Publications
Life Cycle Assessment of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Aug 2023
Publication
In recent years there has been a significant increase in the adoption of autonomous vehicles for marine and submarine missions. The advancement of emerging imaging navigation and communication technologies has greatly expanded the range of operational capabilities and opportunities available. The ENDURUNS project is a European research endeavor focused on identifying strategies for achieving minimal environmental impact. To measure these facts this article evaluates the product impacts employing the Life Cycle Assessment methodology for the first time following the ISO 14040 standard. In this analysis the quantitative values of Damage and Environmental Impact using the Eco-Indicator 99 methodology in SimaPro software are presented. The results report that the main contributors in environmental impact terms have been placed during the manufacturing phase. Thus one of the challenges is accomplished avoiding the use phase emissions that are the focus to reduce nowadays in the marine industry.
Numerical Simulation Study on the Diffusion Characteristics of High-Pressure Hydrogen Gas Leakage in Confined Spaces
Dec 2024
Publication
Hydrogen as one of the most promising renewable clean energy sources holds significant strategic importance and vast application potential. However as a high-energy combustible gas hydrogen poses risks of fire and explosion in the event of a leakage. Hydrogen production plants typically feature large spatial volumes and complex obstacles which can significantly influence the diffusion pathways and localized accumulation of hydrogen during a short-term high-volume release further increasing the risk of accidents. Implementing effective hydrogen leakage monitoring measures can mitigate these risks ensuring the safety of personnel and the environment to the greatest extent possible. Therefore this paper uses CFD methods to simulate the hydrogen leakage process in a hydrogen production plant. The study examines the molar fraction distribution characteristics of hydrogen in the presence of obstacles by varying the ventilation speed of the plant and the directions of leakage. The main conclusions are as follows: enhancing ventilation can effectively prevent the rapid increase in hydrogen concentration with higher ventilation speeds yielding better suppression. After a hydrogen leak in a confined space hydrogen tends to diffuse along the walls and accumulate in corner areas indicating that hydrogen monitoring equipment should be placed in corner locations.
Strategic Analysis of Hydrogen Market Dynamics Across Collaboration Models
Oct 2024
Publication
The global energy landscape is experiencing a transformative shift with an increasing emphasis on sustainable and clean energy sources. Hydrogen remains a promising candidate for decarbonization energy storage and as an alternative fuel. This study explores the landscape of hydrogen pricing and demand dynamics by evaluating three collaboration scenarios: market-based pricing cooperative integration and coordinated decision-making. It incorporates price-sensitive demand environmentally friendly production methods and market penetration effects to provide insights into maximizing market share profitability and sustainability within the hydrogen industry. This study contributes to understanding the complexities of collaboration by analyzing those structures and their role in a fast transition to clean hydrogen production by balancing economic viability and environmental goals. The findings reveal that the cooperative integration strategy is the most effective for sustainable growth increasing green hydrogen’s market share to 19.06 % and highlighting the potential for environmentally conscious hydrogen production. They also suggest that the coordinated decision-making approach enhances profitability through collaborative tariff contracts while balancing economic viability and environmental goals. This study also underscores the importance of strategic pricing mechanisms policy alignment and the role of hydrogen hubs in achieving sustainable growth in the hydrogen sector. By highlighting the uncertainties and potential barriers this research offers actionable guidance for policymakers and industry players in shaping a competitive and sustainable energy marketplace.
Optimized Scheduling of Integrated Energy Systems Accounting for Hydrogen Energy Multi-Utilization Models
Jan 2024
Publication
To cope with the growing penetration rate of renewable energy and to enhance the absorption capacity of wind power this paper investigates the applications of an Integrated Energy System (IES) Hydrogen Compressed Natural Gas (HCNG) and power-to-hydrogen (P2H) devices within the IES. It employs power-to-gas and gas blending with hydrogen to construct an efficient electricity–gas–electricity energy flow loop establishing a Natural Gas–Electricity Coupling System (NGECS) model. On this basis a coordinated scheduling method for gas–electric coupling systems using gas blended with hydrogen is proposed. A carbon trading mechanism is introduced to constrain carbon emissions further reducing the system’s carbon footprint. Multiple scenarios are set up for a comparative analysis in order to validate the effectiveness of the proposed model. This study also analyzes the impact of different hydrogen blending ratios and methods on the low-carbon and economic performance of IES.
Proton-Exchange Membrane Electrolysis for Green Hydrogen Production: Fundamentals, Cost Breakdown, and Strategies to Minimize Platinum-Group Metal Content in Hydrogen Evolution Reaction Electrocatalysts
Nov 2024
Publication
Green hydrogen (H2 ) has emerged as a promising energy carrier for decarbonizing the industrial building and transportation sectors. However current green H2 production technologies face challenges that limit cost reduction and scaling up. Platinum-group metals (PGMs) including platinum and iridium present exceptional electrocatalytic properties for water splitting but their high cost is a significant barrier. This directly impacts the overall cost of electrolyzers thus increasing green H2 production costs. The present work covers the fundamentals of water electrolysis the currently available technologies focusing on proton-exchange membrane electrolyzers and the critical role of electrocatalysts discussing potential strategies for reducing the PGM content and consequently decreasing green H2 cost.
Quantitative Risk Assessment for Hydrogen Systems: Model Development and Validation
Sep 2023
Publication
Quantitative Risk Assessment (QRA) is a risk-informed approach that considers past performances and the likelihood of events and distinguishes must-haves from nice-to-haves. Following the approach applied for the HyRAM code developed by the Sandia National Laboratories a QRA toolkit for hydrogen systems was developed using MATLAB by Canadian Nuclear Laboratories (CNL). Based on user inputs for system components and their operating parameters the toolkit calculates the consequence of a hydrogen leak from the system. The fatality likelihood can be estimated from the severity of a person’s exposure to radiant heat flux (from a jet fire) and overpressure (from an explosion). This paper presents a verification and validation exercise by comparing the CNL model predictions with the HyRAM code and available experimental data including a QRA case study for a locomotive. The analysis produces risk contours recommending personnel (employees/public) numbers time spent and safe separation distances near the incident (during maintenance or an accident). The case study demonstrated the importance of hydrogen leak sensors’ reliability for leak detection and isolation. The QRA toolkit calculates a more practical value of the safe separation distance for hydrogen installations and provides evidence to support communication with authorities and other stakeholders for decision-making.
Energy Storage in Urban Areas: The Role of Energy Storage Facilities, a Review
Feb 2024
Publication
Positive Energy Districts can be defined as connected urban areas or energy-efficient and flexible buildings which emit zero greenhouse gases and manage surpluses of renewable energy production. Energy storage is crucial for providing flexibility and supporting renewable energy integration into the energy system. It can balance centralized and distributed energy generation while contributing to energy security. Energy storage can respond to supplement demand provide flexible generation and complement grid development. Photovoltaics and wind turbines together with solar thermal systems and biomass are widely used to generate electricity and heating respectively coupled with energy system storage facilities for electricity (i.e. batteries) or heat storage using latent or sensible heat. Energy storage technologies are crucial in modern grids and able to avoid peak charges by ensuring the reliability and efficiency of energy supply while supporting a growing transition to nondepletable power sources. This work aims to broaden the scientific and practical understanding of energy storage in urban areas in order to explore the flexibility potential in adopting feasible solutions at district scale where exploiting the space and resource-saving systems. The main objective is to present and critically discuss the available options for energy storage that can be used in urban areas to collect and distribute stored energy. The concerns regarding the installation and use of Energy Storage Systems are analyzed by referring to regulations and technical and environmental requirements as part of broader distribution systems or as separate parts. Electricity heat energy and hydrogen are the most favorable types of storage. However most of them need new regulations technological improvement and dissemination of knowledge to all people with the aim of better understanding the benefits provided.
Brazil’s New Green Hydrogen Industry: An Assessment of Its Macroeconomic Viability Through an Input–Output Approach
Dec 2024
Publication
This manuscript explores the role of green hydrogen produced through ethanol reforming in accelerating Brazil’s transition to a low-carbon economic framework. Despite ongoing efforts to lessen carbon dependence Brazil’s reliance on biofuels and other renewable energy sources remains inadequate for fully achieving its decarbonization objectives. Green hydrogen presents a vital opportunity to boost energy sustainability especially in sectors that are challenging to decarbonize such as industry and transportation. By analyzing Brazil’s input–output (I-O) table using data from the Brazilian Institute of Geography and Statistics (IBGE) this study evaluates the macroeconomic potential of green hydrogen focusing on GDP growth and employment generation. Furthermore the research explores green hydrogen systems’ economic feasibility and potential impact on future energy policies offering valuable insights for stakeholders and decision-makers. In addition this investigation highlights Brazil’s abundant renewable resources and identifies the infrastructural investments necessary to support a green hydrogen economy. The findings aim to strengthen Brazil’s national decarbonization strategy and serve as a model for other developing nations transitioning to clean energy.
Optimal RES Integration for Matching the Italian Hydrogen Strategy Requirements
Oct 2023
Publication
In light of the Italian Hydrogen Roadmap goals the 2030 national RES installation targets need to be redefined. This work aims to propose a more appropriate RES installation deployment on national scale by matching the electrolysers capacity and the green hydrogen production goals. The adopted approach envisages the power-to-gas value chain priority for the green hydrogen production as a means of balancing system. Thus the 2030 Italian energy system has been modelled and several RES installation scenarios have been simulated via EnergyPLAN software. The simulation outputs have been integrated with a breakdown model for the overgeneration RES share detection in compliance with the PV dispatching priority of the Italian system. Therefore the best installation solutions have been detected via multi-objective optimization model based on the green hydrogen production additional installation cost critical energy excess along with the Levelized Cost of Hydrogen (LCOH). Higher wind technology installations provide more competitive energy and hydrogen costs. The most suitable scenarios show that the optimal LCOH and hydrogen production values respectively equal to 3.6 €/kg and 223 ktonH2 arise from additional PV/wind installations of 35 GW on top of the national targets.
Optimizing Hydrogen Production: A Comparative Study of Direct and Indirect Coupling Between Photovoltaics and Electrolyzer
Jul 2024
Publication
The production of hydrogen from photovoltaics (PV) has gained attention due to its potential as an energy vector. In this context there are two basic configurations for electrically coupling PV to hydrogen electrolyzers: direct and indirect. The direct configuration operates variably based on meteorological conditions but has simplicity as an advantage. The indirect configuration involves a power stage (PS) with a maximum power point tracker and a DC-DC converter maintaining an optimal power transfer from PV to electrolyzers but incurs losses at the PS. The direct configuration avoids these losses but requires a specific design of the PV generator to achieve high electrical transfer. The comparative analysis of hydrogen production between these two approaches indicates that the indirect paradigm yields a 37.5% higher hydrogen output throughout a typical meteorological year compared to the optimized direct configuration. This increase enhances the overall sunlight-to-hydrogen efficiency elevating it from 5.0% in the direct case to 6.9% in the indirect one. Furthermore the direct setup sensitive to PV power fluctuations suffers an 18% reduction in hydrogen production with just a 5% reduction in photogenerated power. Under optimal performance the direct coupling produces less hydrogen unless the DCDC converter efficiency drops 17% below commercial standards.
Techno-economic Analysis of Green-H2@Scale Production
Sep 2023
Publication
The International Energy Agency (IEA) established the "H2 Implementing Agreement (HIA)" to promote H2 transition in various economic sectors. Today less than one percent of the world's H2 production is “Green”. Lack of regulations high production costs and inadequate infrastructure are significant impediments. The U.S. Department of Energy set a "111-target" which translates into $1/kg-H2 in the next decade. Many countries in the Middle East and North Africa (MENA) region have announced ambitious plans to produce green H2. Through techno-economic metrics and the impact of economies of scale this study investigates H2@Scale production. H2 Production Analysis and the System Advisor Model developed by the U.S. Department of Energy were used for analysis. The results demonstrate a significant decrease in the levelized cost of H2 (LCOH) when the production volume is scaled up. It was determined that the key cost drivers are capital cost energy installed balance of the plant and mechanical and electrical subsystems. The studied location is found promising for scaled production and developing its commodity status. The findings could serve as a benchmark for key stakeholders investors policymakers and the developer of relevant strategies in the infrastructure and H2 value chain.
Decarbonizing the Spanish Transportation Sector by 2050: Design and Techno-economic Assessment of the Hydrogen Generation and Supply Chain
May 2023
Publication
The transport sector is difficult to decarbonize due to its high reliance on fossil fuels accounting for 37% of global end-use sectors emissions in 2021. Therefore this work proposes an energy model to replace the Spanish vehicle fleet by hydrogen-fueled vehicles by 2050. Thus six regions are defined according to their proximity to regasification plants where hydrogen generation hubs are implemented. Likewise renewables deployment is subject to their land availability. Hydrogen is transported through an overhauled primary natural gas transport network while two distribution methods are compared for levelized cost of hydrogen minimization: gaseous pipeline vs liquid hydrogen supply in trucks. Hence a capacity of 443.1 GW of renewables 214 GW of electrolyzers and 3.45 TWh of hydrogen storage is required nationwide. Additionally gaseous hydrogen distribution is on average 17% cheaper than liquid hydrogen delivery. Finally all the regions present lower prices per km traveled than gasoline or diesel.
A Non-dimensional Surrogate Model of Stratified Filling During Indoor, Plume-look Hydrogen Releases
Sep 2023
Publication
Hydrogen is commonly used as feedstock in industrial processes and is regarded as a potential future energy carrier. However its reactivity and low density make it difficult to handle and store safely. Indoor hydrogen dispersion can cause a fire or explosion hazard if encountering an ignition source. Safety practices often use time expensive modelling techniques to estimate risk associated with hydrogen. A neural network based surrogate model could efficiently replace Computational Fluid Dynamics (CFD) modelling in safety studies. To lower the dimensionality of this surrogate model a dimensional analysis based on Buckingham’s Pi-theorem is proposed. The dimensional analysis examines stratified filling and highlights the functional parameters involved in the process. Stratified filling occurs for buoyancy dominated releases and is characterized by layers of decreasing concentration starting at the ceiling of the enclosure and developing towards the bottom. The study involves four dimensional cases that were simulated using Computational Fluid Dynamics (CFD) to demonstrate the usefulness of the proposed dimensionless time and dimensionless volume. The setup considered in this paper consists of a parallelepiped enclosure with standard atmospheric conditions a single release source and one pressure outlet to ensure constant pressure during the release. The results of the CFD simulations show a distinct pattern in the relation of hydrogen molar fraction and dimensionless time. The pattern depends on the dimensionless height of the measurement location. A five-parameter logistic (5PL) function is proposed to fit the data from the CFD models. Overall the paper provides insights into the functional parameters involved in the evolution of hydrogen mass fractions during stratified filling. It provides a nondimensional surrogate model to compute the evolution of the local concentrations of hydrogen during the development of stratification layers.
Numerical Analysis of the Hydrogen-air Mixture Formation Process in a Direct-injection Engine for Off-road Applications
Jun 2024
Publication
Among the different hydrogen premixed combustion concepts direct injection (DI) is one of the most promising for internal combustion engine (ICE) applications. However to fully exploit the benefits of this solution the optimization of the mixture preparation process is a crucial factor. In the present work a study of the hydrogenair mixture formation process in a DI H2-ICE for off-road applications was performed through 3D-CFD simulations. First a sensitivity analysis on the injection timing was carried out to select the optimal injection operating window capable of maximizing mixture homogeneity without a significant volumetric efficiency reduction. Then different spray injector guiding caps were tested to assess their effect on in-cylinder dynamics and mixture characteristics consequently. Finally the impact of swirl intensity on hydrogen distribution has been assessed. The optimization of the combustion chamber geometry has allowed the achievement of significant improvements in terms of mixture homogeneity.
Techno-economic and Environmental Assessment of Renewable Hydrogen Import Routes from Overseas in 2030
Dec 2024
Publication
Converting renewable electricity via water electrolysis into green hydrogen and hydrogen-based products will shape a global trade in power-to-x (PtX) products. The European Union's renewable hydrogen import target of 10 million tonnes by 2030 reflects the urgent need for PtX imports by sea to early high-demand countries like Germany. This study evaluates the cost efficiency and greenhouse gas (GHG) emissions of four hydrogen carrier ship import options considering a reconversion to H2 at the import terminal for a final delivery to offtakers via a H2 pipeline network in 2030. This includes ammonia a liquid organic hydrogen carrier (LOHC) system based on benzyltoluene (BT) and a novel CO2/e-methane and CO2/e-methanol cycle where CO2 is captured at the reconversion plant and then shipped back to the PtX production site in a nearly closed carbon loop. The GHG emission accounting includes well-to-wake emissions of the marine fuels and direct emissions of the carbon capture plant. Two GW-scale case studies reveal the impact of a short and long-distance route from Tunisia and Australia to Germany whereas the specific PtX carriers are either fuelled by its PtX cargo as a renewable marine fuel or by conventional heavy fuel oil (HFO). Ammonia outperforms the other PtX routes as the total hydrogen supply cost range between 5.07 and 7.69 for Australia (low: NH3 HFO high: LOHC HFO) and 4.78–6.21 € per kg H2 for Tunisia (low: NH3 HFO high: CH4 HFO) respectively. The ammonia routes achieve thereby GHG intensities of 31 % and 86 % below the EU threshold of 3.4 kg CO2(e) per kg H2 for renewable hydrogen. LOHC though unless switching to low-emission fuels and the CO2/e-methanol cycle exceed the GHG threshold at shipping distances of 12300 and 16600 km. The hydrogen supply efficiencies vary between 57.9 and 78.8 %LHV (low: CH4 PtX-fuelled high: NH3 HFO) with a PtX marine fuel consumption of up to 15 % LHV for the Australian methanol route whereas high uncertainties remain for the ammonia and methanol reconversion plant efficiencies. The CO2 cyle enables a cost-efficient CO2 supply easing the near-term shortage of climate-neutral CO2 sources at the cost of high GHG emissions for long-distance routes.
Hydrogen Fuel Cell as an Electric Generator: A Case Study for a General Cargo Ship
Feb 2024
Publication
In this study real voyage data and ship specifications of a general cargo ship are employed and it is assumed that diesel generators are replaced with hydrogen proton exchange membrane fuel cells. The effect of the replacement on CO2 NOX SOX and PM emissions and the CII value is calculated. Emission calculations show that there is a significant reduction in emissions when hydrogen fuel cells are used instead of diesel generators on the case ship. By using hydrogen fuel cells there is a 37.4% reduction in CO2 emissions 32.5% in NOX emissions 37.3% in SOX emissions and 37.4% in PM emissions. If hydrogen fuel cells are not used instead of diesel generators the ship will receive an A rating between 2023 and 2026 a B rating in 2027 a C rating in 2028–2029 and an E rating in 2030. On the other hand if hydrogen fuel cells are used the ship will always remain at an A rating between 2023 and 2030. The capital expenditure (CAPEX) and operational expenditure (OPEX) of the fuel cell system are USD 1305720 and USD 2470320 respectively for a 15-year lifetime and the hydrogen fuel expenses are competitive at USD 260981 while marine diesel oil (MDO) fuel expenses are USD 206435.
Assessing the Implications of Hydrogen Blending on the European Energy System towards 2050
Dec 2023
Publication
With the aim of reducing carbon emissions and seeking independence from Russian gas in the wake of the conflict in Ukraine the use of hydrogen in the European Union is expected to rise in the future. In this regard hydrogen transport via pipeline will become increasingly crucial either through the utilization of existing natural gas infrastructure or the construction of new dedicated hydrogen pipelines. This study investigates the effects of hydrogen blending in existing pipelines on the European energy system by the year 2050 by introducing hydrogen blending sensitivities to the Global Energy System Model (GENeSYS-MOD). Results indicate that hydrogen demand in Europe is inelastic and limited by its high costs and specific use cases with hydrogen production increasing by 0.17% for 100%-blending allowed compared to no blending allowed. The availability of hydrogen blending has been found to impact regional hydrogen production and trade with countries that can utilize existing natural gas pipelines such as Norway experiencing an increase in hydrogen and synthetic gas exports from 44.0 TWh up to 105.9 TWh in 2050 as the proportion of blending increases. Although the influence of blending on the overall production and consumption of hydrogen in Europe is minimal the impacts on the location of production and dependence on imports must be thoroughly evaluated in future planning efforts.
Advanced Rectifier Technologies for Electrolysis-Based Hydrogen Production: A Comparative Study and Real-World Applications
Dec 2024
Publication
In response to the growing significance of hydrogen as a clean energy carrier this study investigates the advanced rectifier technologies employed in electrolytic hydrogen production. First the topologies of three rectifiers typically employed in industry—24-pulse thyristor rectifiers insulated gate bipolar transistor (IGBT) rectifiers and 24-pulse diode rectifiers with multi-phase choppers—are described in detail. Subsequently at a constant 5 MW power level the three rectifiers are compared in terms of rectifier efficiency gridside power quality power factor and overall investment cost. The results indicate that in comparison to the other two rectifiers the thyristor rectifier provides superior efficiency and cost advantages thereby maintaining a dominant market share. Additionally case studies of rectifier power supplies from three real-world industrial projects are presented along with actual grid-side power quality data. Finally the challenges potential applications and future prospects of rectifiers in renewable energy-based hydrogen production are discussed and summarized.
Thermodynamic Modelling and Optimisation of a Green Hydrogen-blended Syngas-fueled Integrated PV-SOFC System
Sep 2023
Publication
Developing an effective energy transition roadmap is crucial in the face of global commitments to achieve net zero emissions. While renewable power generation systems are expanding challenges such as curtailments and grid constraints can lead to energy loss. To address this surplus electricity can be converted into green hydrogen serving as a key component in the energy transition. This research explores the use of renewable solar energy for powering a proton exchange membrane electrolyser to produce green hydrogen while a downdraft gasifier fed by municipal solid waste generates hydrogen-enriched syngas. The blended fuel is then used to feed a Solid Oxide Fuel Cell (SOFC) system. The study investigates the impact of hydrogen content on the performance of the fuel cell-based power plant from thermodynamics and exergoeconomic perspectives. Multiobjective optimisation using a genetic algorithm identifies optimal operating conditions for the system. Results show that blending hydrogen with syngas increases combined heat and power efficiency by up to 3% but also raises remarkably the unit product cost and reduces carbon dioxide emissions. Therefore the optimal values for hydrogen content current density temperatures and other parameters are determined. These findings contribute to the design and operation of an efficient and sustainable energy generation system.
Numerical Modeling for Analysis and Improvement of Hydrogen Refueling Process for Heavy-duty Vehicles
Dec 2024
Publication
This paper presents the development validation and application of a numerical model to simulate the process of refueling hydrogen-powerd heavy-duty vehicles with a cascade hydrohen refueling station design. The model is implemented and validated using experimental data from SAE J2601. The link between the average pressure ramp (APRR) and flow rate which is responsible for the dynamic evolution of the refueling process was analyzed. Various simulations were conducted with a vehicle tank of 230 L and nominal pressure of 35 MPa typical of tanks adopted in heavy-duty vehicles varying the ambient temperature between 0 and 40 °C the cooling temperature of the hydrogen by the system cooling between −40 and 0 °C and the APRR between 2 and 14 MPa/min. The study found that if the ambient temperature does not exceed 30 °C rapid refueling can be carried out with not very low pre-cooling temperatures e.g. -20 °C or − 10 °C guaranteeing greater savings in station management. Cooling system thermal power has been investigated through the analyses in several scenarios with values as high as 38.2 kW under the most challenging conditions. For those conditions it was shown that energy savings could reach as much as 90 %. Furthermore the refueling process was analyzed taking into account SAE J2061/2 limitations and an update was proposed. An alternative strategy was proposed such that the settings allow a higher flow rate to be associated with a given standard pressure ramp. This approach was designed to ensure that the maximum allowable pressure downstream of the pressure control valve as specified by the refueling protocol is reached exactly at the end of the refueling process. It has been observed that the adoption of this strategy has significant advantages. In the case of refueling with higher APPR refueling is about 20 s faster with a single tank with limited increases in temperature and pressure within it.
An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production
Jun 2024
Publication
This work studies the efficiency and long-term viability of powered hydrogen production. For this purpose a detailed exploration of hydrogen production techniques has been undertaken involving data collection information authentication data organization and analysis. The efficiency trends environmental impact and hydrogen production costs in a landscape marked by limited data availability were investigated. The main contribution of this work is to reduce the existing data gap in the field of hydrogen production by compiling and summarizing dispersed data. The findings are expected to facilitate the decision-making process by considering regional variations energy source availability and the potential for technological advancements that may further enhance the economic viability of electrolysis. The results show that hydrogen production methods can be identified that do not cause significant harm to the environment. Photolysis stands out as the least serious offender producing 0 kg of CO2 per kg of H2 while thermolysis emerges as the major contributor to emissions with 20 kg of CO2 per kg of H2 produced.
Evaluation of Significant Greenhouse Gas Emissions Reduction Using Hydrogen Fuel in a LFG/Diesel RCCI Engine
Jan 2024
Publication
The production of solid waste in human societies and the related environmental and global warming concerns are increasing. Extensive use of existing conventional diesel and dual-fuel engines also causes the production of high levels of greenhouse gases and aggravating the aforementioned concerns. Therefore the aim of this study is to reduce the greenhouse emissions in existing natural gas/diesel dual-fuel heavy-duty diesel engine. For this purpose changing the type of combustion to reactivity-controlled compression-ignition combustion and using landfill gas instead of natural gas in a dual-fuel engine were simultaneously implemented. Moreover a traditional method was used to evaluate the effect of variations in three important parameters on the engine's performance in order to determine the appropriate engine operating ranges. The simulation results indicate that although the consumption of 102000 cubic meters per year of natural gas in each cylinder is reduced only by replacing landfill gas the level of engine greenhouse gas emissions is too high compared to the relevant levels of emissions standards. Hence by keeping the total energy content of the fuels constant landfill gas enrichment with hydrogen was considered to reduce the engine emissions. The simulation results show that by increasing the hydrogen energy share up to 37% the engine load has the potential to be improved up to 7% without any exposure to diesel knock. However the downfall is the reduction in the gross indicated efficiency up to 3%. Meanwhile not only the fifth level of the European emission standard for nitrogen oxides and the sixth level of this standard for carbon monoxide can be achieved but it is also possible to overcome the high level of unburned methane as a drastic greenhouse gas and formaldehyde as a related carcinogenic species.
Renewable Hydrogen and Synthetic Fuels Versus Fossil Fuels for Trucking, Shipping and Aviation: A Holistic Cost Model
Aug 2023
Publication
Potential carbon neutrality of the global trucking shipping and aviation sectors by 2050 could be achieved by substituting fossil fuels with renewable hydrogen and synthetic fuels. To investigate the economic impact of fuel substitution over time a holistic cost model is developed and applied to three case studies in Norway an early adopter of carbon-neutral freight transport. The model covers the value chains from local electricity and fuel production (hydrogen ammonia Fischer–Tropsch e-fuel) to fuel consumption for long-haul trucking short-sea shipping and mid-haul aviation. The estimates are internally consistent and allow cross-mode and cross-fuel comparisons that set this work apart from previous studies more narrowly focused on a given transport mode or fuel. The model contains 150 techno-economic parameters to identify which components along the value chains drive levelized costs. This paper finds a cost reduction potential for renewable fuels of 41% to 68% until 2050 but carbon-neutral transport will suffer asymmetric cost disadvantages. Fuel substitution is most expensive in short-sea shipping followed by mid-haul aviation and long-haul trucking. Cost developments of electricity direct air capture of carbon vehicle expenses and fuel-related payload losses are significant drivers.
Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels
Apr 2024
Publication
The use of alternative fuels remains an important factor in solving the problem of reducing harmful substances caused by vehicles and decarbonising transport. It is also important to ensure the energy efficiency of vehicle power plants when using different fuels at a sufficient level. The article presents the results of theoretical and experimental studies of the conversion of diesel engine to alternative fuels with hydrogen admixtures. Methanol is considered as an alternative fuel which is a cheaper alternative to commercial diesel fuel. The chemical essence of improving the calorific value of alternative methanol fuel was investigated. Studies showed that the energy effect of burning an alternative mixture with hydrogen additives exceeds the effect of burning the same amount of methanol fuel. The increase in combustion energy and engine power is achieved as a result of heat from efficient use of the engine exhaust gases and chemical conversion of methanol. An experimental installation was created to study the work of a converted diesel engine on hydrogen–methanol mixtures and thermochemical regeneration processes. Experimental studies of the energy and environmental parameters of diesel engine converted to work on an alternative fuel with hydrogen admixtures have shown that engine power increases by 10–14% and emissions of harmful substances decrease.
Harnessing Enhanced Solar Efficiency for Green Hydrogen Production: A Comparative Analysis of PV and PV-T Systems
Dec 2024
Publication
Green hydrogen a critical element in the shift towards sustainable energy is traditionally produced by electrolysis powered by solar photovoltaic (PV) systems. This research explores the potential of underexploited photovoltaic thermal (PV-T) systems for efficient green hydrogen generation. This paper compares this advanced technology performance and economic viability against conventional PV setups. This paper uses TRNSYS simulation software to analyze two distinct solar-based hydrogen production configurations – PV and PV-T – across diverse climatic conditions in Doha Tunis and Stuttgart. The paper’s findings indicate that PV-T significantly outperforms PV in hydrogen generation across diverse climates (Doha Tunis Stuttgart). For instance in Doha PV-T systems increase hydrogen output by 78% in Tunis by 59% and in Stuttgart by 25%. An economic assessment reveals PV panels as the most cost-effective option with hydrogen production costs ranging from $4.92/kg to $9.66/kg across the studied locations. For PV-T collectors the hydrogen cost range from $6.66/kg to $16.80/kg across the studied locations. Nevertheless this research highlights the potential of PV-T technology to enhance the efficiency and economic viability of green hydrogen production. These findings offer valuable insights for policymakers investors and researchers pursuing more efficient solutions for sustainable energy.
An Optimization-Based Power-Following Energy Management Strategy for Hydrogen Fuel Cell Vehicles
Dec 2024
Publication
This paper presents an energy management algorithm based on an extended proportional integral derivative (PID) controller. To validate the proposed algorithm comprehensive simulation models were developed including a longitudinal dynamics-based vehicle model an ampere–hour integration-based power battery model a fuel cell model based on the Nernst equation and a hydrogen consumption model. An economic assessment was conducted through integrated simulation across all subsystems. The extended PID power regulation method was compared with the conventional power regulation method and the on–off power regulation method in a simulation environment using the China heavy-duty commercial vehicle test cycleB (CHTC-B) criterion. Additionally the power consumption of the lithium battery was converted into equivalent hydrogen consumption combining it with the hydrogen consumption of the fuel cell. The results showed that the extended PID strategy achieves an equivalent hydrogen consumption of 19.64 kg per 100 km compared to 20.41 kg for the traditional power–following strategy and 21.54 kg for the on–off strategy. Therefore the extended PID power–following strategy reduces equivalent hydrogen consumption by 8.8% compared to the on–off strategy and by 3.7% compared to the traditional power–following strategy.
Model-based Analysis and Optimization of Pressurised Alkaline Water Electrolysis Powered by Renewable Energy
Jul 2023
Publication
Alkaline water electrolysis is a key technology for large-scale hydrogen production. In this process safety and efficiency are among the most essential requirements. Hence optimization strategies must consider both aspects. While experimental optimization studies are the most accurate solution model-based approaches are more cost and time-efficient. However validated process models are needed which consider all important influences and effects of complete alkaline water electrolysis systems. This study presents a dynamic process model for a pressurized alkaline water electrolyzer consisting of four submodels to describe the system behavior regarding gas contamination electrolyte concentration cell potential and temperature. Experimental data from a lab-scale alkaline water electrolysis system was used to validate the model which could then be used to analyze and optimize pressurized alkaline water electrolysis. While steady-state and dynamic solutions were analyzed for typical operating conditions to determine the influence of the process variables a dynamic optimization study was carried out to optimize an electrolyte flow mode switching pattern. Moreover the simulation results could help to understand the impact of each process variable and to develop intelligent concepts for process optimization
Modelling of Fast Fueling of Pressurized Hydrogen Tanks for Maritime Applications
Apr 2023
Publication
This paper studies fast fueling of gaseous hydrogen into large hydrogen (H2) tanks suitable for maritime applications. Three modeling methods have been developed and evaluated: (1) Two-dimensional computational fluid dynamic (CFD) modeling (2) One-dimensional wall discretized modeling and (3) Zero-dimensional modeling. A detailed 2D CFD simulation of a small H2-tank was performed and validated with data from literature and then used to simulate a large H2-tank. Results from the 2D-model show non-uniform temperature distribution inside the large tank but not in the small H2-tank. The 1D-model can predict the mean temperature in small H2-tanks but not the inhomogeneous temperature field in large H2-tanks. The 0D-model is suitable as a screening tool to obtain rough estimates. Results from the modeling of the large H2-tank show that the heat transfer to the wall during fast filling is inhibited by heat conduction in the wall which leads to an unacceptably high mean hydrogen temperature.
2022 Hydrogen Supply Capacity and Demand
Mar 2022
Publication
Purpose: The purpose of the hydrogen supply and demand data stream is to provide an overview of the hydrogen market in Europe and to track industry’s progress in deploying clean hydrogen technologies. Scope: Data about hydrogen production capacity and consumption in EU countries together with Switzerland Norway Iceland and the United Kingdom. Hydrogen production capacity is presented by country and by production technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data reflecting end of 2020. Key Findings: The current hydrogen market (on both the demand and supply side) is dominated by refining and ammonia industries with four countries (DE NL PL ES) responsible for more than half of hydrogen consumption. Hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are currently insignificant with hydrogen produced from natural gas coupled with carbon capture at 0.42% and hydrogen produced from water electrolysis at 0.14% of total production capacity.
Selection Criteria and Ranking for Sustainable Hydrogen Production Options
Aug 2022
Publication
This paper aims to holistically study hydrogen production options essential for a sustainable and carbon-free future. This study also outlines the benefits and challenges of hydrogen production methods to provide sustainable alternatives to fossil fuels by meeting the global energy demand and net-zero targets. In this study sixteen hydrogen production methods are selected for sustainability investigation based on seven different criteria. The criteria selected in the comparative evaluation cover various dimensions of hydrogen production in terms of economic technical environmental and thermodynamic aspects for better sustainability. The current study results show that steam methane reforming with carbon capture could provide sustainable hydrogen in the near future while the other technologies’ maturity levels increase and the costs decrease. In the medium- and long-terms photonic and thermal-based hydrogen production methods can be the key to sustainable hydrogen production.
Techno-economic Analysis of Developing an Underground Hydrogen Storage Facility in Depleted Gas Field: A Dutch Case Study
Apr 2023
Publication
Underground hydrogen storage will be an essential part of the future hydrogen infrastructure to provide flexibility and security of supply. Storage in porous reservoirs should complement storage in salt caverns to be able to meet the projected high levels of required storage capacities. To assess its techno-economic feasibility a case study of hydrogen storage in a depleted gas field in the Netherlands is developed. Subsurface modelling is performed and various surface facility design concepts are investigated to calculate the levelized cost of hydrogen storage (LCOHS). Our base case with hydrogen as cushion gas results in an LCOHS of 0.79 EUR/kg (range of 0.58–1.04 EUR/kg). Increasing the number of full-cycle equivalents from 1 to 6 lowers the storage cost to 0.25 EUR/kg. The investment cost of the cushion gas represents 76% of the total cost. With nitrogen as cushion gas LCOHS is reduced to 0.49 EUR/kg (range of 0.42–0.56 EUR/kg).
Dispersion of Under-expanded Hydrogen-methane Blended Jets through a Circular Orifice
Sep 2023
Publication
Blending hydrogen into natural gas and using existing natural gas infrastructure provides energy storage greenhouse gas emission reduction from combustion and other benefits as the world transitions to a hydrogen economy. Though this seems to be a simple and attractive technique there is a dearth of existing safety codes and standards and understanding the safety implications is warranted before implementation. In this paper we present some preliminary findings on the dispersion characteristics of hydrogen-methane blends performed under controlled conditions inside a laboratory. Experiments were performed at two different upstream pressures of 5 and 10 bar as the blends dispersed into air through a 1 mm diameter orifice. Blends of 25 50 and 75 vol-% hydrogen in methane were tested. Spatially resolved Raman signals from hydrogen methane and nitrogen were acquired simultaneously at 10 Hz using separate ICCD cameras from which the individual concentrations and jet boundaries could be determined. Finally a comparison between dispersion characteristics of blended fuel jets with pure hydrogen and pure methane jets was made.
Concept Design and Energy Balance Optimization of a Hydrogen Fuel Cell Helicoptor for Unmanned Aerial Vehicle and Aerotaxi Applications
May 2023
Publication
In the new scenario where the transportation sector must be decarbonized to limit global warming fuel cellpowered aerial vehicles have been selected as a strategic target application to compose part of the urban fleet to minimize road transport congestion and make goods and personal transportation fast and efficient. To address the necessity of clean and efficient urban air transport this work consists of the conceptual development of a lightweight rotary-winged transport vehicle using a hydrogen-based fuel cell propulsion system and the optimization of its energy balance. For that purpose the methods for integrating the coupled aerodynamic and propulsion system sizing and optimization was developed with the aim of designing concepts capable of carrying 0 (unmanned aerial vehicle — Design 1) and 1 (Aerotaxi — Design 2) passengers for a distance of 300 km at a cruise altitude of 500 m with a minimum climbing rate capability of 6 m s−1 at 1000 m. The results show how these designs with the desired performance specifications can be obtained with a vehicle mass ranging from 416 to 648 kg depending on the application and with specific range and endurance respectively within 46.2–47.8 km/kg and 20.4–21.3 min/kg for design 1 and 33.3–33.8 km/kg and 12.5–13.9 min/kg for design 2.
Balancing Electricity Supply and Demand in a Carbon-Neutral Northern Europe
Apr 2023
Publication
This work investigates how to balance the electricity supply and demand in a carbon-neutral northern Europe. Applying a cost-minimizing electricity system model including options to invest in eleven different flexibility measures and cost-efficient combinations of strategies to manage variations were identified. The results of the model were post-processed using a novel method to map the net load before and after flexibility measures were applied to reveal the contribution of each flexibility measure. The net load was mapped in the space spanned by the amplitude duration and number of occurrences. The mapping shows that depending on cost structure flexibility measures contribute to reduce the net load in three different ways; (1) by reducing variations with a long duration but low amplitude (2) by reducing variations with a high amplitude but short duration and low occurrence or (3) by reducing variations with a high amplitude short duration and high occurrence. It was found that cost-efficient variation management was achieved by combining wind and solar power and by combining strategies (1–3) to manage the variations. The cost-efficient combination of strategies depends on electricity system context where electricity trade flexible hydrogen and heat production (1) manage the majority of the variations in regions with good conditions for wind power while stationary batteries (3) were the main contributors in regions with good conditions for solar power.
Biological Hydrogen Methanation with Carbon Dioxide Utilization: Methanation Acting as Mediator in the Hydrogen Economy
May 2023
Publication
Hydrogen is one of the main energy carriers playing a prominent role in the future decarbonization of the economy. However several aspects regarding the transport and storage of this gas are challenging. The intermediary conversion of hydrogen into high-density energy molecules may be a crucial step until technological conditions are ready to attain a significant reduction in fossil fuel use in transport and the industrial sector. The process of transforming hydrogen into methane by anaerobic digestion is reviewed showing that this technology is a feasible option for facilitating hydrogen storage and transport. The manuscript focuses on the role of anaerobic digestion as a technology driver capable of fast adaptation to current energy needs. The use of thermophilic systems and reactors capable of increasing the contact between the H2 -fuel and liquid phase demonstrated outstanding capabilities attaining higher conversion rates and increasing methane productivity. Pressure is a relevant factor of the process allowing for better hydrogen solubility and setting the basis for considering feasible underground hydrogen storage concomitant with biological methanation. This feature may allow the integration of sequestered carbon dioxide as a relevant substrate.
Establishment of Austria’s First Regional Green Hydrogen Economy: WIVA P&G HyWest
Apr 2023
Publication
The regional parliament of Tyrol in Austria adopted the climate energy and resources strategy “Tyrol 2050 energy autonomous” in 2014 with the aim to become climate neutral and energy autonomous. “Use of own resources before others do or have to do” is the main principle within this long-term strategic approach in which the “power on demand” process is a main building block and the “power-to-hydrogen” process covers the intrinsic lack of a long-term large-scale storage of electricity. Within this long-term strategy the national research and development (R&D) flagship project WIVA P&G HyWest (ongoing since 2018) aims at the establishment of the first sustainable business-case-driven regional green hydrogen economy in central Europe. This project is mainly based on the logistic principle and is a result of synergies between three ongoing complementary implementation projects. Among these three projects to date the industrial research within “MPREIS Hydrogen” resulted in the first green hydrogen economy. One hydrogen truck is operational as of January 2023 in the region of Tyrol for food distribution and related monitoring studies have been initiated. To fulfil the logistic principle as the main outcome another two complementary projects are currently being further implemented.
Global Demand Analysis for Carbon Dioxide as Raw Material from Key Industrial Sources and Direct Air Capture to Produce Renewable Electricity-based Fuels and Chemicals
Sep 2022
Publication
Defossilisation of the current fossil fuels dominated global energy system is one of the key goals in the upcoming decades to mitigate climate change. Sharp reduction in the costs of solar photovoltaics wind power and battery technologies enables a rapid transition of the power and some segments of the transport sectors to sustainable energy resources. However renewable electricity-based fuels and chemicals are required for the defossilisation of hard-to-abate segments of transport and industry. The global demand for carbon dioxide as raw material for the production of e-fuels and e-chemicals during a global energy transition to 100% renewable energy is analysed in this research. Carbon dioxide capture and utilisation potentials from key industrial point sources including cement mills pulp and paper mills and waste incinerators are evaluated. According to this study’s estimates the demand for carbon dioxide increases from 0.6 in 2030 to 6.1 gigatonnes in 2050. Key industrial point sources can potentially supply 2.1 gigatonnes of carbon dioxide and thus meet the majority of the demand in the 2030s. By 2050 however direct air capture is expected to supply the majority of the demand contributing 3.8 gigatonnes of carbon dioxide annually. Sustainable and unavoidable industrial point sources and direct air capture are vital technologies which may help the world to achieve ambitious climate goals.
A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen
Mar 2023
Publication
Carbon dioxide (CO2 ) and hydrogen (H2 ) are essential energy vectors in the green energy transition. H2 is a fuel produced by electrolysis and is applied in heavy transportation where electrification is not feasible yet. The pollutant substance CO2 is starting to be captured and stored in different European locations. In Denmark the energy vision aims to use this CO2 to be reacted with H2 producing green methanol. Typically the production units are not co-located with consumers and thus the required transportation infrastructure is essential for meeting supply and demand. This work presents a novel scheme to allocate the transportation costs of CO2 and H2 in pipeline networks which can be applied to any network topology and with any allocation method. During the tariff formation process coordinated adjustments are made by the novel scheme on the original tariffs produced by the allocation method employed considering the location of each customer connected to pipeline network. Locational tariffs are provided as result and the total revenue recovery is guaranteed to the network owner. Considering active customers the novel scheme will lead to a decrease of distant pipeline flows thereby contributing to the prevention of bottlenecks in the transportation network. Thus structural reinforcements can be avoided reducing the total transportation cost paid by all customers in the long-term.
Research on Multi-market Strategies for Virtual Power Plants with Hydrogen Energy Storage
Oct 2023
Publication
As the main body of resource aggregation Virtual Power Plant (VPP) not only needs to participate in the external energy market but also needs to optimize the management of internal resources. Different from other energy storage hydrogen energy storage systems can participate in the hydrogen market in addition to assuming the backup supplementary function of electric energy. For the Virtual Power Plant Operator (VPPO) it needs to optimize the scheduling of internal resources and formulate bidding strategies for the electric-hydrogen market based on external market information. In this study a two-stage model is constructed considering the internal and external interaction mechanism. The first stage model optimizes the operation of renewable energy flexible load extraction storage and hydrogen energy storage system based on the complementary characteristics of internal resources; the second stage model optimizes the bidding strategy to maximize the total revenue of the electricity energy market auxiliary service market and hydrogen market. Finally a typical scenario is constructed and the rationality and effectiveness of the strategy are verified. The results show that the hybrid VPP with hydrogen storage has better economic benefits resource benefits and reliability.
Public Facing Safety and Education for Hydrogen Fueling Infrastructure
Sep 2023
Publication
Building safe and convenient fuelling stations is key to deploying the arrival of commercial/public-use fuel cell electric vehicles (FCEVs). As the most public-facing hydrogen applications second only to the FCEVs hydrogen stations are an efficient tool to educate the public about hydrogen safety and normalize its use to fill up our vehicles. However as an emerging technology it is the industry’s responsibility to ensure that fuelling infrastructures are designed and maintained in accordance with established safety standards and thus that the fuelling process is inherently safe for all users. On the other end it is essential that consumers have all the necessary information at reach to help them feel safe while fuelling their zero-emission vehicles.<br/>This paper will provide a snapshot of the safety systems used to help protect members of the public using hydrogen fueling stations as well as the information used to educate people using this equipment. This will cover the different processes involved in hydrogen fueling stations the dangers that are present to customers and members of the public at these sites and the engineering design choices and equipment used to mitigate these dangers or prevent them from happening. Finally this paper will discuss the crucial role of understanding the dangers of hydrogen at a public level and showing the importance of educating the public about hydrogen infrastructure so that people will feel comfortable using it in their everyday lives.
Mathematical Model for the Placement of Hydrogen Refueling Stations to Support Future Fuel Cell Trucks
Nov 2021
Publication
Fuel cell- and electric-powered trucks are promising technologies for zero-emission heavyduty transportation. Recently Fuel Cell Trucks (FCT) have gained wider acceptance as the technology of choice for long-distance trips due to their lighter weight and shorter fueling time than electric-powered trucks. Broader adoption of Fuel Cell Trucks (FCT) requires planning strategies for locating future hydrogen refueling stations (HRS) especially for fleets that transport freight along intercity and inter-country highways. Existing mathematical models of HRS placement often focus on inner-city layouts which make them inadequate when studying the intercity and intercountry FCT operation scale of FCT. Furthermore the same models rarely consider decentralized hydrogen production from renewable energy sources essential for decarbonizing the transportation sector. This paper proposes a mathematical model to guide the planning of the hydrogen infrastructure to support future long-haul FCTs. First the model uses Geographic Information System (GIS) data to determine the HRS’s optimal number and location placement. Then the model categorizes and compares potential hydrogen production sources including off-site delivery and on-site solar-to-hydrogen production. The proposed model is illustrated through a case study of the west coastal area of the United States (from Baja California Mexico to British Columbia Canada). Different geospatial scenarios were tested ranging from the current operational distance of FCEV (250km) and future releases of hydrogen FCT (up to 1500km). Results highlight the capabilities of the model in identifying the number and location of the HRS based on operation distances in addition to determining the optimal hydrogen production technology for each HRS. The findings also confirm the viability of green hydrogen production through solar energy which could play a critical role in a low-carbon transportation future.
Advanced Testing Methods for Proton Exchange Membrane Electrolysis Stacks
Jun 2024
Publication
Research on proton exchange membrane water electrolysis for renewable hydrogen production is rapidly advancing worldwide driven by the imperative to reduce costs and enhance efficiency through development of novel materials. However to effectively evaluate and validate these advancements standardized testing methods are essential extending beyond single-cell analysis to encompass stack-level characterization. This paper proposes comprehensive characterization methods tailored for analysis of electrolysis stacks and their performance characteristics. Each method is introduced with a focus on its practical applicability accompanied by detailed procedural guidelines for implementation. Furthermore variations within each method are discussed offering possibilities for gathering additional insights. Presenting a portfolio of different methods ranging from standard to advanced techniques applicable at the stack level the paper showcases results obtained through their application. These results normalized to cell area demonstrate the significance of each method in obtaining stack characteristics crucial for informed design de cisions on material selection and subsequent integration into electrolysis systems. By illustrating results derived from various stacks this study contributes valuable insights for evaluating design material suitability and operational performance thereby advancing the development and deployment of proton exchange membrane water electrolysis technology for sustainable hydrogen production.
Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures
Apr 2023
Publication
Currently the issue of creating decarbonized energy systems in various spheres of life is acute. Therefore for gas turbine power systems including hybrid power plants with fuel cells it is relevant to transfer the existing engines to pure hydrogen or mixtures of hydrogen with natural gas. However significant problems arise associated with the possibility of the appearance of flashback zones and acoustic instability of combustion an increase in the temperature of the walls of the flame tubes and an increase in the emission of nitrogen oxides in some cases. This work is devoted to improving the efficiency of gas turbine power systems by combusting pure hydrogen and mixtures of natural gas with hydrogen. The organization of working processes in the premixed combustion chamber and the combustion chamber with a sequential injection of ecological and energy steam for the “Aquarius” type power plant is considered. The conducted studies of the basic aerodynamic and energy parameters of a gas turbine combustor working on hydrogen-containing gases are based on solving the equations of conservation and transfer in a multicomponent reacting system. A four-stage chemical scheme for the burning of a mixture of natural gas and hydrogen was used which allows for the rational parameters of environmentally friendly fuel burning devices to be calculated. The premixed combustion chamber can only be recommended for operations on mixtures of natural gas with hydrogen with a hydrogen content not exceeding 20% (by volume). An increase in the content of hydrogen leads to the appearance of flashback zones and fuel combustion inside the channels of the swirlers. For the combustion chamber of the combined-cycle power plant “Vodoley” when operating on pure hydrogen the formation of flame flashback zones does not occur.
Hydrogen Fuel Quality from Two Main Production Processes: Steam Methane Reforming and Proton Exchange Membrane Water Electrolysis
Oct 2019
Publication
Thomas Bacquart,
Karine Arrhenius,
Stefan Persijn,
Andrés Rojo,
Fabien Auprêtre,
Bruno Gozlan,
Abigail Morris,
Andreas Fischer,
Arul Murugan,
Sam Bartlett,
Niamh Moore,
Guillaume Doucet,
François Laridant,
Eric Gernot,
Teresa E. Fernandez,
Concepcion Gomez,
Martine Carré,
Guy De Reals and
Frédérique Haloua
The absence of contaminants in the hydrogen delivered at the hydrogen refuelling station is critical to ensure the length life of FCEV. Hydrogen quality has to be ensured according to the two international standards ISO 14687–2:2012 and ISO/DIS 19880-8. Amount fraction of contaminants from the two hydrogen production processes steam methane reforming and PEM water electrolyser is not clearly documented. Twenty five different hydrogen samples were taken and analysed for all contaminants listed in ISO 14687-2. The first results of hydrogen quality from production processes: PEM water electrolysis with TSA and SMR with PSA are presented. The results on more than 16 different plants or occasions demonstrated that in all cases the 13 compounds listed in ISO 14687 were below the threshold of the international standards. Several contaminated hydrogen samples demonstrated the needs for validated and standardised sampling system and procedure. The results validated the probability of contaminants presence proposed in ISO/DIS 19880-8. It will support the implementation of ISO/ DIS 19880-8 and the development of hydrogen quality control monitoring plan. It is recommended to extend the study to other production method (i.e. alkaline electrolysis) the HRS supply chain (i.e. compressor) to support the technology growth.
Application of Passive Autocatalytic Recombiners for Hydrogen Mitigation: 2D Numerical Modeling and Experimental Validation
Sep 2023
Publication
The widespread production and use of hydrogen (H2) requires safe handling due to its wide range of flammability and low ignition energy. In confined and semi-confined areas such as garages and tunnels a hydrogen leak will create a potential accumulation of flammable gases. Hence forced ventilation is required in such confined spaces to prevent hydrogen hazards. However this practice may incur higher operating costs and could become ineffective during a power outage. Passive Autocatalytic Recombiners (PARs) are defined as safety devices for preventing hydrogen accumulation in confined spaces. PARs have been widely adopted for hydrogen mitigation in nuclear containment buildings in worst case accident scenarios where forced ventilation is not feasible. PARs are equipped with catalyst plates that self-start due to hydrogen reacting with oxygen at relatively low concentrations (<2 vol. % H2 in air). The heat generated from the reaction creates a self-sustained flow continuously supplying the catalyst surface with fresh hydrogen and oxygen. In this study a 2D transient numerical model has been developed in COMSOL Multiphysics to simulate the operation of PARs. The model was used to analyze the effect of surface reactions on the catalyst temperature flow dynamics self-start behaviour forced versus natural convective flow and steady-state hydrogen recombination rates. The model was also used to simulate carbon monoxide poisoning and its influence on the catalyst performance. Experimental data were used for model calibration and validation showing good agreement for different conditions. Overall the model provides novel insights into PARs operation such as radiation and poisoning effects on the catalyst plate. As a next step assessment of the effectiveness of PARs is underway to mitigate hydrogen hazards in selected confined and semi-confined areas including nuclear and non-nuclear applications.
An Approach for Sizing a PV-battery-electrolyzer-fuel cell Energy System: A Cast Study at a Field Lab
May 2023
Publication
Hydrogen is becoming increasingly popular as a clean secure and affordable energy source for the future. This study develops an approach for designing a PV–battery–electrolyzer–fuel cell energy system that utilizes hydrogen as a long-term storage medium and battery as a short-term storage medium. The system is designed to supply load demand primarily through direct electricity generation in the summer and indirect electricity generation through hydrogen in the winter. The sizing of system components is based on the direct electricity and indirect hydrogen demand with a key input parameter being the load sizing factor which determines the extent to which hydrogen is used to meet seasonal imbalance. Technical and financial indicators are used to assess the performance of the designed system. Simulation results indicate that the energy system can effectively balance the seasonal variation of renewable generation and load demand with the use of hydrogen. Additionally guidelines for achieving self-sufficiency and system sustainability for providing enough power in the following years are provided to determine the appropriate component size. The sensitivity analysis indicates that the energy system can achieve self-sufficiency and system sustainability with a proper load sizing factor from a technical perspective. From an economic perspective the levelized cost of energy is relatively high because of the high costs of hydrogen-related components at this moment. However it has great economic potential for future self-sufficient energy systems with the maturity of hydrogen technologies.
A Cost Comparison of Various Hourly-reliable and Net-zero Hydrogen Production Pathways in the United States
Nov 2023
Publication
Hydrogen (H2) as an energy carrier may play a role in various hard-to-abate subsectors but to maximize emission reductions supplied hydrogen must be reliable low-emission and low-cost. Here we build a model that enables direct comparison of the cost of producing net-zero hourly-reliable hydrogen from various pathways. To reach net-zero targets we assume upstream and residual facility emissions are mitigated using negative emission technologies. For the United States (California Texas and New York) model results indicate nextdecade hybrid electricity-based solutions are lower cost ($2.02-$2.88/kg) than fossil-based pathways with natural gas leakage greater than 4% ($2.73-$5.94/ kg). These results also apply to regions outside of the U.S. with a similar climate and electric grid. However when omitting the net-zero emission constraint and considering the U.S. regulatory environment electricity-based production only achieves cost-competitiveness with fossil-based pathways if embodied emissions of electricity inputs are not counted under U.S. Tax Code Section 45V guidance.
Purging Hydrogen Distribution Pipelines: Literature Review, Description of Recent Experiments and Proposed Future Work
Sep 2023
Publication
The aim of the H21 project is to undertake measurements analysis and field trials to support the safe repurposing of Great Britain’s natural gas distribution network for hydrogen. As part of this project work has been ongoing to identify aspects of existing natural gas procedures that will need to be modified for hydrogen and to support the development of new procedures. This has included a review of the scientific basis of current displacement purging practices analysis of the potential implications of switching from natural gas to hydrogen and experimental support work. The reduced density and viscosity of hydrogen means that minimum purging velocities should (in principle) be higher for hydrogen to avoid stratification and ensure adequate removal of the purged gas during pipeline purging operations. A complicating factor is the high molecular diffusivity of hydrogen (roughly three times that of natural gas) which causes hydrogen to mix over short distances more rapidly than natural gas. Current models for pipeline purging do not take into account the mixing effect related to molecular diffusion. The wider flammable limits lower ignition energy and greater potential for combustion to transition from deflagration to detonation with hydrogen means that indirect purging with nitrogen is currently being investigated for distribution pipelines. This paper reviews the ongoing analysis of hydrogen pipeline purging and discusses a potential future scientific programme of work aimed at developing a new pipeline purging model that accounts for molecular diffusion effects.
Simulating Offshore Hydrogen Production via PEM Electrolysis using Real Power Production Data from a 2.3 MW Floating Offshore Wind Turbine
Mar 2023
Publication
This work presents simulation results from a system where offshore wind power is used to produce hydrogen via electrolysis. Real-world data from a 2.3 MW floating offshore wind turbine and electricity price data from Nord Pool were used as input to a novel electrolyzer model. Data from five 31-day periods were combined with six system designs and hydrogen production system efficiency and production cost were estimated. A comparison of the overall system performance shows that the hydrogen production and cost can vary by up to a factor of three between the cases. This illustrates the uncertainty related to the hydrogen production and profitability of these systems. The highest hydrogen production achieved in a 31-day period was 17 242 kg using a 1.852 MW electrolyzer (i.e. utilization factor of approximately 68%) the lowest hydrogen production cost was 4.53 $/kg H2 and the system efficiency was in the range 56.1e56.9% in all cases.
Decarbonisation of Geographical Islands and the Feasibility of Green Hydrogen Production Using Excess Electricity
May 2023
Publication
Islands face limitations in producing and transporting energy due to their geographical constraints. To address this issue the ROBINSON project funded by the EU aims to create a flexible self-sufficient and environmentally friendly energy system that can be used on isolated islands. The feasibility of renewable electrification and heating system decarbonization of Eigerøy in Norway is described in this article. A mixed-integer linear programming framework was used for modelling. The optimization method is designed to be versatile and adaptable to suit individual scenarios with a flexible and modular formulation that can accommodate boundary conditions specific to each case. Onshore and offshore wind farms and utility-scale photovoltaic (PV) were considered to generate renewable electricity. Each option was found to be feasible under certain conditions. The heating system composed of a biomass gasifier a combined heat and power system with a gas boiler as backup unit was also analyzed. Parameters were identified in which the combination of all three thermal units represented the best system option. In addition the possibility of green hydrogen production based on the excess electricity from each scenario was evaluated.
No more items...