Publications
Integration of Battery and Hydrogen Energy Storage Systems with Small-scale Hydropower Plants in Off-grid Local Energy Communities
Apr 2024
Publication
The energy transition is pushing towards a considerable diffusion of local energy communities based on renewable energy systems and coupled with energy storage systems or energy vectors to provide independence from fossil fuels and limit carbon emissions. Indeed the variable and intermittent nature of renewables make them inadequate to satisfy the end-users’ electricity demand throughout the whole day; thus the study of energy storage systems considering their seasonal storage behaviour (e.g. energy-power coupling selfdischarge loss and minimum state of charge) is fundamental to guarantee the proper energy coverage. This work aims at identifying the off-grid operation of a local energy community powered by a 220 kW small-scale hydropower plant in the center of Italy using either a battery energy storage system or a hydrogen one with the Calliope framework. Results show that whereas the hydrogen storage system is composed of a 137 kW electrolyser a 41 kW fuel cell and a storage of 5247 kgH2 a battery system storage system would have a capacity of 280 MWh. Even though the battery storage has a better round-trip efficiency its self-discharge loss and minimum state of charge limitation involve a discharging phase with a steeper slope thus requiring considerable economic investments because of the high energy-to-power ratio.
System Dynamic Model for the Accumulation of Renewable Electricity using Power-to-Gas and Power-to-Liquid Concepts
Feb 2016
Publication
When the renewable energy is used the challenge is match the supply of intermittent energy with the demand for energy therefore the energy storage solutions should be used. This paper is dedicated to hydrogen accumulation from wind sources. The case study investigates the conceptual system that uses intermitted renewable energy resources to produce hydrogen (power-to-gas concept) and fuel (power-to-liquid concept). For this specific case study hydrogen is produced from surplus electricity generated by wind power plant trough electrolysis process and fuel is obtained by upgrading biogas to biomethane using hydrogen. System dynamic model is created for this conceptual system. The developed system dynamics model has been used to simulate 2 different scenarios. The results show that in both scenarios the point at which the all electricity needs of Latvia are covered is obtained. Moreover the methodology of system dynamics used in this paper is white-box model that allows to apply the developed model to other case studies and/or to modify model based on the newest data. The developed model can be used for both scientific research and policy makers to better understand the dynamic relation within the system and the response of system to changes in both internal and external factors.
Advances in Hydrogen Storage Materials: Harnessing Innovative Technology, from Machine Learning to Computational Chemistry, for Energy Storage Solutions
Mar 2024
Publication
The demand for clean and sustainable energy solutions is escalating as the global population grows and economies develop. Fossil fuels which currently dominate the energy sector contribute to greenhouse gas emissions and environmental degradation. In response to these challenges hydrogen storage technologies have emerged as a promising avenue for achieving energy sustainability. This review provides an overview of recent advancements in hydrogen storage materials and technologies emphasizing the importance of efficient storage for maximizing hydrogen’s potential. The review highlights physical storage methods such as compressed hydrogen (reaching pressures of up to 70 MPa) and material-based approaches utilizing metal hydrides and carboncontaining substances. It also explores design considerations computational chemistry high-throughput screening and machine-learning techniques employed in developing efficient hydrogen storage materials. This comprehensive analysis showcases the potential of hydrogen storage in addressing energy demands reducing greenhouse gas emissions and driving clean energy innovation.
Performance Analysis of a Stand-alone Integrated Solar Hydrogen Energy System for Zero Energy Buildings
Oct 2022
Publication
This study analyzes the optimal sizing design of a stand-alone solar hydrogen hybrid energy system for a house in Afyon Turkey. The house is not connected to the grid and the proposed hybrid system meets all its energy demands; therefore it is considered a zero-energy building. The designed system guarantees uninterrupted and reliable power throughout the year. Since the reliability of the power supply is crucial for the house optimal sizing of the components photovoltaic (PV) panels electrolyzer storage tank and fuel cell stack is critical. Determining the sufficient number of PV panels suitable electrolyzer model and size number of fuel cell stacks and the minimum storage tank volume to use in the proposed system can guarantee an uninterrupted energy supply to the house. In this study a stand-alone hybrid energy system is proposed. The system consists of PV panels a proton exchange membrane (PEM) electrolyzer a storage tank and a PEM fuel cell stack. It can meet the continuous energy demand of the house is sized by using 10 min of averaged solar irradiation and temperature data of the site and consumption data of the house. Present results show that the size of each component in a solar hydrogen hybrid energy system in terms of power depends on the size of each other components to meet the efficiency requirement of the whole system. Choosing the nominal electrolyzer power is critical in such energy systems
The Cost Dynamics of Hydrogen Supply in Future Energy systems - A Techno-economic Study
Nov 2022
Publication
This work aims to investigate the time-resolved cost of electrolytic hydrogen in a future climate-neutral electricity system with high shares of variable renewable electricity generation in which hydrogen is used in the industry and transport sectors as well as for time-shifting electricity generation. The work applies a techno-economic optimization model which incorporates both exogenous (industry and transport) and endogenous (time-shifting of electricity generation) hydrogen demands to elucidate the parameters that affect the cost of hydrogen. The results highlight that several parameters influence the cost of hydrogen. The strongest influential parameter is the cost of electricity. Also important are cost-optimal dimensioning of the electrolyzer and hydrogen storage capacities as these capacities during certain periods limit hydrogen production thereby setting the marginal cost of hydrogen. Another decisive factor is the nature of the hydrogen demand whereby flexibility in the hydrogen demand can reduce the cost of supplying hydrogen given that the demand can be shifted in time. In addition the modeling shows that time-shifting electricity generation via hydrogen production with subsequent reconversion back to electricity plays an important in the climate-neutral electricity system investigated decreasing the average electricity cost by 2%–16%. Furthermore as expected the results show that the cost of hydrogen from an off-grid island-mode-operated industry is more expensive than the cost of hydrogen from all scenarios with a fully interconnected electricity system.
A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy
Oct 2022
Publication
Hydrogen is acknowledged as a potential and appealing energy carrier for decarbonizing the sectors that contribute to global warming such as power generation industries and transportation. Many people are interested in employing low-carbon sources of energy to produce hydrogen by using water electrolysis. Additionally the intermittency of renewable energy supplies such as wind and solar makes electricity generation less predictable potentially leading to power network incompatibilities. Hence hydrogen generation and storage can offer a solution by enhancing system flexibility. Hydrogen saved as compressed gas could be turned back into energy or utilized as a feedstock for manufacturing building heating and automobile fuel. This work identified many hydrogen production strategies storage methods and energy management strategies in the hybrid microgrid (HMG). This paper discusses a case study of a HMG system that uses hydrogen as one of the main energy sources together with a solar panel and wind turbine (WT). The bidirectional AC-DC converter (BAC) is designed for HMGs to maintain power and voltage balance between the DC and AC grids. This study offers a control approach based on an analysis of the BAC’s main circuit that not only accomplishes the function of bidirectional power conversion but also facilitates smooth renewable energy integration. While implementing the hydrogen-based HMG the developed control technique reduces the reactive power in linear and non-linear (NL) loads by 90.3% and 89.4%.
The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context
Jan 2023
Publication
The Italian National Recovery and Resilience Plan (NRRP) includes among other measures investments in hydrogen vehicle refuelling stations intending to promote the use of fuel cell electric vehicles (FCEVs) for long-haul freight transport. This paper evaluates the impact that this action could have on CO2 emissions and fuel consumption focusing on a case study of the Campania region. The proposed approach which can also be transferred to other geographical contexts requires the implementation of a freight road transport simulation model; this model is based on the construction of a supply model the estimation of road freight demand and an assignment procedure for computing traffic flows. This study covers the period from 2025 to 2040 according to the forecasts of the NRRP and some assumptions on the action effects; moreover it is assumed that hydrogen is entirely produced from renewable sources (green hydrogen). The key findings from three different scenarios show that savings between 423832 and 778538 tonnes of CO2 and between 144 and 264 million litres of diesel could be obtained.
Innovative Combustion Analysis of a Micro-gas Turbine Burner Supplied with Hydrogen-natural Gas Mixtures
Sep 2017
Publication
The author discusses in this paper the potential of a micro gas turbine (MGT) combustor when operated under unconventional fuel supplied. The combustor of C30 gas turbine is a reverse flow annular combustor. The CFD analysis of the reacting flow is performed with the 3D ANSYS-FLUENT solver. Specific computational experiments refer to the use of hydrogen – natural gas mixtures in order to define the optimal conditions for pilot and main injections in terms of combustion stability and NOx production. The author's methodology relies on an advanced CFD approach that compares different schemes like eddy dissipation concept together with the flamelet- PDF based approach coupled with an accurate study of the turbulent chemistry interaction. Extended kinetic mechanisms are also included in the combustion model. Some test cases are examined to make a comparison of combustion stability and efficiency and pollutant production with high hydrogen / natural gas ratios.
Renewable-based Zero-carbon Fuels for the Use of Power Generation: A Case Study in Malaysia Supported by Updated Developments Worldwide
Apr 2021
Publication
The existing combustion-centered energy mix in Malaysia has shown that replacing fossil fuels with zero-carbon alternative fuels could be a better approach to achieve the reduction of the carbon footprint of the power generation industry. In this study the potential of zero-carbon alternative fuels generated from renewable sources such as green hydrogen and green ammonia was addressed in terms of the production transport storage and utilization in Malaysia’s thermal power plants. The updated developments associated to green hydrogen and green ammonia across the globe have also been reviewed to support the existing potential in Malaysia. Though green hydrogen and green ammonia are hardly commercialized in Malaysia for the time being numerous potentialities have been identified in utilizing these fuels to achieve the zero-carbon power generation market in Malaysia. The vast and strategic location of natural gas network in Malaysia has the potential to deliver green hydrogen with minimal retrofitting required. Moreover there are active participation of Malaysia’s academic institutions in the development of water electrolysis that is the core process to convert the electricity from renewables plant into hydrogen. Malaysia also has the capacity to use its abundance of depleted gas reservoirs for the storage of green hydrogen. A large number of GT plants in Malaysia would definitely have the potential to utilize hydrogen co-firing with natural gas to minimize the amount of carbon dioxide (CO2) released. The significant number of ammonia production plants in Malaysia could provide a surplus of ammonia to be used as an alternative fuel for power plants. With regard to the energy policy in Malaysia positive acceptance of the implementation of renewable energy has been shown with the introduction of various energy policies aimed at promoting the incorporation of renewables into the energy mix. However there is still inadequate support for the implementation of alternative zero-carbon fuels in Malaysia.
A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines
Mar 2023
Publication
The shipping industry has reached a higher level of maturity in terms of its knowledge and awareness of decarbonization challenges. Carbon-free or carbon-neutralized green fuel such as green hydrogen green ammonia and green methanol are being widely discussed. However little attention has paid to the green fuel pathway from renewable energy to shipping. This paper therefore provides a review of the production methods for green power (green hydrogen green ammonia and green methanol) and analyzes the potential of green fuel for application to shipping. The review shows that the potential production methods for green hydrogen green ammonia and green methanol for the shipping industry are (1) hydrogen production from seawater electrolysis using green power; (2) ammonia production from green hydrogen + Haber–Bosch process; and (3) methanol production from CO2 using green power. While the future of green fuel is bright in the short term the costs are expected to be higher than conventional fuel. Our recommendations are therefore as follows: improve green power production technology to reduce the production cost; develop electrochemical fuel production technology to increase the efficiency of green fuel production; and explore new technology. Strengthening the research and development of renewable energy and green fuel production technology and expanding fuel production capacity to ensure an adequate supply of low- and zero-emission marine fuel are important factors to achieve carbon reduction in shipping.
Water Electrolysis and Hydrogen in the European Union
Nov 2022
Publication
Renewable and low carbon hydrogen is both an energy carrier able to produce other fuels and downstream products such as the e-fuels or e-ammonia and a decarbonised gas produced through renewable electricity. It has the potential to decarbonise hard to abate sectors which are difficult to directly electrify and play a crucial role in achieving net zero emissions target in 2050. The European Commission has recently outlined the policy context and necessary actions for the development and deployment of renewable and low carbon hydrogen within the 2030 time horizon with the Hydrogen Strategy for a Climate Neutral Europe Communication (the Hydrogen Strategy). The REPowerEU Communication4 has further addressed the joint EU and Member State actions needed in the context of the crisis triggered by the invasion of Ukraine in February 2022 and the necessity to phase out dependence on Russian supplies. The EC has strengthened the policy narrative around hydrogen and increased objectives for a pan European framework accelerating and upscaling the production of RES and low-carbon hydrogen. The main objectives and actions of the REPowerEU Plan which build on the Hydrogen Strategy are the deployment of several tens of GW of electrolyser capacity and the production and imports of 10 Mt and 10 Mt respectively of renewable hydrogen by 2030. Currently the most mature and promising green hydrogen production technology is water electrolysis. The main technologies5 considered in this report are: Alkaline electrolysis Polymer Exchange Membrane (PEM) electrolysis Solid Oxide electrolysis and Anion Exchange Membrane electrolysers (AEM).
The Direct Reduction of Iron Ore with Hydrogen
Aug 2022
Publication
The steel industry represents about 7% of the world’s anthropogenic CO2 emissions due to the high use of fossil fuels. The CO2 -lean direct reduction of iron ore with hydrogen is considered to offer a high potential to reduce CO2 emissions and this direct reduction of Fe2O3 powder is investigated in this research. The H2 reduction reaction kinetics and fluidization characteristics of fine and cohesive Fe2O3 particles were examined in a vibrated fluidized bed reactor. A smooth bubbling fluidization was achieved. An increase in external force due to vibration slightly increased the pressure drop. The minimum fluidization velocity was nearly independent of the operating temperature. The yield of the direct H2 -driven reduction was examined and found to exceed 90% with a maximum of 98% under the vibration of ~47 Hz with an amplitude of 0.6 mm and operating temperatures close to 500 ◦C. Towards the future of direct steel ore reduction cheap and “green” hydrogen sources need to be developed. H2 can be formed through various techniques with the catalytic decomposition of NH3 (and CH4 ) methanol and ethanol offering an important potential towards production cost yield and environmental CO2 emission reductions.
Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen
Jan 2022
Publication
Effective global decarbonization will require an array of solutions across a portfolio of low-carbon resources. One such solution is developing clean hydrogen. This unique fuel has the potential to minimize climate change impacts helping decarbonize hard-to-abate sectors such as heavy industry and global transport while also promoting energy security sustainable growth and job creation. The authors estimate suggest that hydrogen needs to grow seven-fold to support the global energy transition eventually accounting for ten percent of total energy consumption by 2050. A scaleup of this magnitude will increase demand for materials such as aluminum copper iridium nickel platinum vanadium and zinc to support hydrogen technologies - renewable electricity technologies and the electrolyzers for renewable hydrogen carbon storage for low-carbon hydrogen or fuel cells using hydrogen to power transport. This report a joint product of the World Bank and the Hydrogen Council examines these three critical areas. Using new data on the material intensities of key technologies the report estimates the amount of critical minerals needed to scale clean hydrogen. In addition it shows how incorporating sustainable practices and policies for mining and processing materials can help minimize environmental impacts. Key among these approaches is the use of recycled materials innovations in design in order to reduce material intensities and adoption of policies from the Climate Smart Mining (CSM) Framework to reduce impacts to greenhouse gas emissions and water footprint.
Revolutionising Energy Storage: The Latest Breakthrough in Liquid Organic Hydrogen Carriers
Mar 2024
Publication
Liquid organic hydrogen carriers (LOHC) can be used as a lossless form of hydrogen storage at ambient conditions. The storage cycle consists of the exothermic hydrogenation of a hydrogen-lean molecule at the start of the transport usually the hydrogen production site becoming a hydrogen-rich molecule. This loaded molecule can be transported long distances or be used as long-term storage due to its ability to not lose hydrogen over long periods of time. At the site or time of required hydrogen production the hydrogen can be released through an endothermic dehydrogenation reaction. LOHCs show similar properties to crude oils such as petroleum and diesel allowing easy handling and possibilities of integration with current infrastructure. Using this background this paper reviews a variety of aspects of the LOHC life cycle with a focus on currently studied materials. Important factors such as the hydrogenation and dehydrogenation requirements for each material are analysed to determine their ability to be used in current scenarios. Toluene and dibenzyltoluene are attractive options with promising storage attributes however their dehydrogenation enthalpies remain a problem. The economic feasibility of LOHCs being used as a delivery device were briefly analysed. LOHCs have been shown to be the cheapest option for long distance transport (>200 km) and are cheaper than most at shorter distances in terms of specifically transport costs. The major capital cost of an LOHC delivery chain remains the initial investment for the raw materials and the cost of equipment for performing hydrogenation and dehydrogenation. Finally some studies in developing the LOHC field were discussed such as microwave enhancing parts of the process and mixing LOHCs to acquire more advantageous properties.
Solar–Hydrogen Storage System: Architecture and Integration Design of University Energy Management Systems
May 2024
Publication
As a case study on sustainable energy use in educational institutions this study examines the design and integration of a solar–hydrogen storage system within the energy management framework of Kangwon National University’s Samcheok Campus. This paper provides an extensive analysis of the architecture and integrated design of such a system which is necessary given the increasing focus on renewable energy sources and the requirement for effective energy management. This study starts with a survey of the literature on hydrogen storage techniques solar energy storage technologies and current university energy management systems. In order to pinpoint areas in need of improvement and chances for progress it also looks at earlier research on solar–hydrogen storage systems. This study’s methodology describes the system architecture which includes fuel cell integration electrolysis for hydrogen production solar energy harvesting hydrogen storage and an energy management system customized for the needs of the university. This research explores the energy consumption characteristics of the Samcheok Campus of Kangwon National University and provides recommendations for the scalability and scale of the suggested system by designing three architecture systems of microgrids with EMS Optimization for solar–hydrogen hybrid solar–hydrogen and energy storage. To guarantee effective and safe functioning control strategies and safety considerations are also covered. Prototype creation testing and validation are all part of the implementation process which ends with a thorough case study of the solar–hydrogen storage system’s integration into the university’s energy grid. The effectiveness of the system its effect on campus energy consumption patterns its financial sustainability and comparisons with conventional energy management systems are all assessed in the findings and discussion section. Problems that arise during implementation are addressed along with suggested fixes and directions for further research—such as scalability issues and technology developments—are indicated. This study sheds important light on the viability and efficiency of solar–hydrogen storage systems in academic environments particularly with regard to accomplishing sustainable energy objectives.
Skilling the Green Hydrogen Economy: A Case Study from Australia
Feb 2023
Publication
This paper explores the skills landscape of the emerging green hydrogen industry in Australia drawing on data collected from a study that gathered insights on training gaps from a range of hydrogen industry participants. A total of 41 industry participants completed a survey and 14 of those survey respondents participated in industry consultations. The findings revealed widespread perceptions of training and skilling as being very important to the industry but under-provisioned across the sector. Data were analysed to consider the problem of skilling the green hydrogen industry and the barriers and enablers as perceived by industry stakeholders. In this paper we argue that urgent cross-sector attention needs to be paid to hydrogen industry training and skill development systems in Australia if the promise of green hydrogen as a clean energy source is to be realised.
Hydrogen-Powered Aviation—Design of a Hybrid-Electric Regional Aircraft for Entry into Service in 2040
Mar 2023
Publication
Over the past few years the rapid growth of air traffic and the associated increase in emissions have created a need for sustainable aviation. Motivated by these challenges this paper explores how a 50-passenger regional aircraft can be hybridized to fly with the lowest possible emissions in 2040. In particular the use of liquid hydrogen in this aircraft is an innovative power source that promises to reduce CO2 and NOx emissions to zero. Combined with a fuel-cell system the energy obtained from the liquid hydrogen can be used efficiently. To realize a feasible concept in the near future considering the aspects of performance and security the system must be hybridized. In terms of maximized aircraft sustainability this paper analyses the flight phases and ground phases resulting in an aircraft design with a significant reduction in operating costs. Promising technologies such as a wingtip propeller and electric green taxiing are discussed in this paper and their potential impacts on the future of aviation are highlighted. In essence the hybridization of regional aircraft is promising and feasible by 2040; however more research is needed in the areas of fuel-cell technology thermal management and hydrogen production and storage.
Comparative TCO Analysis of Battery Electric and Hydrogen Fuel Cell Buses for Public Transport System in Small to Midsize Cities
Jul 2021
Publication
This paper shows the results of an in-depth techno-economic analysis of the public transport sector in a small to midsize city and its surrounding area. Public battery-electric and hydrogen fuel cell buses are comparatively evaluated by means of a total cost of ownership (TCO) model building on historical data and a projection of market prices. Additionally a structural analysis of the public transport system of a specific city is performed assessing best fitting bus lines for the use of electric or hydrogen busses which is supported by a brief acceptance evaluation of the local citizens. The TCO results for electric buses show a strong cost decrease until the year 2030 reaching 23.5% lower TCOs compared to the conventional diesel bus. The optimal electric bus charging system will be the opportunity (pantograph) charging infrastructure. However the opportunity charging method is applicable under the assumption that several buses share the same station and there is a “hotspot” where as many as possible bus lines converge. In the case of electric buses for the year 2020 the parameter which influenced the most on the TCO was the battery cost opposite to the year 2030 in where the bus body cost and fuel cost parameters are the ones that dominate the TCO due to the learning rate of the batteries. For H2 buses finding a hotspot is not crucial because they have a similar range to the diesel ones as well as a similar refueling time. H2 buses until 2030 still have 15.4% higher TCO than the diesel bus system. Considering the benefits of a hypothetical scaling-up effect of hydrogen infrastructures in the region the hydrogen cost could drop to 5 €/kg. In this case the overall TCO of the hydrogen solution would drop to a slightly lower TCO than the diesel solution in 2030. Therefore hydrogen buses can be competitive in small to midsize cities even with limited routes. For hydrogen buses the bus body and fuel cost make up a large part of the TCO. Reducing the fuel cost will be an important aspect to reduce the total TCO of the hydrogen bus.
Seasonal Hydrogen Storage Decisions Under Constrained Electricity Distribution Capacity
Jun 2022
Publication
We consider a profit-maximizing renewable energy producer operating in a rural area with limited electricity distribution capacity to the grid. While maximizing profits the energy producer is responsible for the electricity supply of a local community that aims to be self-sufficient. Energy storage is required to deal with the energy productions' uncertain and intermittent character. A promising new solution is to use strategic hydrogen reserves. This provides a long-term storage option to deal with seasonal mismatches in energy production and the local community's demand. Using a Markov decision process we provide a model that determines optimal daily decisions on how much energy to store as hydrogen and buy or sell from the power grid. We explicitly consider the seasonality and uncertainty of production demand and electricity prices. We show that ignoring seasonal demand and production patterns is suboptimal and that introducing hydrogen storage transforms loss-making operations into profitable ones. Extensive numerical experiments show that the distribution capacity should not be too small to prevent local grid congestion. A higher storage capacity increases the number of buying actions from the grid thereby causing more congestion which is problematic for the grid operator. We conclude that a profit-maximizing hydrogen storage operation alone is not an alternative to grid expansion to solve congestion which is essential knowledge for policy-makers and grid operators.
Hydrogen Technology Development and Policy Status by Value Chain in South Korea
Nov 2022
Publication
Global transitions from carbon- to hydrogen-based economies are an essential component of curbing greenhouse gas emissions and climate change. This study provides an investigative review of the technological development trends within the overall hydrogen value chain in terms of production storage transportation and application with the aim of identifying patterns in the announcement and execution of hydrogen-based policies both domestically within Korea as well as internationally. The current status of technological trends was analyzed across the three areas of natural hydrogen carbon dioxide capture utilization and storage technology linked to blue hydrogen and green hydrogen production linked to renewable energy (e.g. water electrolysis). In Korea the establishment of underground hydrogen storage facilities is potentially highly advantageous for the storage of domestically produced and imported hydrogen providing the foundations for large-scale application as economic feasibility is the most important national factor for the provision of fuel cells. To realize a hydrogen economy pacing policy and technological development is essential in addition to establishing a roadmap for efficient policy support. In terms of technological development it is important to prioritize that which can connect the value chain all of which will ultimately play a major role in the transformation of human energy consumption.
No more items...