Publications
Modeling of Sudden Hydrogen Expansion from Cryogenic Pressure Vessel Failure
Sep 2011
Publication
We have modelled sudden hydrogen expansion from a cryogenic pressure vessel. This model considers real gas equations of state single and two-phase flow and the specific “vessel within vessel” geometry of cryogenic vessels. The model can solve sudden hydrogen expansion for initial pressures up to 1210 bar and for initial temperatures ranging from 27 to 400 K. For practical reasons our study focuses on hydrogen release from 345 bar with temperatures between 62 K and 300 K. The pressure vessel internal volume is 151 L. The results indicate that cryogenic pressure vessels may offer a safety advantage with respect to compressed hydrogen vessels because i) the vacuum jacket protects the pressure vessel from environmental damage ii) hydrogen when released discharges first into an intermediate chamber before reaching the outside environment and iii) working temperature is typically much lower and thus the hydrogen has less energy. Results indicate that key expansion parameters such as pressure rate of energy release and thrust are all considerably lower for a cryogenic vessel within vessel geometry as compared to ambient temperature compressed gas vessels. Future work will focus on taking advantage of these favourable conditions to attempt fail-safe cryogenic vessel designs that do not harm people or property even after catastrophic failure of the inner pressure vessel.
Roadmap to Hydrogen in the NTS - National Grid Gas Transmission
Jan 2020
Publication
DNV GL believes that the National Transmission System (NTS) will be central to the future of decarbonised energy in the UK. The future NTS could transmit natural gas hydrogen blends of the two and carbon dioxide. New pipelines will be built however a large cost-saving is available if the existing NTS assets can also be re-purposed. To move towards this future National Grid Gas Transmission wants to develop a project to trial injection hydrogen into the NTS. This is an opportunity to show that National Grid is part of the solution to achieving Net Zero. The trial will demonstrate to the Government and public that re-purposing the NTS is cost-effective safe and involves minimal disruption.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Addressing H-Material Interaction in Fast Diffusion Materials—A Feasibility Study on a Complex Phase Steel
Oct 2020
Publication
Hydrogen embrittlement (HE) is one of the main limitations in the use of advanced high-strength steels in the automotive industry. To have a better understanding of the interaction between hydrogen (H) and a complex phase steel an in-situ method with plasma charging was applied in order to provide continuous H supply during mechanical testing in order to avoid H outgassing. For such fast-H diffusion materials only direct observation during in-situ charging allows for addressing H effects on materials. Different plasma charging conditions were analysed yet there was not a pronounced effect on the mechanical properties. The H concentration was calculated while using a simple analytical model as well as a simulation approach resulting in consistent low H values below the critical concentration to produce embrittlement. However the dimple size decreased in the presence of H and with increasing charging time the crack propagation rate increased. The rate dependence of flow properties of the material was also investigated proving that the material has no strain rate sensitivity which confirmed that the crack propagation rate increased due to H effects. Even though the H concentration was low in the experiments that are presented here different technological alternatives can be implemented in order to increase the maximum solute concentration.
Developing a Hydrogen Fuel Cell Vehicle (HFCV) Energy Consumption Model for Transportation Applications
Jan 2022
Publication
This paper presents a simple hydrogen fuel cell vehicle (HFCV) energy consumption model. Simple fuel/energy consumption models have been developed and employed to estimate the energy and environmental impacts of various transportation projects for internal combustion engine vehicles (ICEVs) battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs). However there are few published results on HFCV energy models that can be simply implemented in transportation applications. The proposed HFCV energy model computes instantaneous energy consumption utilizing instantaneous vehicle speed acceleration and roadway grade as input variables. The mode accurately estimates energy consumption generating errors of 0.86% and 2.17% relative to laboratory data for the fuel cell estimation and the total energy estimation respectively. Furthermore this work validated the proposed model against independent data and found that the new model accurately estimated the energy consumption producing an error of 1.9% and 1.0% relative to empirical data for the fuel cell and the total energy estimation respectively. The results demonstrate that transportation engineers policy makers automakers and environmental engineers can use the proposed model to evaluate the energy consumption effects of transportation projects and connected and automated vehicle (CAV) transportation applications within microscopic traffic simulation models.
Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile
Dec 2021
Publication
The paper presents a complete value chain for the use of green hydrogen in a port facility. The main objective was to propose the sizing of the main components that make up green hydrogen to ensure the supply of 1 MWe in replacing the diesel generator. The energy demand required for the port was determined by establishing the leading small and large-scale conventional energyconsuming equipment. Hence 60 kgH2 was required to ensure the power supply. The total electrical energy to produce all the hydrogen was generated from photovoltaic solar energy considering threegeneration scenarios (minimum maximum and the annual average). In all cases the energy supply in the electrolyzer was 3.08 MWe. In addition the effect of generating in the port facility using a diesel generator and a fuel cell was compared. The cost of 1 kgH2 could be 4.09 times higher than the cost of 1 L of diesel meaning that the output kWh of each system is economically similar. In addition the value of electrical energy through a Power Purchase Agreement (PPA) was a maximum of 79.79 times the value of a liter of diesel. Finally the Levelized Cost of Energy (LCOE) was calculated for two conditions in which the MWe was obtained from the fuel cell without and with the photovoltaic solar plant.
Hydrogen Release from a High-Pressure Gh2 Reservoir in Case of a Small Leak
Sep 2009
Publication
High-pressure GH2 systems are of interest for storage and distribution of hydrogen. The dynamic blow-down process of a high-pressure GH2 reservoir in case of a small leak is a complex process involving a chain of distinct flow regimes and gas states which needs to be understood for safety investigations.<br/>This paper presents models to predict the hydrogen concentration and velocity field in the vicinity of a postulated small leak. An isentropic expansion model with a real gas equation of state for normal hydrogen is used to calculate the time dependent gas state in the reservoir and at the leak position. The subsequent gas expansion to 0.1 MPa is predicted with a zero-dimensional model. The gas conditions after expansion serve as input to a newly developed integral model for a round free turbulent H2-jet into ambient air. The model chain was evaluated by jet experiments with sonic hydrogen releases from different reservoir pressures and temperatures.<br/>Predictions are made for the blow-down of hydrogen reservoirs with 10 30 and 100 MPa initial pressure. The evolution of the pressure in the reservoir and of the H2 mass flux at the orifice are presented in dimensionless form which allows scaling to other system dimensions and initial gas conditions. Computed hydrogen concentrations and masses in the jet are given for the 100 MPa case. A normalized hydrogen concentration field in the free jet is presented which allows for a given leak scenario the prediction of the axial and radial range of burnable H2-air mixtures.
Hydrogen Safety Aspects Related to High Pressure - PEM Water Electrolysis
Sep 2007
Publication
Polymer electrolyte membrane (PEM) water electrolysis has demonstrated its potentialities in terms of cell efficiency (energy consumption ≈ 4.0-4.2 kW/Nm3 H2) and gas purity (> 99.99% H2). Current research activities are aimed at increasing operating pressure up to several hundred bars for direct storage of hydrogen in pressurized vessels. Compared to atmospheric pressure electrolysis high-pressure operation yields additional problems especially with regard to safety considerations. In particular the rate of gases (H2 and O2) cross-permeation across the membrane and their water solubility both increase with pressure. As a result gas purity is affected in both anodic and cathodic circuits and this can lead to the formation of explosive gas mixtures. To prevent such risks two different solutions reported in this communication have been investigated. First the chemical modification of the solid polymer electrolyte in order to reduce cross-permeation phenomena. Second the use of catalytic H2/O2 recombiners to maintain H2 levels in O2 and O2 levels in H2 at values compatible with safety requirements.
A Study of Barrier Walls for Mitigation of Unintended Releases of Hydrogen
Sep 2009
Publication
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. An experimental and modeling program has been performed at Sandia National Laboratories to better characterize the effectiveness of barrier walls to reduce hazards. This paper describes the experimental and modeling program and presents results obtained for various barrier configurations. The experimental measurements include flame deflection using standard and infrared video and high-speed movies (500 fps) to study initial flame propagation from the ignition source. Measurements of the ignition overpressure wall deflection radiative heat flux and wall and gas temperature were also made at strategic locations. The modeling effort includes three-dimensional calculations of jet flame deflection by the barriers computations of the thermal radiation field around barriers predicted overpressure from ignition and the computation of the concentration field from deflected unignited hydrogen releases. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting jet flames in a desired direction and can help attenuate the effects of ignition overpressure and flame radiative heat flux.
Estimation of an Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Hydrogen Storage Systems In Typical Garages- Part 3
Sep 2009
Publication
The formation of a flammable hydrogen-air mixture is a major safety concern especially for closed space. This hazardous situation can arise when considering permeation from a car equipped with a composite compressed hydrogen tank with a non-metallic liner in a closed garage. In the following paper a scenario is developed and analysed with a simplified approach and a numerical simulation in order to estimate the evolution of hydrogen concentration. The system is composed of typical size garage and hydrogen car’s tank. Some parameters increasing permeation rate (i.e. tank’s material thickness and pressure) have been chosen to have a conservative approach. A close look on the top of tank surface showed that the concentration grows as square root of time and does not exceed 8.2×10-3 % by volume. Also a simplified comparative analysis estimated that the buoyancy of hydrogen-air mixture prevails on the diffusion 35 seconds after permeation starts in good agreement with simulation where time is at about 80 seconds. Finally the numerical simulations demonstrated that across the garage height the hydrogen is nearly distributed linearly and the difference in hydrogen concentration at the ceiling and floor is negligible (i.e. 3×10-3 %).
Government Strategy on Hydrogen - The Netherlands
Apr 2020
Publication
Low-carbon gases are indispensable to any energy system that is reliable clean affordable safe and is suited to spatial integration and zero-carbon hydrogen is a crucial link in that chain1. The most common element in the universe seems to have a highly bonding effect in the Netherlands – particularly as a result of the unique starting position of our country. This is made clear in the agreements of the National Climate Agreement which includes an ambitious target for hydrogen supported by a large and broad group of stakeholders. Industrial clusters and ports regard hydrogen as an indispensable part of their future and sustainability strategy. For the transport sector hydrogen (in combination with fuel cells) is crucial to achieving zero emissions transport. The agricultural sector has identified opportunities for the production of hydrogen and for its use. Cities regions and provinces are keen to get started on implementing hydrogen.<br/>The government embraces these targets and recognises the power of the framework for action demonstrated by so many parties. The focus on clean hydrogen in the Netherlands will lead to the creation of new jobs improvements to air quality and moreover is crucial to the energy transition.
For a Successful Arrival of the Hydrogen Economy Improve Now the Confidence Level of Risk Assessments
Sep 2009
Publication
For large-scale distribution and use of energy carriers classified as hazardous material in many countries as a method to assist land use planning to grant licenses to design a safe installation and to operate it safely some form of risk analysis and assessment is applied. Despite many years of experience the methods have still their weaknesses even the most elaborated ones as e.g. shown by the large spread in results when different teams perform an analysis on a same plant as was done in EU projects. Because a fuel as hydrogen with its different properties will come new in the daily use of many people incidents may happen and risks will be discussed. HySafe and other groups take good preparatory action in this respect and work in the right direction as appears from various documents produced. However already a superficial examination of the results so far tells that further cooperative work is indispensable. To avoid criticism skepticism and frustration not only the positive findings should be described and general features of the methods but the community has also to give strong guidance with regard to the uncertainties. Scenario development appears to be very dependent on insight and experience of an individual analyst leak and ignition probability may vary over a wide range of values Computational Fluid Dynamics or CFD models may lead to very different result. The Standard Benchmark Exercise Problems SBEPs are a good start but shall produce guidelines or recommendations for CFD use or even perhaps certification of models. Where feasible narrowing of possible details of scenarios to the more probable ones taking into account historical incident data and schematizing in bowties more explicit use of confidence intervals on e.g. failure rates and ignition probability estimates will help. Further knowledge gaps should be defined.
Simulation of Detonation after an Accidental Hydrogen Release in Enclosed Environments
Sep 2007
Publication
An accidental hydrogen release in equipment enclosures may result in the presence of a detonable mixture in a confined environment. Numerical simulation is potentially a useful tool for damage assessment in these situations. To assess the value of CFD techniques numerical simulation of detonation was performed for two realistic scenarios. The first scenario starts with a pipe failure in an electrolyzer resulting in a leak of 42 g of hydrogen. The second scenario deals with a failure in a reformer where 84 g of hydrogen is released. In both cases dispersion patterns were first obtained from separate numerical simulation and were then used as initial condition in a detonation simulation based upon the reactive Euler's equations. Energy was artificially added in a narrow region to simulate detonative ignition. In the electrolyzer ignition was assumed to occur 500 ms after beginning of the release. Results show a detonation failing on the top and bottom side but propagating left and right before eventually failing also. Average impulse was 500 Ns/m². For the reformer three cases were simulated with ignition 1.0 1.4 and 2.0 seconds after the beginning of the release. In two cases the detonation wave failed everywhere except in the direction of the release in which it continued propagating until reaching the side wall. In the third the detonation failed everywhere at first but later a deflagration to detonation transition occurred resulting in a strong wave that propagated rapidly toward the side wall. In all three cases the consequences are more serious than in the electrolyzer.
Numerical Simulation of The Laminar Hydrogen Flame In The Presence of a Quenching Mesh
Sep 2009
Publication
Recent studies of J.H. Song et al. and S.Y. Yang et al. have been concentrated on mitigation measures against hydrogen risk. The authors have proposed installation of quenching meshes between compartments or around the essential equipment in order to contain hydrogen flames. Preliminary tests were conducted which demonstrated the possibility of flame extinction using metallic meshes of specific size.<br/>Considerable amount of numerical and theoretical work on flame quenching phenomenon has been performed in the second half of the last century and several techniques and models have been proposed to predict the quenching phenomenon of the laminar flame system. Most of these models appreciated the importance of heat loss to the surroundings as a primary cause of extinguishment in particular the heat transfer by conduction to the containing wall. The supporting simulations predict flame-quenching structure either between parallel plates (quenching distance) or inside a tube of a certain diameter (quenching diameter).<br/>In the present study the flame quenching is investigated assuming the laminar hydrogen flame propagating towards a quenching mesh using two-dimensional configuration and the earlier developed models. It is shown that due to a heat loss to a metallic grid the flame can be quenched numerically.
Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Storage Systems In Garages- Part 1- Introduction, Scenarios, and Estimation of an Allowable Permeation Rate
Sep 2009
Publication
The paper presents an overview of the main results of the EC NOE HySafe activity to estimate an allowable hydrogen permeation rate for automotive legal requirements and standards. The work was undertaken as part of the HySafe internal project InsHyde.<br/>A slow long term hydrogen release such as that due to permeation from a vehicle into an inadequately ventilated enclosed structure is a potential risk associated with the use of hydrogen in automotive applications. Due to its small molecular size hydrogen permeates through the containment materials found in compressed gaseous hydrogen storage systems and is an issue that requires consideration for containers with non-metallic (polymer) liners. Permeation from compressed gaseous hydrogen storage systems is a current hydrogen safety topic relevant to regulatory and standardisation activities at both global and regional levels.<br/>Various rates have been proposed in different draft legal requirements and standards based on different scenarios and the assumption that hydrogen dispenses homogeneously. This paper focuses on the development of a methodology by HySafe Partners (CEA NCSRD. University of Ulster and Volvo Technology) to estimate an allowable upper limit for hydrogen permeation in automotive applications by investigating the behaviour of hydrogen when released at small rates with a focus on European scenario. The background to the activity is explained. reasonable scenarios are identified a methodology proposed and a maximum hydrogen permeation rate from road vehicles into enclosed structures is estimated The work is based on conclusions from the experimental and numerical investigations described by CEA NCSRD and the University of Ulster in related papers.
The Role of Trust and Familiarity in Risk Communication
Sep 2009
Publication
In socio-economics it is well known that the success of an innovation process not only depends upon the technological innovation itself or the improvement of economic and institutional system boundaries but also on the public acceptance of the innovation. The public acceptance can as seen with genetic engineering for agriculture be an obstacle for the development and introduction of a new and innovative idea. In respect to hydrogen technologies this means that the investigation compilation and communication of scientific risk assessments are not sufficient to enhance or generate public acceptance. Moreover psychological social and cultural aspects of risk perception have to be considered when introducing new technologies. Especially trust and familiarity play an important role for risk perception and thus public acceptance of new technologies.
Safety Considerations for Hydrogen Test Cells
Sep 2009
Publication
The properties of hydrogen compared to conventional fuels such as gasoline and diesel are substantially different requiring adaptations to the design and layout of test cells for hydrogen fuelled engines and vehicles. A comparison of hydrogen fuel properties versus conventional fuels in this paper provides identification of requirements that need to be adapted to design a safe test cell. Design examples of actual test cells are provided to showcase the differences in overall layout and ventilation safety features fuel supply and metering and emissions measurements. Details include requirements for ventilation patterns the necessity for engine fume hoods as well as hydrogen specific intake and exhaust design. The unique properties of hydrogen in particular the wide flammability limits and nonvisible flames also require additional safety features such as hydrogen sensors and flame cameras. A properly designed and implemented fuel supply system adds to the safety of the test cell by minimizing the amount of hydrogen that can be released. Apart from this the properties of hydrogen also require different fuel consumption measurement systems pressure levels of the fuel supply system additional ventilation lines strategically placed safety solenoids combined with appropriate operational procedures. The emissions measurement for hydrogen application has to be expanded to include the amount of unburned hydrogen in the exhaust as a measurement of completeness of combustion. This measurement can also be used as a safety feature to avoid creation of ignitable hydrogen-air mixtures in the engine exhaust. The considerations provided in this paper lead to the conclusion that hydrogen IC engines can be safely tested however properly designed test cell and safety features have to be included to mitigate the additional hazards related to the change in fuel characteristics.
Enhancing the Efficiency of Power- and Biomass-to-liquid Fuel Processes Using Fuel-assisted Solid Oxide Electrolysis Cells
Apr 2022
Publication
Power- and biomass-to-liquid fuel processes (PBtL) can utilize renewable energy and residual forestry waste to produce liquid synthetic fuels which have the potential to mitigate the climate impacts of the current transportation infrastructure including the long-haul aviation sector. In a previous study we demonstrated that implementing a solid oxide electrolysis cell (SOEC) in the PBtL process can significantly increase the energy efficiency of fuel production by supplying the produced hydrogen to a reverse water gas shift (RWGS) reactor to generate syngas which is then fed downstream to a Fischer–Tropsch (FT) reactor. The tail gas emitted from the FT reactor consists primarily of a mixture of hydrogen carbon monoxide and methane and is often recycled to the entrained flow gasifier located at the beginning of the process. In this analysis we investigate the efficiency gains of the PBtL process as a result of redirecting the tail gas of the FT reactor to the anode of an SOEC to serve as fuel. Supplying fuel to an SOEC can lower the electrical work input required to facilitate steam electrolysis when reacting electrochemically with oxide ions in the anode which in turn can reduce oxygen partial pressures and thus alleviate material degradation. Accordingly we develop a thermodynamic framework to reveal the performance limits of fuel-assisted SOECs (FASOECs) and provide strategies to minimize oxygen partial pressures in the SOEC anode. Additionally we elucidate how much fuel is required to match the heating demands of a cell when steam is supplied to the cathode over a broad range of inlet temperatures and demonstrate the influence of a set of reaction pathways of the supplied fuel on the operating potential of an FASOEC and the corresponding efficiency gain of the PBtL process. Based on preliminary calculations we estimate that implementing an FASOEC in the PBtL process can increase the energy efficiency of fuel production to more than 90% depending on the amount of FT tail gas available to the system.
Ignition Limits For Combustion of Unintended Hydrogen Releases- Experimental and Theoretical Results
Sep 2009
Publication
The ignition limits of hydrogen/air mixtures in turbulent jets are necessary to establish safety distances based on ignitable hydrogen location for safety codes and standards development. Studies in turbulent natural gas jets have shown that the mean fuel concentration is insufficient to determine the flammable boundaries of the jet. Instead integration of probability density functions (PDFs) of local fuel concentration within the quiescent flammability limits termed the flammability factor (FF) was shown to provide a better representation of ignition probability (PI). Recent studies in turbulent hydrogen jets showed that the envelope of ignitable gas composition (based on the mean hydrogen concentration) did not correspond to the known flammability limits for quiescent hydrogen/air mixtures. The objective of this investigation is to validate the FF approach to the prediction of ignition in hydrogen leak scenarios. The PI within a turbulent hydrogen jet was determined using a pulsed Nd:YAG laser as the ignition source. Laser Rayleigh scattering was used to characterize the fuel concentration throughout the jet. Measurements in methane and hydrogen jets exhibit similar trends in the ignition contour which broadens radially until an axial location is reached after which the contour moves inward to the centerline. Measurements of the mean and fluctuating hydrogen concentration are used to characterize the local composition statistics conditional on whether the laser spark results in a local ignition event or complete light-up of a stable jet flame. The FF is obtained through direct integration of local PDFs. A model was developed to predict the FF using a presumed PDF with parameters obtained from experimental data and computer simulations. Intermittency effects that are important in the shear layer are incorporated in a composite PDF. By comparing the computed FF with the measured PI we have validated the flammability factor approach for application to ignition of hydrogen jets.
Risk Modelling of a Hydrogen Refuelling Station Using a Bayesian Network
Sep 2009
Publication
Fault trees and event trees have for decades been the most commonly applied modelling tools in both risk analysis in general and the risk analysis of hydrogen applications including infrastructure in particular. It is sometimes found challenging to make traditional Quantitative Risk Analyses sufficiently transparent and it is frequently challenging for outsiders to verify the probabilistic modelling. Bayesian Networks (BN) are a graphical representation of uncertain quantities and decisions that explicitly reveal the probabilistic dependence between the variables and the related information flow. It has been suggested that BN represent a modelling tool that is superior to both fault trees and event trees with respect to the structuring and modelling of large complex systems. This paper gives an introduction to BN and utilises a case study as a basis for discussing and demonstrating the suitability of BN for modelling the risks associated with the introduction of hydrogen as an energy carrier. In this study we explore the benefits of modelling a hydrogen refuelling station using BN. The study takes its point of departure in input from a traditional detailed Quantitative Risk Analysis conducted by DNV during the HyApproval project. We compare and discuss the two analyses with respect to their advantages and disadvantages. We especially focus on a comparison of transparency and the results that may be extracted from the two alternative procedures.
An Overview of Hydrogen Safety Sensors and Requirements
Sep 2009
Publication
There exists an international commitment to increase the utilization of hydrogen as a clean and renewable alternative to carbon-based fuels. The availability of hydrogen safety sensors is critical to assure the safe deployment of hydrogen systems. Already the use of hydrogen safety sensors is required for the indoor fueling of fuel cell powered forklifts (e.g. NFPA 52 Vehicular Fuel Systems Code [1]). Additional Codes and Standards specific to hydrogen detectors are being developed [2 3] which when adopted will impose mandatory analytical performance metrics. There are a large number of commercially available hydrogen safety sensors. Because end-users have a broad range of sensor options for their specific applications the final selection of an appropriate sensor technology can be complicated. Facility engineers and other end-users are expected to select the optimal sensor technology choice. However some sensor technologies may not be a good fit for a given application. Informed decisions require an understanding of the general analytical performance specifications that can be expected by a given sensor technology. Although there are a large number of commercial sensors most can be classified into relatively few specific sensor types (e.g. electrochemical metal oxide catalytic bead and others). Performance metrics of commercial sensors produced on a specific platform may vary between manufacturers but to a significant degree a specific platform has characteristic analytical trends advantages and limitations. Knowledge of these trends facilitates the selection of the optimal technology for a specific application (i.e. indoor vs. outdoor environments). An understanding of the various sensor options and their general analytical performance specifications would be invaluable in guiding the selection of the most appropriate technology for the designated application.
Production of Sustainable Hydrogen and Carbon for the Metallurgical Industry
Dec 2021
Publication
Hydrogen will presumably become an important substitute for carbon as a reductant in the metallurgical industry for processes such as steel production. However the challenge to supply enough CO2 -free hydrogen for metallurgical processes has not been resolved yet. This paper reviews different production technologies for hydrogen and their advantages and drawbacks. Additionally it will highlight the development of plasma technology to produce hydrogen and carbon black which has been taking place at SINTEF during the last 30 years.
Hydrogen Deblending in the GB Network - Feasibility Study Report
Nov 2020
Publication
The UK government has committed to reducing greenhouse gas emissions to net zero by 2050. All future energy modelling identifies a key role for hydrogen (linked to CCUS) in providing decarbonised energy for heat transport industry and power generation. Blending hydrogen into the existing natural gas pipeline network has already been proposed as a means of transporting low carbon energy. However the expectation is that a gas blend with maximum hydrogen content of 20 mol% can be used without impacting consumers’ end use applications. Therefore a transitional solution is needed to achieve a 100% hydrogen future network.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
- Cryogenic separation
- Membrane separation
- Pressure Swing Adsorption (PSA)
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Vented Explosion Overpressures From Combustion of Hydrogen and Hydrocarbon Mixtures
Sep 2009
Publication
Experimental data obtained for hydrogen mixtures in a room-size enclosure are presented and compared with data for propane and methane mixtures. This set of data was also used to develop a three-dimensional gas dynamic model for the simulation of gaseous combustion in vented enclosures. The experiments were performed in a 64 m3 chamber with dimensions of 4.6 × 4.6 × 3.0 m and a vent opening on one side and vent areas of either 2.7 or 5.4 m2 were used. Tests were performed for three ignition locations at the wall opposite the vent at the center of the chamber or at the center of the wall containing the vent. Hydrogen–air mixtures with concentrations close 18% vol. were compared with stoichiometric propane–air and methane–air mixtures. Pressure data as function of time and flame time-of-arrival data were obtained both inside and outside the chamber near the vent. Modelling was based on a Large Eddy Simulation (LES) solver created using the OpenFOAM CFD toolbox using sub-grid turbulence and flame wrinkling models. A comparison of these simulations with experimental data is discussed.
Hy4Heat Hydrogen Purity - Work Package 2
Feb 2020
Publication
The report makes a recommendation for a minimum hydrogen purity standard to be used by manufacturers developing prototype hydrogen appliances and during their subsequent demonstration as part of the Hy4Heat programme. It makes a recommendation for a hydrogen purity level with the aim that it is reasonable and practicable and considers implications related to hydrogen production the gas network and cost.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Estimation of an Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous H2 Storage Systems In Typical Garages, Part 2: CFC Dispersion Calculations Using the ADREA-HF Code and Experimental Validation Using Helium Tests at the Garage Facility
Sep 2009
Publication
The time and space evolution of the distribution of hydrogen in confined settings was investigated computationally and experimentally for permeation from typical compressed gaseous hydrogen storage systems for buses or cars. The work was performed within the framework of the InsHyde internal project of the HySafe NoE funded by EC. The main goal was to examine whether hydrogen is distributed homogeneously within a garage like facility or whether stratified conditions are developed under certain conditions. The nominal hydrogen flow rate considered was 1.087 NL/min based on the then current SAE standard for composite hydrogen containers with a non-metallic liner (type 4) at simulated end of life and maximum material temperature in a bus facility with a volume of 681m3. The release was assumed to be directed upwards from a 0.15m diameter hole located at the middle part of the bus cylinders casing. Ventilation rates up to 0.03 ACH were considered. Simulated time periods extended up to 20 days. The CFD simulations performed with the ADREA-HF code showed that fully homogeneous conditions exist for low ventilation rates while stratified conditions prevail for higher ventilation rates. Regarding flow structure it was found that the vertical concentration profiles can be considered as the superposition of the concentration at the floor (driven by laminar diffusion) plus a concentration difference between floor and ceiling (driven by buoyancy forces). In all cases considered this concentration difference was found to be less than 0.5%. The dispersion experiments were performed at the GARAGE facility using Helium. Comparison between CFD simulations and experiments showed that the predicted concentrations were in good agreement with the experimental data. Finally simulations were performed using two integral models: the fully homogeneous model and the two-layer model proposed by Lowesmith et al. (ICHS-2 2007) and the results were compared both against CFD and the experimental data.
From Research Results to Published Codes And Standards - Establishing Code Requirements For NFPA 55 Bulk Hydrogen Systems Separation Distances
Sep 2009
Publication
Performing research in the interest of providing relevant safety requirements is a valuable and essential endeavor but translating research results into enforceable requirements adopted into codes and standards a process sometimes referred to as codification can be a separate and challenging task. This paper discusses the process utilized to successfully translate research results related to bulk gaseous hydrogen storage separation (or stand-off) distances into code requirements in NFPA 55:Storage Use and Handling of Compressed Gases and Cryogenic Fluids in Portable and StationaryContainers Cylinders and Tanks and NFPA 2: Hydrogen Technologies. The process utilized can besummarized as follows: First the technical committees for the documents to be revised were engaged to confirm that the codification process was endorsed by the committee. Then a sub-committee referred to as a task group was formed. A chair must be elected or appointed. The chair should be a generalist with code enforcement or application experience. The task group was populated with several voting members of each technical committee. By having voting members as part of the task group the group becomes empowered and uniquely different from any other code proposal generating body. The task group was also populated with technical experts as needed but primarily the experts needed are the researchers involved. Once properly populated and empowered the task group must actively engage its members. The researchers must educate the code makers on the methods and limitations of their work and the code makers must take the research results and fill the gaps as needed to build consensus and create enforceable code language and generate a code change proposal that will be accepted. While this process seems simple there are pitfalls along the way that can impede or nullify the desired end result – changes to codes and standards. A few of these pitfalls include: wrong task group membership task group not empowered task group not supported in-person meetings not possible consensus not achieved. This paper focuses on the process used and how pitfalls can be avoided for future efforts.
Hysafe SBEP-V20: Numerical Predictions of Release Experiments Inside a Residential Garage With Passive Ventilation
Sep 2009
Publication
This work presents the results of the Standard Benchmark Exercise Problem (SBEP) V20 of Work Package 6 (WP6) of HySafe Network of Excellence (NoE) co-funded by the European Commission in the frame of evaluating the quality and suitability of codes models and user practices by comparative assessments of code results. The benchmark problem SBEP-V20 covers release scenarios that were experimentally investigated in the past using helium as a substitute to hydrogen. The aim of the experimental investigations was to determine the ventilation requirements for parking hydrogen fuelled vehicles in residential garages. Helium was released under the vehicle for 2 h with 7.200 l/h flow rate. The leak rate corresponded to a 20% drop of the peak power of a 50 kW fuel cell vehicle. Three double vent garage door geometries are considered in this numerical investigation. In each case the vents are located at the top and bottom of the garage door. The vents vary only in height. In the first case the height of the vents is 0.063 m in the second 0.241 m and in the third 0.495 m. Four HySafe partners participated in this benchmark. The following CFD packages with the respective models were applied to simulate the experiments: ADREA-HF using k–ɛ model by partner NCSRD FLACS using k–ɛ model by partner DNV FLUENT using k–ɛ model by partner UPM and CFX using laminar and the low-Re number SST model by partner JRC. This study compares the results predicted by the partners to the experimental measurements at four sensor locations inside the garage with an attempt to assess and validate the performance of the different numerical approaches.
Discrete Event Simulation in Support to Hydrogen Supply Reliability
Sep 2009
Publication
Discrete Event Simulation (DES) environments are rapidly developing and they appear to be promising tools for developing reliability and risk analysis models of safety-critical systems. DES models are an alternative to the conventional methods such as fault and event trees Bayesian networks and cause-consequence diagrams that could be used to assess the reliability of fuel supply. DES models can rather easily account for the dynamic dimensions and other important features that can hardly be captured by the conventional models. The paper describes a novel approach to estimate gas supply security and the reliability/safety of gas installations and argues that this approach can be transferred to estimate future hydrogen supply reliability. The core of the approach is a DES model of gas or other fuel propulsion through a pipeline to the customers and failures of the components of the pipeline. We will argue in the paper that the experience gained in the modelling of gas supply reliability is very relevant to the security and safety of a future hydrogen supply and worth being employed in this area.
Accelerated Degradation for Solid Oxide Electrolysers: Analysis and Prediction of Performance for Varying Operating Environments
Jan 2022
Publication
Solid oxide electrolysis cells (SOECs) are an efficient technology for the production of green hydrogen that has great potential to contribute to the energy transition and decarbonization of industry. To date however time- and resource-intensive experimental campaigns slow down the development and market penetration of the technology. In order to speed-up the evaluation of SOEC performance and durability accelerated testing protocols are required. This work provides the results of experimental studies on the performance of a SOEC stack operated under accelerated degradation conditions. In order to initiate and accelerate degradation experiments were performed with high steam partial pressures at the gas inlet higher voltages and lower temperatures and high steam conversion rates. Thereby different types and degrees of impact on performance were observed which were analyzed in detail and linked to the underlying processes and degradation mechanisms. In this context significantly higher degradation rates were found compared to operation under moderate operating conditions with the different operating strategies varying in their degradation acceleration potential. The results also suggest that a few hundred hours of operation may be sufficient to predict long-term performance with the proposed operating strategies providing a solid basis for accelerated assessment of SOEC performance evolution and lifetime.
Novel Wide-area Hydrogen Sensing Technology
Sep 2007
Publication
Element One Inc. is developing novel indicators for hydrogen gas for applications as a complement to conventional electronic hydrogen sensors or as a low-cost alternative in situations where an electronic signal is not needed. The indicator consists of a thin film coating or a pigment of a transition metal oxide such as tungsten oxide or molybdenum oxide with a catalyst such as platinum or palladium. The oxide is partially reduced in the presence of hydrogen in concentrations as low as 300 parts per million and changes from transparent to a dark colour. The colour change is fast and easily seen from a distance. In air the colour change reverses quickly when the source of hydrogen gas is removed in the case of tungsten oxide or is nearly irreversible in the case of molybdenum oxide. A number of possible implementations have been successfully demonstrated in the laboratory including hydrogen indicating paints tape cautionary decals and coatings for hydrogen storage tanks. These and other implementations may find use in vehicles stationary appliances piping refuelling stations and in closed spaces such as maintenance and residential garages for hydrogen-fuelled vehicles. The partially reduced transition metal oxide becomes semi conductive and increases its electrical conductivity by several orders of magnitude when exposed to hydrogen. The integration of this electrical resistance sensor with an RFID tag may extend the ability of these sensors to record and transmit a history of the presence or absence of leaked hydrogen over long distances. Over long periods of exposure to the atmosphere the indicator’s response may slow due to catalyst degradation. Our current emphasis is on controlling this degradation. The kinetics of the visual indicators is being investigated along with their durability in collaboration with the NASA Kennedy Space Center.
Where Does Hydrogen Fit in a Sustainable Energy Economy?
Jul 2012
Publication
Where does hydrogen fit into a global sustainable energy strategy for the 21st century as we face the enormous challenges of irreversible climate change and uncertain oil supply? This fundamental question is addressed by sketching a sustainable energy strategy that is based predominantly on renewable energy inputs and energy efficiency with hydrogen playing a crucial and substantial role. But this role is not an ex -distributed hydrogen production storage and distribution centres relying on local renewable energy sources and feedstocks would be created to avoid the need for an expensive long-distance hydrogen pipeline system. There would thus be complementary use of electricity and hydrogen as energy vectors. Importantly bulk hydrogen storage would provide the strategic energy reserve to guarantee national and global energy security in a world relying increasingly on renewable energy; and longer-term seasonal storage on electricity grids relying mainly on renewables. In the transport sector a 'horses for courses' approach is proposed in which hydrogen fuel cell vehicles would be used in road and rail vehicles requiring a range comparable to today's petrol and diesel vehicles and in coastal and international shipping while liquid hydrogen would probably have to be used in air transport. Plug-in battery electric vehicles would be reserved for shorter-trips. Energy-economic-environmental modelling is recommended as the next step to quantify the net benefits of the overall strategy outlined.
Ignited Releases of Liquid Hydrogen: Safety Considerations of Thermal and Overpressure Effects
Sep 2013
Publication
If the ‘Hydrogen Economy’ is to progress more hydrogen fuelling stations are required. In the short term and in the absence of a hydrogen distribution network these fuelling stations will have to be supplied by liquid hydrogen (LH2) road tankers. Such a development will increase the number of tanker offloading operations significantly and these may need to be performed in close proximity to the general public. LH2 was first investigated experimentally as large-scale spills of LH2 at a rate of 60 litres per minute. Measurements were made on un-ignited releases which included the concentration of hydrogen in air thermal gradients in the concrete substrate liquid pool formation and temperatures within the pool. Computational modelling on the un-ignited spills was also performed. The experimental work on ignited releases of LH2 detailed in this paper is a continuation of the work performed by Royle and Willoughby. The experimental findings presented are split into three phenomena; jet-fires in high and low wind conditions ‘burn-back’ of ignited clouds and secondary explosions post ‘burn-back’. The aim of this work was to determine the hazards and severity of a realistic ignited spill of LH2 focussing on; flammability limits of an LH2 vapour cloud flame speeds through an LH2 vapour cloud and subsequent radiative heat levels after ignition. An attempt was made to estimate the magnitude of an explosion that occurred during one of the releases. The results of these experiments will inform the wider hydrogen community and contribute to the development of more robust modelling tools. The resulting data were used to propose safety distances for LH2 offloading facilities which will help to update and develop guidance for codes and standards.
Development of Standards for Evaluating Materials Compatibility with High-pressure Gaseous Hydrogen
Sep 2013
Publication
The Hydrogen Safety Codes and Standards program element of the US Department of Energy's Fuel Cell Technologies Office provides coordination and technical data for the development of domestic and international codes and standards related to hydrogen technologies. The materials compatibility program task at Sandia National Laboratories (Livermore CA) is focused on developing the technical basis for qualifying materials for hydrogen service i.e. accommodating hydrogen embrittlement. This presentation summarizes code development activities for qualifying materials for hydrogen service with emphasis on the scientific basis for the testing methodologies including fracture mechanics based measurements (fracture threshold and fatigue crack growth) total fatigue life measurements and full- scale pressure vessel testing.
FutureGrid: Project Progress Report
Dec 2021
Publication
The facility will be built from a range of decommissioned transmission assets to create a representative whole-network which will be used to trial hydrogen and will allow for accurate results to be analysed. Blends of hydrogen up to 100% will then be tested at transmission pressures to assess how the assets perform.<br/>The hydrogen research facility will remain separate from the main National Transmission System allowing for testing to be undertaken in a controlled environment with no risk to the safety and reliability of the existing gas transmission network.<br/>Ofgem’s Network Innovation Competition will provide £9.07m of funding with the remaining amount coming from the project partners.<br/>The aim is to start construction in 2021 with testing beginning in 2022.
Simulation of Small-Scale Releases from Liquid Hydrogen Storage Systems
Sep 2009
Publication
Knowledge of the concentration field and flammability envelope from small-scale leaks is important for the safe use of hydrogen. These small-scale leaks may occur from leaky fittings or o-ring seals on liquid hydrogen-based systems. The present study focuses on steady-state leaks with large amounts of pressure drop along the leak path such that hydrogen enters the atmosphere at near atmospheric pressure (i.e. Very low Mach number). A three-stage buoyant turbulent entrainment model is developed to predict the properties (trajectory hydrogen concentration and temperature) of a jet emanating from the leak. Atmospheric hydrogen properties (temperature and quality) at the leak plane depend on the storage pressure and whether the leak occurs from the saturated vapor space or saturated liquid space. In the first stage of the entrainment model ambient temperature air (295 K) mixes with the leaking hydrogen (20–30 K) over a short distance creating an ideal gas mixture at low temperature (∼65 K). During this process states of hydrogen and air are determined from equilibrium thermodynamics using models developed by NIST. In the second stage of the model (also relatively short in distance) the radial distribution of hydrogen concentration and velocity in the jet develops into a Gaussian profile characteristic of free jets. The third and by far the longest stage is the part of the jet trajectory where flow is fully developed. Results show that flammability envelopes for cold hydrogen jets are generally larger than those of ambient temperature jets. While trajectories for ambient temperature jets depend solely on the leak densimetric Froude number results from the present study show that cold jet trajectories depend on the Froude number and the initial jet density ratio. Furthermore the flammability envelope is influenced by the hydrogen concentration in the jet at the beginning of fully developed flow.
Unsteady Lumped-Parameter Modelling Of Hydrogen Combustion in The Presence of a Water Spray
Sep 2009
Publication
In case of severe accidents in Pressurized Water Reactors a great amount of hydrogen can be released the resulting heterogeneous gaseous mixture (hydrogen-air-steam) can be flammable or inert and the pressure effects could alter the confinement of the reactor. Water spray systems have been designed in order to reduce overpressures in the containment but the presence of water droplets could enhance flame propagation through turbulence or generate flammable mixtures since the steam present in the vessel could condense on the droplets and could not inert the mixture anymore. However beneficial effects would be heat sinks and homogenization of mixtures. On-going work is devoted to the modelling of the interaction between fine water droplets and a hydrogen-air flame. We present in this paper an unsteady Lumped Parameter model in detail with a special focus on hydrogen-air flame propagation in the presence of water droplets. The effects of the initial concentration of droplets steam and hydrogen concentrations on flame propagation are discussed in the paper and a comparison between this model and our previous steady Lumped-Parameter model highlights the features of the unsteady approach. This physical model can serve as a validation tool for a CFD modelling. The results will be further validated against experimental data.
Environmental Reactivity of Solid State Hydride Materials
Sep 2009
Publication
In searching for high gravimetric and volumetric density hydrogen storage systems it is inevitable that higher energy density materials will be used. In order to make safe and commercially acceptable condensed phase hydrogen storage systems it is important to understand quantitatively the hazards involved in using and handling these materials and to develop appropriate mitigation strategies to handle potential material exposure events. A crucial aspect of the development of risk identification and mitigation strategies is the development of rigorous environmental reactivity testing standards and procedures. This will allow for the identification of potential hazards and implementation of risk mitigation strategies. Modified testing procedures for shipping air and/or water sensitive materials as codified by the United Nations have been used to evaluate two potential hydrogen storage materials 2LiBH4·MgH2 and NH3BH3. The modified U.N. procedures include identification of self-reactive substances pyrophoric substances and gas-emitting substances with water contact. The results of these tests for air and water contact sensitivity will be compared to the pure material components where appropriate (e.g. LiBH4 and MgH2). The water contact tests are divided into two scenarios dependent on the hydride to water mole ratio and heat transport characteristics. Air contact tests were run to determine whether a substance will spontaneously react with air in a packed or dispersed form. Relative to 2LiBH4·MgH2 the chemical hydride NH3BH3 was observed to be less environmentally reactive.
Effectiveness of a Blower in Reducing the Hazard of Hydrogen Leaking from a Hydrogen-fueled Vehicle
Sep 2013
Publication
To handle a hydrogen fuel cell vehicle (HFCV) safely after its involvement in an accident it is necessary to provide appropriate emergency response information to the first responder. In the present study a forced wind of 10 m/s or faster with and without a duct was applied to a vehicle leaking hydrogen gas at a rate of 2000 NL/min. Then hydrogen concentrations were measured around the vehicle and an ignition test was conducted to evaluate the effectiveness of forced winds and the safety of emergency response under forced wind conditions. The results: 1) Forced winds of 10 m/s or faster caused the hydrogen concentrations in the vicinity of the vehicle to decline to less than the lower flammability limit and the hydrogen gas in the various sections of the vehicles were so diluted that even if ignition occurred the blast-wave pressure was moderate. 2) When the first responder had located the hydrogen leakage point in the vehicle it was possible to lower the hydrogen concentrations around the vehicle by aiming the wind duct towards the leakage point and blowing winds at 10 m/s from the duct exit.
Hydrogen Jet Fires in a Passively Ventilated Enclosure
Oct 2015
Publication
This paper describes a combined experimental analytical and numerical modelling investigation into hydrogen jet fires in a passively ventilated enclosure. The work was funded by the EU Fuel Cells and Hydrogen Joint Undertaking project Hyindoor. It is relevant to situations where hydrogen is stored or used indoors. In such situations passive ventilation can be used to prevent the formation of a flammable atmosphere following a release of hydrogen. Whilst a significant amount of work has been reported on unignited releases in passively ventilated enclosures and on outdoor hydrogen jet fires very little is known about the behaviour of hydrogen jet fires in passively ventilated enclosures. This paper considers the effects of passive ventilation openings on the behaviour of hydrogen jet fires. A series of hydrogen jet fire experiments were carried out using a 31 m3 passively ventilated enclosure. The test programme included subsonic and chocked flow releases with varying hydrogen release rates and vent configurations. In most of the tests the hydrogen release rate was sufficiently low and the vent area sufficiently large to lead to a well-ventilated jet fire. In a limited number of tests the vent area was reduced allowing under-ventilated conditions to be investigated. The behaviour of a jet fire in a passively ventilated enclosure depends on the hydrogen release rate the vent area and the thermal properties of the enclosure. An analytical model was used to quantify the relative importance of the hydrogen release rate and vent area whilst the influence of the thermal properties of the enclosure were investigated using a CFD model. Overall the results indicate that passive ventilation openings that are sufficiently large to safely ventilate an unignited release will tend to be large enough to prevent a jet fire from becoming under-ventilated.
A Vision for Hydrogen in New Zealand - Green Paper
Sep 2019
Publication
Green hydrogen has the potential to play a significant role in our energy system and could play an important role in decarbonising parts of our economy.
To assist with the development of the Hydrogen Green Paper MBIE assisted by consultants Arup – held four workshops with key stakeholders in Wellington Auckland Christchurch and New Plymouth. The workshops were well attended with a range of views expressed on the potential for hydrogen in New Zealand. Following the workshops we incorporated these views into a Hydrogen Green Paper which was released for public consultation. We sought feedback from the public and wider stakeholders about the challenges and opportunities of building a hydrogen economy in New Zealand as part of our renewable energy strategy. On 2 September 2019 we released the green paper – “A vision for hydrogen in New Zealand”. Consultation ended on 25 October 2019. The green paper looked at the scope of New Zealand’s hydrogen potential to frame discussions for a national strategy.
The green paper asked 27 questions about the challenges and opportunities and the Government’s role in nine key areas:
This green paper along with the submissions will feed into a wider renewable energy strategy for New Zealand. This will outline the renewable energy pathway to a clean green carbon neutral for New Zealand by 2050.
To assist with the development of the Hydrogen Green Paper MBIE assisted by consultants Arup – held four workshops with key stakeholders in Wellington Auckland Christchurch and New Plymouth. The workshops were well attended with a range of views expressed on the potential for hydrogen in New Zealand. Following the workshops we incorporated these views into a Hydrogen Green Paper which was released for public consultation. We sought feedback from the public and wider stakeholders about the challenges and opportunities of building a hydrogen economy in New Zealand as part of our renewable energy strategy. On 2 September 2019 we released the green paper – “A vision for hydrogen in New Zealand”. Consultation ended on 25 October 2019. The green paper looked at the scope of New Zealand’s hydrogen potential to frame discussions for a national strategy.
The green paper asked 27 questions about the challenges and opportunities and the Government’s role in nine key areas:
- Hydrogen production
- Hydrogen electricity nexus
- Hydrogen for mobility
- Hydrogen for industrial processes
- Hydrogen for seasonal power generation
- Decarbonisation of our gas
- Hydrogen for export
- Innovation expands job opportunities
- Transitioning the job market
This green paper along with the submissions will feed into a wider renewable energy strategy for New Zealand. This will outline the renewable energy pathway to a clean green carbon neutral for New Zealand by 2050.
Experimental Investigation on Helium Jet Release and Distribution in a Vented Cylindrical Enclosure – Effect of Wall Temperature Conditions
Oct 2015
Publication
Hydrogen generated during core meltdown accidents in nuclear reactors can cause serious threat to the structural integrity of the containment and safe operation of nuclear power plants. The study of hydrogen release and mixing within the containments is an important area of safety research as hydrogen released during such accidents in nuclear power plants can lead to hydrogen explosions and catastrophic consequences. A small scale experimental setup called the AERB-IIT Madras Hydrogen Mixing Studies (AIHMS) facility is setup at IIT Madras to study the distribution of hydrogen subsequent to release as a jet followed by its response to various wall thermal conditions. The present paper gives details of the design fabrication and instrumentation of the AIHMS facility and a comparison of features of the facility with respect to other facilities existing for hydrogen mitigation studies. Then it gives details of the experiments conducted and the results of the preliminary experiments on concentration build-up as a result of injection of gases (air and helium) and effect of thermally induced natural convection on gas mixing performed in this experimental facility.
Hydrogen Compatibility of Austenitic Stainless Steel Tubing and Orbital Tube Welds
Sep 2013
Publication
Refueling infrastructure for use in gaseous hydrogen powered vehicles requires extensive manifolding for delivering the hydrogen from the stationary fuel storage at the refueling station to the vehicle as well as from the mobile storage on the vehicle to the fuel cell or combustion engine. Manifolds for gas handling often use welded construction (as opposed to compression fittings) to minimize gas leaks. Therefore it is important to understand the effects of hydrogen on tubing and tubing welds. This paper provides a brief overview of on-going studies on the effects of hydrogen precharging on the tensile properties of austenitic stainless tubing and orbital tube welds of several austenitic stainless steels.
Hourly Modelling of Thermal Hydrogen Electricity Markets
Jul 2020
Publication
The hourly operation of Thermal Hydrogen electricity markets is modelled. The economic values for all applicable chemical commodities are quantified (syngas ammonia methanol and oxygen) and an hourly electricity model is constructed to mimic the dispatch of key technologies: bi-directional power plants dual-fuel heating systems and plug-in fuel-cell hybrid electric vehicles. The operation of key technologies determines hourly electricity prices and an optimization model adjusts the capacity to minimize electricity prices yet allow all generators to recover costs. We examine 12 cost scenarios for renewables nuclear and natural gas; the results demonstrate emissionsfree ‘energy-only’ electricity markets whose supply is largely dominated by renewables. The economic outcome is made possible in part by seizing the full supply-chain value from electrolysis (both hydrogen and oxygen) which allows an increased willingness to pay for (renewable) electricity. The wholesale electricity prices average $25–$45/ MWh or just slightly higher than the assumed levelized cost of renewable energy. This implies very competitive electricity prices particularly given the lack of need for ‘scarcity’ pricing capacity markets dedicated electricity storage or underutilized electric transmission and distribution capacity.
Hydrogen Strategy - Enabling a Low-Carbon Economy
Jul 2020
Publication
This document summarizes current hydrogen technologies and communicates the U.S. Department of Energy (DOE) Office of Fossil Energy's (FE's) strategic plan to accelerate research development and deploymnet of hydrogen technologies in the United States. It also describes ongoing FE hydrogen-related research and development (R&D). Hydrogen from fossil fuels is a versatile energy carrier and can play an important role in the transition to a low-carbon economy.
Carbon Negative Transportation Fuels - A Techno-Economic-Environmental Analysis of Biomass Pathways for Transportation
Feb 2022
Publication
Global warming and fossil fuel depletion have necessitated alternative sources of energy. Biomass is a promising fuel source because it is renewable and can be carbon negative even without carbon capture and storage. This study considers biomass as a clean renewable source for transportation fuels. An Aspen Plus process simulation model was built of a biomass gasification biorefinery with Fischer-Tropsch (FT) synthesis of liquid fuels. A GaBi life cycle assessment model was also built to determine the environmental impacts using a cradle-to-grave approach. Three different product pathways were considered: Fischer-Tropsch synthetic diesel hydrogen and electricity. An offgas autothermal reformer with a recycle loop was used to increase FT product yield. Different configurations and combinations of biorefinery products are considered. The thermal efficiency and cost of production of the FT liquid fuels are analyzed using the Aspen Plus process model. The greenhouse gas emissions profitability and mileage per kg biomass were compared. The mileage traveled per kilogram biomass was calculated using modern (2019-2021) diesel electric and hydrogen fuel cell vehicles. The overall thermal efficiency was found to be between 20-41% for FT fuels production between 58-61% for hydrogen production and around 25-26% for electricity production for this biorefinery. The lowest production costs were found to be $3.171/gal of FT diesel ($24.304/GJ) $1.860/kg of H2 ($15.779/GJ) and 13.332¢/kWh for electricity ($37.034/GJ). All configurations except one had net negative carbon emissions over the life cycle of the biomass. This is because carbon is absorbed in the trees initially and some of the carbon is sequestered in ash and unconverted char from the gasification process furthermore co-producing electricity while making transportation fuel offsets even more carbon emissions. Compared to current market rates for diesel hydrogen and electricity the most profitable biorefinery product is shown to be hydrogen while also having net negative carbon emissions. FT diesel can also be profitable but with a slimmer profit margin (not considering government credits) and still having net negative carbon emissions. However our biorefinery could not compete with current commercial electricity prices in the US. As oil hydrogen and electricity prices continue to change the economics of the biorefinery and the choice product will change as well. For our current biorefinery model hydrogen seems to be the most promising product choice for profit while staying carbon negative while FT diesel is the best choice for sequestering the most carbon and still being profitable. All code and data are given.
Experimental and Numerical Study on Spontaneous Ignition of Hydrogen-methane Jets in Air
Sep 2013
Publication
This paper is an investigation of the spontaneous ignition process of high-pressure hydrogen and hydrogen-methane mixtures injected into air. The experiments were conducted in a closed channel filled with air where the hydrogen or hydrogen–methane mixture depressurised through different tubes (diameters d = 6 10 and 14 mm and lengths L = 10 25 40 50 75 and 100 mm). The methane addition to the mixture was 5% and 10% vol. The results showed that only 5% methane addition may increase even 2.67 times the pressure at which the mixture may ignite in comparison to the pressure of the pure hydrogen flow. The 10% of methane addition did not provide an ignition for burst pressures up to 15.0 MPa in the geometrical configuration with the longest tube (100 mm). Additionally the simulations of the experimental configuration with pure hydrogen were performed with the use of KIVA numerical code with full kinetic reaction mechanism.
Numerical Modelling of Hazards of Hydrogen Storage
Sep 2017
Publication
For the general public to use hydrogen as a vehicle fuel they must be able to handle hydrogen with the same degree of confidence as conventional liquid and gaseous fuels. The hazards associated with jet releases from accidental leaks in a vehicle-refuelling environment must be considered if hydrogen is stored and used as a high-pressure gas since a jet release can result in a fire or explosion. This paper describes the work done by us in modelling some of the consequences of accidental releases of hydrogen implemented in our Fire Explosion Release Dispersion (FRED) software. The new dispersion model is validated against experimental data available in the open literature. The model predictions of hydrogen gas concentration as a function of distance are in good agreement with experiments. In addition FRED has been used to model the consequence of the bursting of a vessel containing compressed hydrogen. The results obtained from FRED i.e. overpressure as a function of distance match well in comparison to experiments. Overall it is concluded that FRED can model the consequences of an accidental release of hydrogen and the blast waves generated from bursting of vessel containing compressed hydrogen
Generation of Hydrogen and Oxygen from Water by Solar Energy Conversion
Dec 2021
Publication
Photosynthesis is considered to be one of the promising areas of cheap and environmentally friendly energy. Photosynthesis involves the process of water oxidation with the formation of molecular oxygen and hydrogen as byproducts. The aim of the present article is to review the energy (light) phase of photosynthesis based on the published X-ray studies of photosystems I and II (PS-I and PS-II). Using modern ideas about semiconductors and biological semiconductor structures the mechanisms of H+ O2↑ e− generation from water are described. At the initial stage PS II produces hydrogen peroxide from water as a result of the photoenzymatic reaction which is oxidized in the active center of PS-II on the Mn4CaO5 cluster to form O2↑ H+ e−. Mn4+ is reduced to Mn2+ and then oxidized to Mn4+ with the transfer of reducing the equivalents of PS-I. The electrons formed are transported to PS-I (P 700) where the electrochemical reaction of water decomposition takes place in a two-electrode electrolysis system with the formation of gaseous oxygen and hydrogen. The proposed functioning mechanisms of PS-I and PS-II can be used in the development of environmentally friendly technologies for the production of molecular hydrogen.
Kinetic Modeling and Quantum Yields: Hydrogen Production via Pd‐TiO2 Photocatalytic Water Splitting under Near‐UV and Visible Light
Jan 2022
Publication
A palladium (Pd) doped mesoporous titanium dioxide (TiO2) photocatalyst was used to produce hydrogen (H2) via water splitting under both near‐UV and visible light. Experiments were carried out in the Photo‐CREC Water‐II Reactor (PCW‐II) using a 0.25 wt% Pd‐TiO2 photocatalyst initial pH = 4 and 2.0 v/v% ethanol as an organic scavenger. After 6 h of near‐UV irradiation this photocatalyst yielded 113 cm3 STP of hydrogen (H2). Furthermore after 1 h of near‐UV photoreduc‐ tion followed by 5 h of visible light the 0.25 wt% Pd‐TiO2 photocatalyst yielded 5.25 cm3 STP of H2. The same photocatalyst photoreduced for 24 h under near‐UV and subsequently exposed to 5 h of visible light yielded 29 cm3 STP of H2. It was observed that the promoted redox reactions led to the production of hydrogen and by‐products such as methane ethane ethylene acetaldehyde carbon monoxide carbon dioxide and hydrogen peroxide. These redox reactions could be modeled using an “in series‐parallel” reaction network and Langmuir Hinshelwood based kinetics. The proposed rate equations were validated using statistical analysis for the experimental data and calculated kinetic parameters. Furthermore Quantum yields (QYୌ%) based on the H produced were also established at promising levels: (a) 34.8% under near‐UV light and 1.00 g L−1 photocatalyst concen‐ tration; (b) 8.8% under visible light and 0.15 g L−1. photocatalyst concentration following 24 h of near‐UV.
Progress in Power-to-Gas Energy Systems
Dec 2022
Publication
Hydrogen is expected to become a key component in the decarbonized energy systems of the future. Its unique chemical characteristics make hydrogen a carbon-free fuel that is suitable to be used as broadly as fossil fuels are used today. Since hydrogen can be produced by splitting water molecules using electricity as the only energy input needed hydrogen offers the opportunity to produce a fully renewable fuel if the electricity input also only stems from renewable sources. Once renewable electricity is converted into hydrogen it can be stored over long periods of time and transported over long even intercontinental distances. Underground hydrogen storage pipelines compressors liquefaction-units and transportation ships are infrastructures and suitable technologies to establish a global hydrogen energy system. Several chemical synthesis routes exist to produce more complex products from green hydrogen to fulfil the demands of various end-users and industries. One exemplary power-to-gas product is methane which can be used as a natural gas substitute. Furthermore ammonia alcohols kerosene and all other important products from hydrocarbon chemistry can be synthesized using green hydrogen.
No more items...