Publications
Propulsion System Integration for a First-generation Hydrogen Civil Airliner?
May 2021
Publication
An unusual philosophical approach is proposed here to decarbonise larger civil aircraft that fly long ranges and consume a large fraction of civil aviation fuel. These inject an important amount of carbon emissions into the atmosphere and holistic decarbonising solutions must consider this sector. A philosophical–analytical investigation is reported here on the feasibility of an airliner family to fly over long ranges and assist in the elimination of carbon dioxide emissions from civil aviation. Backed by state-of-the-art correlations and engine performance integration analytical tools a family of large airliners is proposed based on the development and integration of the body of a very large two-deck four-engine airliner with the engines wings and flight control surfaces of a very long-range twin widebody jet. The proposal is for a derivative design and not a retrofit. This derivative design may enable a swifter entry to service. The main contribution of this study is a philosophical one: a carefully evaluated aircraft family that appears to have very good potential for first-generation hydrogen-fuelled airliners using gas turbine engines for propulsion. This family offers three variants: a 380-passenger aircraft with a range of 3300nm a 330-passenger aircraft with a range of 4800nm and a 230- passenger aircraft with a range of 5500nm. The latter range is crucially important because it permits travel from anywhere in the globe to anywhere else with only one stop. The jet engine of choice is a 450kN high-bypass turbofan.
Comparative Risk Assessment of a Hydrogen Refueling Station Using Gaseous Hydrogen and Formic Acid as the Hydrogen Carrier
Mar 2023
Publication
To realize a hydrogen economy many studies are being conducted regarding the development and analysis of hydrogen carriers. Recently formic acid has been receiving attention as a potential hydrogen carrier due to its high volumetric energy density and relatively safe characteristics. However hydrogen refueling systems using formic acid are very different from conventional hydrogen refueling stations and quantitative risks assessments need to be conducted to verify their safe usage. In this study a comparative safety analysis of a formic acid hydrogen refueling station (FAHRS) and a gaseous hydrogen refueling station (GHRS) was conducted. Since there is no FAHRS under operation a process simulation model was developed and integrated with quantitative risk assessment techniques to perform safety analysis. Results of the analysis show that the FAHRS poses less risk than the GHRS where the vapor cloud explosion occurring in the buffer tank is of greatest consequence. A GHRS poses a greater risk than an FAHRS due to the high pressure required to store hydrogen in the tube trailer. The mild operating conditions required for storage and dehydrogenation of formic acid contribute to the low risk values of an FAHRS. For risk scenarios exceeding the risk limit risk mitigation measures were applied to design a safe process for GHRS. The results show that the installation of active safety systems for the GHRS allow the system to operate within acceptable safety regions.
Refurbishment of Natural Gas Pipelines towards 100% Hydrogen—A Thermodynamic-Based Analysis
Dec 2022
Publication
Hydrogen is a key enabler of a sustainable society. Refurbishment of the existing natural gas infrastructure for up to 100% H2 is considered one of the most energy- and resource-efficient energy transportation methods. The question remains whether the transportation of 100% H2 with reasonable adaptions of the infrastructure and comparable energy amounts to natural gas is possible. The well-known critical components for refurbishment such as increased compressor power reduced linepack as well as pipeline transport efficiencies and their influencing factors were considered based on thermodynamic calculations with a step-by-step overview. A H2 content of 20–30% results in comparable operation parameters to pure natural gas. In addition to transport in pipelines decentralized H2 production will also play an important role in addressing future demands.
Renewable Energy Potentials and Roadmap in Brazil, Austria, and Germany
Mar 2024
Publication
The emerging energy transition is particularly described as a move towards a cleaner lower-carbon system. In the context of the global shift towards sustainable energy sources this paper reviews the potential and roadmap for hydrogen energy as a crucial component of the clean energy landscape. The primary objective is to present a comprehensive literature overview illuminating key themes trends and research gaps in the scientific discourse concerning hydrogen production and energy policy. This review focuses particularly on specified geographic contexts with an emphasis on understanding the unique energy policies related to renewable energy in Brazil Austria and Germany. Given their distinct social systems and developmental stages this paper aims to delineate the nuanced approaches these countries adopt in their pursuit of renewable energy and the integration of hydrogen within their energy frameworks. Brazil exhibits vast renewable energy potential particularly in wind and solar energy sectors positioning itself for substantial growth in the coming years. Germany showcases a regulatory framework that promotes innovation and technological expansion reflecting its highly developed social system and commitment to transitioning away from fossil fuels. Austria demonstrates dedication to decarbonization particularly through the exploration of biomethane for residential heating and cooling.
Optimization of High-Temperature Electrolysis System for Hydrogen Production Considering High-Temperature Degradation
Mar 2023
Publication
Solid oxide electrolysis cells (SOECs) have great application prospects because of their excellent performance but the long-term applications of the stacks are restricted by the structural degradation under the high-temperature conditions. Therefore an SOEC degradation model is developed and embedded in a process model of the high-temperature steam electrolysis (HTSE) system to investigate the influence of the stack degradation at the system level. The sensitivity analysis and optimization were carried out to study the influence factors of the stack degradation and system hydrogen production efficiency and search for the optimal operating conditions to improve the hydrogen production efficiency and mitigate the stack degradation. The analysis results show that the high temperature and large current density can accelerate the stack degradation but improve the hydrogen production efficiency while the high temperature gradually becomes unfavorable in the late stage. The low air-to-fuel feed ratio is beneficial to both the degradation rate and hydrogen production efficiency. The results show that the optimization method can improve the hydrogen production efficiency and inhibit the stack degradation effectively. Moreover part of the hydrogen production efficiency has to be sacrificed in order to obtain a lower stack degradation rate.
Centralized and Decentralized Electrolysis-based Hydrogen Supply Systems for Road Transportation - A Modeling Study of Current and Future Costs
Oct 2022
Publication
This work compares the costs of three electrolysis-based hydrogen supply systems for heavy road transportation: a decentralized off-grid system for hydrogen production from wind and solar power (Dec-Sa); a decentralized system connected to the electricity grid (Dec-Gc); and a centralized grid-connected electrolyzer with hydrogen transported to refueling stations (Cen-Gc). A cost-minimizing optimization model was developed in which the hydrogen production is designed to meet the demand at refueling stations at the lowest total cost for two timeframes: one with current electricity prices and one with estimated future prices. The results show that: For most of the studied geographical regions Dec-Gc gives the lowest costs of hydrogen delivery (2.2e3.3V/kgH2) while Dec-Sa entails higher hydrogen production costs (2.5e6.7V/kgH2). In addition the centralized system (Cen-Gc) involves lower costs for production and storage than the grid-connected decentralized system (Dec-Gc) although the additional costs for hydrogen transport increase the total cost (3.5e4.8V/kgH2).
Environmental Economical Dispatching of Electric–Gas Integrated Energy System Considering Hydrogen Compressed-Natural Gas
Dec 2022
Publication
As a high-quality secondary energy hydrogen energy has great potential in energy storage and utilization. The development of power-to-hydrogen (P2H) technology has alleviated the problem of wind curtailment and improved the coupling between the power grid and the natural gas grid. Under the premise of ensuring safety using P2H technology to mix the produced hydrogen into the natural gas network for long-distance transmission and power generation can not only promote the development of hydrogen energy but also reduce carbon emissions. This paper presents a new model for incorporating hydrogen into natural gas pipelines. To minimize the sum of wind curtailment cost operation cost and carbon emission cost an electric–gas integrated energy system (EGIES) model of hydrogen-compressed natural gas (HCNG) containing P2H for power generation is constructed. Aiming at the problem of global warming caused by a lot of abandoned wind and carbon emissions the economy and environmental protection of the system model are analyzed. The results show that the model of EGIES considering HCNG can not only absorb excess wind power but also reduce carbon emission costs and system costs which can reduce the total cost of the environmental economic dispatch of the EGIES by about 34.1%. In the context of the EGIES the proposal of this model is of great significance to the economical and environmentally friendly operation of the system.
What Can Accelerate Technological Convergence of Hydrogen Energy: A Regional Perspective
Jun 2023
Publication
Focusing on technological innovation and convergence is crucial for utilizing hydrogen energy an emerging infrastructure area. This research paper analyzes the extent of technological capabilities in a region that could accelerate the occurrence of technological convergence in the fields related to hydrogen energy through the use of triadic patents their citation information and their regional information. The results of the Bayesian spatial model indicate that the active exchange of diverse original technologies could facilitate technological convergence in the region. On the other hand it is difficult to achieve regional convergence with regard to radical technology. The findings could shed light on the establishment of an R&D strategy for hydrogen technologies. This study could contribute to the dissemination and utilization of hydrogen technologies for sustainable industrial development.
Hydrogenerally - Episode 7: Hydrogen for Heat
Dec 2022
Publication
In this seventh episode Steffan Eldred Hydrogen Innovation Network Knowledge Transfer Manager and Jenni McDonnell MBE Heating and Cooling Knowledge Transfer Manager from Innovate UK KTN discuss why using hydrogen to generate heat is so important and explore the hydrogen economy opportunities and challenges within this sector alongside their special guest Jeff House Head of External Affairs Baxi Boilers.
The podcast can be found on their website.
The podcast can be found on their website.
Hydrogen Fuel Cells for Sustainable Energy: Development and Progress in Selected Developed Countries
Jan 2021
Publication
The sustainable development goals concept towards zero carbon emission set forth by the Paris Agreement is the foundation of decarbonisation implemented in most developed countries worldwide. One of the efforts in the decarbonisation of the environment is through hydrogen fuel cell technology. A fuel cell is an energy converter device that produces electricity via the electrochemical reaction with water as the by-product. The application of fuel cells is strongly related to the economic aspect including local and infrastructure costs making it more relevant to be implemented in a developed country. This work presents a short review of the development and progress of hydrogen fuel cells in a developed country such as Japan Germany USA Denmark and China (in transition between developing to developed status); which championed hydrogen fuel cell technology in their region.
Prioritization and Optimal Location of Hydrogen Fueling Stations in Seoul: Using Multi-Standard Decision-Making and ILP Optimization
Mar 2023
Publication
Thus far the adoption of hydrogen fuel cell vehicles (HCEVs) has been hampered by the lack of hydrogen fueling infrastructure. This study aimed to determine the optimal location and prioritization of hydrogen fueling stations (HFSs) in Seoul by utilizing a multi-standard decision making approach and optimization method. HFS candidate sites were evaluated with respect to relevant laws and regulations. Key factors such as safety economy convenience and demand for HCEVs were considered. Data were obtained through a survey of experts in the fields of HCEV and fuel cells and the Analytic Hierarchy Process method was applied to prioritize candidate sites. The optimal quantity and placement of HFSs was then obtained using optimization software based on the acceptable travel time from intersections of popular roads in Seoul. Our findings suggest that compliance with legal safety regulations is the most important factor when constructing HFSs. Furthermore sensitivity analysis revealed that the hydrogen supply cost currently holds the same weight as other elements. The study highlights the importance of utilizing a multi-standard decision-making approach and optimization methods when determining the optimal location and prioritization of HFSs and can help develop a systematic plan for the nationwide construction of HFSs in South Korea.
Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning
Nov 2022
Publication
The environment is seriously threatened by the rising energy demand and the use of conventional energy sources. Renewable energy sources including hydro solar and wind have been the focus of extensive research due to the proliferation of energy demands and technological advancement. Wind energy is mostly harvested in coastal areas and little work has been done on energy extraction from winds in a suburban environment. The fickle behavior of wind makes it a less attractive renewable energy source. However an energy storage method may be added to store harvested wind energy. The purpose of this study is to evaluate the feasibility of extracting wind energy in terms of hydrogen energy in a suburban environment incorporating artificial intelligence techniques. To this end a site was selected latitude 33.64◦ N longitude 72.98◦ N and elevation 500 m above mean sea level in proximity to hills. One year of wind data consisting of wind speed wind direction and wind gust was collected at 10 min intervals. Subsequently long short-term memory (LSTM) support vector regression (SVR) and linear regression models were trained on the empirically collected data to estimate daily hydrogen production. The results reveal that the overall prediction performance of LSTM was best compared to that of SVR and linear regression models. Furthermore we found that an average of 6.76 kg/day of hydrogen can be produced by a 1.5 MW wind turbine with the help of an artificial intelligence method (LSTM) that is well suited for time-series data to classify process and predict.
Secure Hydrogen Production Analysis and Prediction Based on Blockchain Service Framework for Intelligent Power Management System
Nov 2023
Publication
The rapid adoption of hydrogen as an eco-friendly energy source has necessitated the development of intelligent power management systems capable of efficiently utilizing hydrogen resources. However guaranteeing the security and integrity of hydrogen-related data has become a significant challenge. This paper proposes a pioneering approach to ensure secure hydrogen data analysis by integrating blockchain technology enhancing trust transparency and privacy in handling hydrogen-related information. Combining blockchain with intelligent power management systems makes the efficient utilization of hydrogen resources feasible. Using smart contracts and distributed ledger technology facilitates secure data analysis (SDA) real-time monitoring prediction and optimization of hydrogen-based power systems. The effectiveness and performance of the proposed approach are demonstrated through comprehensive case studies and simulations. Notably our prediction models including ABiLSTM ALSTM and ARNN consistently delivered high accuracy with MAE values of approximately 0.154 0.151 and 0.151 respectively enhancing the security and efficiency of hydrogen consumption forecasts. The blockchain-based solution offers enhanced security integrity and privacy for hydrogen data analysis thus advancing clean and sustainable energy systems. Additionally the research identifies existing challenges and outlines future directions for further enhancing the proposed system. This study adds to the growing body of research on blockchain applications in the energy sector specifically on secure hydrogen data analysis and intelligent power management systems.
Economic Feasibility of Green Hydrogen in Providing Flexibility to Medium-voltage Distribution Grids in the Presence of Local-heat Systems
Nov 2022
Publication
The recent strong increase in the penetration of renewable energy sources (RESs) in medium-voltage distribution grids (MVDNs) has raised the need for congestion management in such grids as they were not designed for this new condition. This paper examines to what extent producing green hydrogen through electrolyzers can profitably contribute to congestion alleviation in MVDNs in the presence of high amounts of RES as well as flexible consumers of electricity and a local heat system. To address this issue an incentive-based method for improving flexibility in MVDNs is used which is based on a single-leader–multiple-followers game formulated by bi-level mathematical programming. At the upper level the distribution system operator who is the leader of this game determines dynamic prices as incentives at each node based on the levels of generation and load. Next at the lower level providers of flexibility including producers using electrolyzers price-responsive power consumers heat consumers as well as heat producers respond to these incentives by reshaping their output and consumption patterns. The model is applied to a region in the North of The Netherlands. The obtained results demonstrate that converting power to hydrogen can be an economically efficient way to reduce congestion in MVDNs when there is a high amount of RES. However the economic value of electrolyzers as providers of flexibility to MVDNs decreases when more other options for flexibility provision exist.
Potential of Producing Green Hydrogen in Jordan
Nov 2022
Publication
Green hydrogen is becoming an increasingly important energy supply source worldwide. The great potential for the use of hydrogen as a sustainable energy source makes it an attractive energy carrier. In this paper we discuss the potential of producing green hydrogen in Jordan. Aqaba located in the south of Jordan was selected to study the potential for producing green hydrogen due to its proximity to a water source (i.e. the Red Sea). Two models were created for two electrolyzer types using MATLAB. The investigated electrolyzers were alkaline water (ALK) and polymeric electrolyte membrane (PEM) electrolyzers. The first model was used to compare the required capacity of the PV solar system using ALK and PEM from 2022 to 2025 depending on the learning curves for the development of these technologies. In addition this model was used to predict the total investment costs for the investigated electrolyzers. Then a techno-economic model was constructed to predict the feasibility of using this technology by comparing the use of a PV system and grid electricity as sources for the production of hydrogen. The net present value (NPV) and levelized cost of hydrogen (LCOH) were used as indicators for both models. The environmental effect according to the reduction of CO2 emissions was also taken into account. The annual production of hydrogen was 70.956 million kg. The rate of hydrogen production was 19.3 kg/s and 1783 kg/s for ALK and PEM electrolyzers respectively. The LCOH was 4.42 USD/kg and 3.13 USD/kg when applying electricity from the grid and generated by the PV system respectively. The payback period to cover the capital cost of the PV system was 11 years of the project life with a NPV of USD 441.95 million. Moreover CO2 emissions can be reduced by 3042 tons/year by using the PV as a generation source instead of fossil fuels to generate electricity. The annual savings with respect to the reduction of CO2 emissions was USD 120135.
Design and Optimization of Coal to Hydrogen System Coupled with Non-Nominal Operation of Thermal Power Unit
Dec 2022
Publication
In an actual thermal power plant deep peak shaving will cause thermal power units to run under non-nominal conditions for an extended period resulting in serious problems such as increased equipment wearing low equipment utilization efficiency and decreased benefits. To this end in this work both the design and optimization method for a coal to hydrogen system which is coupled with the expected non-nominal operation of thermal power units are proposed. Aiming towards maximum profit in the context of thermal power plants a mathematical optimization model for a coal to hydrogen system based on the multi-period operating conditions of thermal power plants is established. The corresponding optimal design scheme of the coal to hydrogen system is determined using variable operating conditions. The superiority of the integrated system compared with an independent system is explored and the feasibility of the proposed method is verified by using the case study of an actual thermal power plant. The results show that compared with the independent system the economic benefits of the integrated system can increase by 13.56% where the sale of hydrogen in the coal to hydrogen system accounts for 60.3% of the total benefit. The main expenditure associated with the system is the purchase cost of feedstock coal accounting for 91.8%. Since the required power and medium-pressure steam in the coal to hydrogen process are provided by thermal power units the minimum operating load of the thermal power plant in the integrated system increases from 40% to 60.1% which significantly improves the utilization efficiency and service life of the generator units. In addition the proposed integration scheme of the system is simple and controllable which can contribute to the maintenance of the safe and stable operation of power generation and hydrogen production processes. These results are expected to provide the necessary methodological guidance for the integration and optimization of coal-fired power plants and coal to hydrogen systems.
Renewable Energy Transport via Hydrogen Pipelines and HVDC Transmission Lines
May 2021
Publication
The majority penetration of Variable Renewable Energy (VRE) will challenge the stability of electrical transmission grids due to unpredictable peaks and troughs of VRE generation. With renewable generation located further from high demand urban cores there will be a need to develop new transmission pathways to deliver the power. This paper compares the transport and storage of VRE through a hydrogen pipeline to the transport of VRE through a High Voltage Direct Current (HVDC) transmission line. The analysis found a hydrogen pipeline can offer a cost-competitive method for VRE transmission compared to a HVDC transmission line on a life-cycle cost basis normalized by energy flows for distances at 1000 miles with 2030 technology. This finding has implications for policy makers project developers and system operators for the future development of transmission infrastructure projects given the additionality which hydrogen pipelines can provide in terms of energy storage.
Thermodynamic Analysis of Solid Oxide Electrolyzer Integration with Engine Waste Heat Recovery for Hydrogen Production
Jul 2021
Publication
Water electrolysis based on solid oxide electrolysis cell (SOEC) exhibits high conversion efficiency due to part of energy demand can be derived from thermal energy. Therefore it can be integrated with other sources of thermal energy to reduce the consumption of electrical energy. In this paper a diesel engine is integrated with the SOEC stacks for heat recovery steam generator (HRSG). The thermal energy from the engine exhaust gas used to heat the inlet H2O of the SOEC is carried out as the integration case. A SOEC plant using electricity as the thermal heat input is selected as the base case. Thermodynamic analysis of the benchmark and integration scheme reveals that an electrical efficiency of 73.12% and 85.17% can be achieved respectively. The diesel to power efficiency can be increased to 70% when the exhaust gas is completely utilized by the SOEC system. The impacts of some key parameters including current density and operating temperature on system performance have also been conducted and found that the system has optimized parameters of current density and operating temperature to achieve better performance.
Energy Storage Systems: A Review
Jul 2022
Publication
The world is rapidly adopting renewable energy alternatives at a remarkable rate to address the ever-increasing environmental crisis of CO2 emissions. Renewable Energy Systems (RES) offers enormous potential to decarbonize the environment because they produce no greenhouse gases or other polluting emissions. However the RES relies on natural resources for energy generation such as sunlight wind water geothermal which are generally unpredictable and reliant on weather season and year. To account for these intermittencies renewable energy can be stored using various techniques and then used in a consistent and controlled manner as needed. Several researchers from around the world have made substantial contributions over the last century to developing novel methods of energy storage that are efficient enough to meet increasing energy demand and technological break-throughs. This review attempts to provide a critical review of the advancements in the Energy Storage System (ESS) from 1850–2022 including its evolution classification operating principles and comparison
Life Cycle Greenhouse Gas Emission Assessment for Using Alternative Marine Fuels: A Very Large Crude Carrier (VLCC) Case Study
Dec 2022
Publication
The International Maritime Organization (IMO) has set decarbonisation goals for the shipping industry. As a result shipowners and operators are preparing to use low- or zero-carbon alternative fuels. The greenhouse gas (GHG) emission performances are fundamental for choosing suitable marine fuels. However the current regulations adopt tank-to-wake (TTW) emission assessment methods that could misrepresent the total climate impacts of fuels. To better understand the well-to-wake (WTW) GHG emission performances this work applied the life cycle assessment (LCA) method to a very large crude carrier (VLCC) sailing between the Middle East and China to investigate the emissions. The life cycle GHG emission impacts of using alternative fuels including liquified natural gas (LNG) methanol and ammonia were evaluated and compared with using marine gas oil (MGO). The bunkering site of the VLCC was in Zhoushan port China. The MGO and LNG were imported from overseas while methanol and ammonia were produced in China. Four production pathways for methanol and three production pathways for ammonia were examined. The results showed that compared with MGO using fossil energy-based methanol and ammonia has no positive effect in terms of annual WTW GHG emissions. The emission reduction effects of fuels ranking from highest to lowest were full solar and battery-based methanol full solar and battery-based ammonia and LNG. Because marine ammonia-fuelled engines have not been commercialised laboratory data were used to evaluate the nitrous oxide (N2O) emissions. The GHG emission reduction potential of ammonia can be exploited more effectively if the N2O emitted from engines is captured and disposed of through after-treatment technologies. This paper discussed three scenarios of N2O emission abatement ratios of 30% 50% and 90%. The resulting emission reduction effects showed that using full solar and battery-based ammonia with 90% N2O abatement performs better than using full solar and battery-based methanol. The main innovation of this work is realising the LCA GHG emission assessment for a deep-sea ship.
No more items...