Publications
Sustainable Power Generation Expansion in Island Systems with Extensive RES and Energy Storage
Oct 2023
Publication
Insular networks constitute ideal fields for investment in renewables and storage due to their excellent wind and solar potential as well the high generation cost of thermal generators in such networks. Nevertheless in order to ensure the stability of insular networks network operators impose strict restrictions on the expansion of renewables. Storage systems render ideal solutions for overcoming the aforementioned restrictions unlocking additional renewable capacity. Among storage technologies hybrid battery-hydrogen demonstrates beneficial characteristics thanks to the complementary features that battery and hydrogen exhibit regarding efficiency self-discharge cost etc. This paper investigates the economic feasibility of a private investment in renewables and hybrid hydrogen-battery storage realized on the interconnected island of Crete Greece. Specifically an optimization formulation is proposed to optimize the capacity of renewables and hybrid batteryhydrogen storage in order to maximize the profit of investment while simultaneously reaching a minimum renewable penetration of 80% in accordance with Greek decarbonization goals. The numerical results presented in this study demonstrate that hybrid hydrogen-battery storage can significantly reduce electricity production costs in Crete potentially reaching as low as 64 EUR/MWh. From an investor’s perspective even with moderate compensation tariffs the energy transition remains profitable due to Crete’s abundant wind and solar resources. For instance with a 40% subsidy and an 80 EUR/MWh compensation tariff the net present value can reach EUR 400 million. Furthermore the projected cost reductions for electrolyzers and fuel cells by 2030 are expected to enhance the profitability of hybrid renewable-battery-hydrogen projects. In summary this research underscores the sustainable and economically favorable prospects of hybrid hydrogen-battery storage systems in facilitating Crete’s energy transition with promising implications for investors and the wider renewable energy sector.
Power Cost and CO2 Emissions for a Microgrid with Hydrogen Storage and Electric Vehicles
Nov 2023
Publication
Hydrogen is considered the primary energy source of the future. The best use of hydrogen is in microgrids that have renewable energy sources (RES). These sources have a small impact on the environment when it comes to carbon dioxide (CO2 ) emissions and a power generation cost close to that of conventional power plants. Therefore it is important to study the impact on the environment and the power cost. The proposed microgrid comprises loads RESs (micro-hydro and photovoltaic power plants) a hydrogen storage tank an electric battery and fuel cell vehicles. The power cost and CO2 emissions are calculated and compared for various scenarios including the four seasons of the year compared with the work of other researchers. The purpose of this paper is to continuously supply the loads and vehicles. The results show that the microgrid sources and hydrogen storage can supply consumers during the spring and summer. For winter and autumn the power grid and steam reforming of natural gas must be used to cover the demand. The highest power costs and CO2 emissions are for winter while the lowest are for spring. The power cost increases during winter between 20:00 and 21:00 by 336%. The CO2 emissions increase during winter by 8020%.
A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming
Mar 2020
Publication
Hydrogen is an important raw material in chemical industries and the steam reforming of light hydrocarbons (such as methane) is the most used process for its production. In this process the use of a catalyst is mandatory and if compared to precious metal-based catalysts Ni-based catalysts assure an acceptable high activity and a lower cost. The aim of a distributed hydrogen production for example through an on-site type hydrogen station is only reachable if a novel reforming system is developed with some unique properties that are not present in the large-scale reforming system. These properties include among the others (i) daily startup and shutdown (DSS) operation ability (ii) rapid response to load fluctuation (iii) compactness of device and (iv) excellent thermal exchange. In this sense the catalyst has an important role. There is vast amount of information in the literature regarding the performance of catalysts in methane steam reforming. In this short review an overview on the most recent advances in Ni based catalysts for methane steam reforming is given also regarding the use of innovative structured catalysts.
Technology Assessment for the Transition to a Renewable Electric Grid
Jun 2024
Publication
To reduce carbon emissions generation of electricity from combustion systems is being replaced by renewable resources. However the most abundant renewable sources – solar and wind – are not dispatchable vary diurnally and are subject to intermittency and produce electricity at times in excess of demand (excess production). To manage this variability and capture the excess renewable energy energy storage technologies are being developed and deployed such as battery energy storage (BES) hydrogen production with electrolyzers (ELY) paired with hydrogen energy storage (HES) and fuel cells (FCs) and renewable natural gas (RNG) production. While BES may be better suited for short duration storage hydrogen is suited for long duration storage and RNG can decarbonize the natural gas system. California Senate Bill 100 (SB100) sets a goal that all retail electricity sold in the State must be sourced from renewable and zero-carbon resources by 2045 raising the questions of which set of technologies and in what proportion are required to meet the 2045 target in the required timeframe as well as the role of the natural gas infrastructure if any. To address these questions this study combines electric grid dispatch modeling and optimization to identify the energy storage and dispatchable technologies in 5-year increments from 2030 to 2045 required to transition from a 60% renewable electric grid in 2035 to a 100% renewable electric grid in 2045. The results show that by utilizing the established natural gas system to store and transmit hydrogen and RNG the deployment of battery energy storage is dramatically reduced. The required capacity for BES in 2045 for example is 40 times lower by leveraging the natural gas infrastructure with a concomitant reduction in cost and associated challenges to transform the electric grid.
Hydrogen Storage as a Key Energy Vector for Car Transportation: A Tutorial Review
Oct 2023
Publication
Hydrogen storage is a key enabling technology for the extensive use of hydrogen as energy carrier. This is particularly true in the widespread introduction of hydrogen in car transportation. Indeed one of the greatest technological barriers for such development is an efficient and safe storage method. So in this tutorial review the existing hydrogen storage technologies are described with a special emphasis on hydrogen storage in hydrogen cars: the current and the ongoing solutions. A particular focus is given on solid storage and some of the recent advances on plasma hydrogen ion implantation which should allow not only the preparation of metal hydrides but also the imagination of a new refluing circuit. From hydrogen discovery to its use as an energy vector in cars this review wants to be as exhaustive as possible introducing the basics of hydrogen storage and discussing the experimental practicalities of car hydrogen fuel. It wants to serve as a guide for anyone wanting to undertake such a technology and to equip the reader with an advanced knowledge on hydrogen storage and hydrogen storage in hydrogen cars to stimulate further researches and yet more innovative applications for this highly interesting field.
Decarbonization of the Steel Industry: A Techno-economic Analysis
Jan 2022
Publication
A substantial CO2-emmissions abatement from the steel sector seems to be a challenging task without support of so-called “breakthrough technologies” such as the hydrogen-based direct reduction process. The scope of this work is to evaluate both the potential for the implementation of green hydrogen generated via electrolysis in the direct reduction process as well as the constraints. The results for this process route are compared with both the well-established blast furnace route as well as the natural gas-based direct reduction which is considered as a bridge technology towards decarbonization as it already operates with H2 and CO as main reducing agents. The outcomes obtained from the operation of a 6-MW PEM electrolysis system installed as part of the H2FUTURE project provide a basis for this analysis. The CO2 reduction potential for the various routes together with an economic study are the main results of this analysis. Additionally the corresponding hydrogen- and electricity demands for large-scale adoption across Europe are presented in order to rate possible scenarios for the future of steelmaking towards a carbon-lean industry.
Hydrogen Role in the Valorization of Integrated Steelworks Process Off-gases through Methane and Methanol Syntheses
Jun 2021
Publication
The valorization of integrated steelworks process off-gases as feedstock for synthesizing methane and methanol is in line with European Green Deal challenges. However this target can be generally achieved only through process off-gases enrichment with hydrogen and use of cutting-edge syntheses reactors coupled to advanced control systems. These aspects are addressed in the RFCS project i3 upgrade and the central role of hydrogen was evident from the first stages of the project. First stationary scenario analyses showed that the required hydrogen amount is significant and existing renewable hydrogen production technologies are not ready to satisfy the demand in an economic perspective. The poor availability of low-cost green hydrogen as one of the main barriers for producing methane and methanol from process off-gases is further highlighted in the application of an ad-hoc developed dispatch controller for managing hydrogen intensified syntheses in integrated steelworks. The dispatch controller considers both economic and environmental impacts in the cost function and although significant environmental benefits are obtainable by exploiting process off-gases in the syntheses the current hydrogen costs highly affect the dispatch controller decisions. This underlines the need for big scale green hydrogen production processes and dedicated green markets for hydrogen-intensive industries which would ensure easy access to this fundamental gas paving the way for a C-lean and more sustainable steel production.
Deep Reinforcement Learning-Based Energy Management for Liquid Hydrogen-Fueled Hybrid Electric Ship Propulsion System
Oct 2023
Publication
This study proposed a deep reinforcement learning-based energy management strategy (DRL-EMS) that can be applied to a hybrid electric ship propulsion system (HSPS) integrating liquid hydrogen (LH2 ) fuel gas supply system (FGSS) proton-exchange membrane fuel cell (PEMFC) and lithium-ion battery systems. This study analyzed the optimized performance of the DRL-EMS and the operational strategy of the LH2 -HSPS. To train the proposed DRL-EMS a reward function was defined based on fuel consumption and degradation of power sources during operation. Fuel consumption for ship propulsion was estimated with the power for balance of plant (BOP) of the LH2 FGSS and PEMFC system. DRL-EMS demonstrated superior global and real-time optimality compared to benchmark algorithms namely dynamic programming (DP) and sequential quadratic programming (SQP)-based EMS. For various operation cases not used in training DRL-EMS resulted in 0.7% to 9.2% higher operating expenditure compared to DP-EMS. Additionally DRL-EMS was trained to operate 60% of the total operation time in the maximum efficiency range of the PEMFC system. Different hydrogen fuel costs did not affect the optimized operational strategy although the operating expenditure (OPEX) was dependent on the hydrogen fuel cost. Different capacities of the battery system did not considerably change the OPEX.
Coordinated Control of a Wind-Methanol-Fuel Cell System with Hydrogen Storage
Dec 2017
Publication
This paper presents a wind-methanol-fuel cell system with hydrogen storage. It can manage various energy flow to provide stable wind power supply produce constant methanol and reduce CO2 emissions. Firstly this study establishes the theoretical basis and formulation algorithms. And then computational experiments are developed with MATLAB/Simulink (R2016a MathWorks Natick MA USA). Real data are used to fit the developed models in the study. From the test results the developed system can generate maximum electricity whilst maintaining a stable production of methanol with the aid of a hybrid energy storage system (HESS). A sophisticated control scheme is also developed to coordinate these actions to achieve satisfactory system performance.
Prediction of Mixing Uniformity of Hydrogen Injection in Natural Gas Pipeline Based on a Deep Learning Model
Nov 2022
Publication
It is economical and efficient to use existing natural gas pipelines to transport hydrogen. The fast and accurate prediction of mixing uniformity of hydrogen injection in natural gas pipelines is important for the safety of pipeline transportation and downstream end users. In this study the computational fluid dynamics (CFD) method was used to investigate the hydrogen injection process in a T-junction natural gas pipeline. The coefficient of variation (COV) of a hydrogen concentration on a pipeline cross section was used to quantitatively characterize the mixing uniformity of hydrogen and natural gas. To quickly and accurately predict the COV a deep neural network (DNN) model was constructed based on CFD simulation data and the main influencing factors of the COV including flow velocity hydrogen blending ratio gas temperature flow distance and pipeline diameter ratio were taken as input nodes of the DNN model. In the model training process the effects of various parameters on the prediction accuracy of the DNN model were studied and an accurate DNN architecture was constructed with an average error of 4.53% for predicting the COV. The computational efficiency of the established DNN model was also at least two orders of magnitude faster than that of the CFD simulations for predicting the COV.
Numerical Research on Leakage Characteristics of Pure Hydrogen/Hydrogen-Blended Natural Gas in Medium- and Low-Pressure Buried Pipelines
Jun 2024
Publication
To investigate the leakage characteristics of pure hydrogen and hydrogen-blended natural gas in medium- and low-pressure buried pipelines this study establishes a three-dimensional leakage model based on Computational Fluid Dynamics (CFD). The leakage characteristics in terms of pressure velocity and concentration distribution are obtained and the effects of operational parameters ground hardening degree and leakage parameters on hydrogen diffusion characteristics are analyzed. The results show that the first dangerous time (FDT) for hydrogen leakage is substantially shorter than for natural gas emphasizing the need for timely leak detection and response. Increasing the hydrogen blending ratio accelerates the diffusion process and decreases the FDT posing greater risks for pipeline safety. The influence of soil hardening on gas diffusion is also examined revealing that harder soils can restrict gas dispersion thereby increasing localized concentrations. Additionally the relationship between gas leakage time and distance is determined aiding in the optimal placement of gas sensors and prediction of leakage timing. To ensure the safe operation of hydrogen-blended natural gas pipelines practical recommendations include optimizing pipeline operating conditions improving leak detection systems increasing pipeline burial depth and selecting materials with higher resistance to hydrogen embrittlement. These measures can mitigate risks associated with hydrogen leakage and enhance the overall safety of the pipeline infrastructure.
Global Hydrogen Review 2023
Sep 2023
Publication
The Global Hydrogen Review is an annual publication by the International Energy Agency that tracks hydrogen production and demand worldwide as well as progress in critical areas such as infrastructure development trade policy regulation investments and innovation. The report is an output of the Clean Energy Ministerial Hydrogen Initiative and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while also informing discussions at the Hydrogen Energy Ministerial Meeting organised by Japan. Focusing on hydrogen’s potentially major role in meeting international energy and climate goals the Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies at the same time as creating demand for hydrogen and hydrogen-based fuels. It compares real-world developments with the stated ambitions of government and industry. This year’s report includes a focus on demand creation for low-emission hydrogen. Global hydrogen use is increasing but demand remains so far concentrated in traditional uses in refining and the chemical industry and mostly met by hydrogen produced from unabated fossil fuels. To meet climate ambitions there is an urgent need to switch hydrogen use in existing applications to low-emission hydrogen and to expand use to new applications in heavy industry or long-distance transport.
Integration of Renewable Hydrogen Production in Steelworks Off-Gases for the Synthesis of Methanol and Methane
May 2021
Publication
The steel industry is among the highest carbon-emitting industrial sectors. Since the steel production process is already exhaustively optimized alternative routes are sought in order to increase carbon efficiency and reduce these emissions. During steel production three main carbon-containing off-gases are generated: blast furnace gas coke oven gas and basic oxygen furnace gas. In the present work the addition of renewable hydrogen by electrolysis to those steelworks off-gases is studied for the production of methane and methanol. Different case scenarios are investigated using AspenPlusTM flowsheet simulations which differ on the end-product the feedstock flowrates and on the production of power. Each case study is evaluated in terms of hydrogen and electrolysis requirements carbon conversion hydrogen consumption and product yields. The findings of this study showed that the electrolysis requirements surpass the energy content of the steelwork’s feedstock. However for the methanol synthesis cases substantial improvements can be achieved if recycling a significant amount of the residual hydrogen.
Impact of Capillary Pressure Hysteresis and Injection-withdrawal Scehemes on Performance of Underground Hydrogen Storage
Oct 2023
Publication
Underground hydrogen storage in depleted hydrocarbon reservoirs and aquifers has been proposed as a potential long-term solution to storing intermittently produced renewable electricity as the subsurface formations provide secure and large storage space. Various phenomena can lead to hydrogen loss in subsurface systems with the key cause being the trapping especially during the withdrawal cycle. Capillary trapping in particular is strongly related to the hysteresis phenomena observed in the capillary pressure/saturation and relative-permeability/saturation curves. This paper address two key points: (1) the sole impact of hysteresis in capillary pressure on hydrogen trapping during withdrawal cycles and (2) the dependency of optimal operational parameters (injection/withdrawal flow rate) and the reservoir characteristics such as permeability thickness and wettability of the porous medium on the remaining hydrogen saturation.<br/>Model<br/>To study the capillary hysteresis during underground hydrogen storage Killough [1] model was implemented in the MRST toolbox [2]. A comparative study was performed to quantify the impact of changes in capillary pressure behaviour by including and excluding the hysteresis and scanning curves. Additionally this study investigates the impact of injection/withdrawal rates and the aquifer permeability for various capillary and Bond numbers in a homogeneous system.<br/>Findings<br/>It was found that although the hydrogen storage efficiency is not considerably impacted by the inclusion of the capillary-pressure scanning curves the impact of capillary pressure on the well properties (withdrawal rate and pressure) can become significant. Higher injection and withdrawal rates does not necessarily lead to a better performance in terms of productivity. The productivity enhancement depends on the competition between gravitational capillary and viscous forces. The observed water upconing at relatively high capillary numbers resulted in low hydrogen productivity. highlighting the importance of well design and placement.
Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process
Sep 2022
Publication
Green hydrogen is considered to be one of the best candidates for fossil fuels in the near future. Bio-hydrogen production from the dark fermentation of organic materials including organic wastes is one of the most cost-effective and promising methods for hydrogen production. One of the main challenges posed by this method is the low production rate. Therefore optimizing the operating parameters such as the initial pH value operating temperature N/C ratio and organic concentration (xylose) plays a significant role in determining the hydrogen production rate. The experimental optimization of such parameters is complex expensive and lengthy. The present research used an experimental data asset adaptive network fuzzy inference system (ANFIS) modeling and particle swarm optimization to model and optimize hydrogen production. The coupling between ANFIS and PSO demonstrated a robust effect which was evident through the improvement in the hydrogen production based on the four input parameters. The results were compared with the experimental and RSM optimization models. The proposed method demonstrated an increase in the biohydrogen production of 100 mL/L compared to the experimental results and a 200 mL/L increase compared to the results obtained using ANOVA.
Meeting the Challenges of Large-scale Carbon Storage and Hydrogen Production
Mar 2023
Publication
There is a pressing need to rapidly and massively scale up negative carbon strategies such as carbon capture and storage (CCS). At the same time large-scale CCS can enable ramp-up of large-scale hydrogen production a key component of decarbonized energy systems. We argue here that the safest and most practical strategy for dramatically increasing CO2 storage in the subsurface is to focus on regions where there are multiple partially depleted oil and gas reservoirs. Many of these reservoirs have adequate storage capacity are geologically and hydrodynamically well understood and are less prone to injection-induced seismicity than saline aquifers. Once a CO2 storage facility is up and running it can be used to store CO2 from multiple sources. Integration of CCS with hydrogen production appears to be an economically viable strategy for dramatically reducing greenhouse gas emissions over the next decade particularly in oil- and gas-producing countries where there are numerous depleted reservoirs that are potentially suitable for large-scale carbon storage.
Underground Storage of Hydrogen and Hydrogen/methane Mixtures in Porous Reservoirs: Influence of Reservoir Factors and Engineering Choices on Deliverability and Storage Operations
Jul 2023
Publication
Seasonal storage of natural gas (NG) which primarily consists of methane (CH4) has been practiced for more than a hundred years at underground gas storage (UGS) facilities that use depleted hydrocarbon reservoirs saline aquifers and salt caverns. To support a transition to a hydrogen (H2) economy similar facilities are envisioned for long-duration underground H2 storage (UHS) of either H2 or H2/CH4 mixtures. Experience with UGS can be used to guide the deployment of UHS so we identify and quantify factors (formation/fluid properties and engineering choices) that influence reservoir behavior (e.g. viscous fingering and gravity override) the required number of injection/withdrawal wells and required storage volume contrasting the differences between the storage of CH4 H2 and H2/CH4 mixtures. The most important engineering choices are found to be the H2 fraction in H2/CH4 mixtures storage depth and injection rate. Storage at greater depths (higher pressure) but with relatively lower temperature is more favorable because it maximizes volumetric energy-storage density while minimizing viscous fingering and gravity override due to buoyancy. To store an equivalent amount of energy storing H2/CH4 mixtures in UHS facilities will require more wells and greater reservoir volume than corresponding UGS facilities. We use our findings to make recommendations about further research needed to guide deployment of UHS in porous reservoirs.
Research Progress on Gas Supply System of Proton Exchange Membrane Fuel Cells
Jun 2024
Publication
Proton exchange membrane fuel cells (PEMFCs) are attracting attention for their green energy-saving and high-efficiency advantages becoming one of the future development trends of renewable energy utilization. However there are still deficiencies in the gas supply system control strategy that plays a crucial role in PEMFCs which limits the rapid development and application of PEMFCs. This paper provides a comprehensive and in-depth review of the PEMFC air delivery system (ADS) and hydrogen delivery system (HDS) operations. For the ADS the advantages and disadvantages of the oxygen excess ratio (OER) oxygen pressure and their decoupling control strategies are systematically described by the following three aspects: single control hybrid control and intelligent algorithm control. Additionally the optimization strategies of the flow field or flow channel for oxygen supply speeds and distribution uniformity are compared and analyzed. For the HDS a systematic review of hydrogen recirculation control strategies purge strategies and hydrogen flow control strategies is conducted. These strategies contribute a lot to improving hydrogen utilization rates. Furthermore hydrogen supply pressure is summarized from the aspects of hybrid control and intelligent algorithm control. It is hoped to provide guidance or a reference for research on the HDS as well as the ADS control strategy and optimization strategy
Future Green Energy: A Global Analysis
Jun 2024
Publication
The main problem confronting the world is human-caused climate change which is intrinsically linked to the need for energy both now and in the future. Renewable (green) energy has been proposed as a future solution and many renewable energy technologies have been developed for different purposes. However progress toward net zero carbon emissions by 2050 and the role of renewable energy in 2050 are not well known. This paper reviews different renewable energy technologies developed by different researchers and their potential and challenges to date and it derives lessons for world and especially African policymakers. According to recent research results the mean global capabilities for solar wind biogas geothermal hydrogen and ocean power are 325 W 900 W 300 W 434 W 150 W and 2.75 MWh respectively and their capacities for generating electricity are 1.5 KWh 1182.5 KWh 1.7 KWh 1.5 KWh 1.55 KWh and 3.6 MWh respectively. Securing global energy leads to strong hope for meeting the Sustainable Development Goals (SDGs) such as those for hunger health education gender equality climate change and sustainable development. Therefore renewable energy can be a considerable contributor to future fuels.
A Multicriteria Modeling Approach for Evaluating Power Generation Scenarios Under Uncertainty: The Case of Green Hydrogen in Greece
Oct 2023
Publication
Clean energy technological innovations are widely acknowledged as a prerequisite to achieving ambitious longterm energy and climate targets. However the optimal speed of their adoption has been parsimoniously studied in the literature. This study seeks to identify the optimal intensity of moving to a green hydrogen electricity sector in Greece using the OSeMOSYS energy modeling framework. Green hydrogen policies are evaluated first on the basis of their robustness against uncertainty and afterwards against conflicting performance criteria and for different decision-making profiles towards risk by applying the VIKOR and TOPSIS multi-criteria decision aid methods. Although our analysis focuses exclusively on the power sector and compares different rates of hydrogen penetration compared to a business-as-usual case without considering other game-changing innovations (such as other types of storage or carbon capture and storage) we find that a national transition to a green hydrogen economy can support Greece in potentially cutting at least 16 MtCO2 while stimulating investments of EUR 10–13 bn. over 2030–2050.
No more items...