogen at the catalyst surface which was found to enhance the desired reforming reaction rate at the expense of the undesired hydrogen consuming reactions. Compared to a fixed bed reactor the selectivity to hydrogen in the microchannel reactor was increased by a factor of 2. The yield of side products (mainly C3 and heavier hydrodeoxygenated species) was suppressed while the yield of hydrogen was increased from 1.4 to 4 moles per mole of sorbitol fed.
Strain Rate Sensitivity of Microstructural Damage Evolution in a Dual-Phase Steel Pre-Charged with Hydrogen
Dec 2018
Publication
We evaluated the strain rate sensitivity of the micro-damage evolution behavior in a ferrite/martensite dual-phase steel. The micro-damage evolution behavior can be divided into three regimes: damage incubation damage arrest and damage growth. All regimes are associated with local deformability. Thus the total elongation of DP steels is determined by a combination of plastic damage initiation resistance and damage growth arrestability. This fact implies that hydrogen must have a critical effect on the damage evolution because hydrogen enhances strain localization and lowers crack resistance. In this context the strain rate must be an important factor because it affects the time for microstructural hydrogen diffusion/segregation at a specific microstructural location or at the damage tip. In this study tensile tests were carried out on a DP steel with different strain rates of 10− 2 and 10− 4 s−1. We performed the damage quantification microstructure characterization and fractography. Specifically the quantitative data of the damage evolution was analyzed using the classification of the damage evolution regimes in order to separately elucidate the effects of the hydrogen on damage initiation resistance and damage arrestability. In this study we obtained the following conclusions with respect to the strain rate. Lowering the strain rate increased the damage nucleation rate at martensite and reduced the critical strain for fracture through shortening the damage arrest regime. However the failure occurred via ductile modes regardless of strain rate.
No more items...