Publications
Legal Regulation of Hydrogen in Germany and Ukraine as a Precondition for Energy Partnership and Energy Transition
Dec 2021
Publication
In August 2020 Germany and Ukraine launched an energy partnership that includes the development of a hydrogen economy. Ukraine has vast renewable energy resources for “green” hydrogen production and a gas transmission system for transportation instead of Russian natural gas. Based on estimates by Hydrogen Europe Ukraine can install 8000 MW of total electrolyser capacity by 2030. For these reasons Ukraine is among the EU’s priority partners concerning clean hydrogen according to the EU Hydrogen strategy. Germany plans to reach climate neutrality by 2045 and “green” hydrogen plays an important role in achieving this target. However according to the National Hydrogen Strategy of Germany local production of “green” hydrogen will not cover all internal demand in Germany. For this reason Germany considers importing hydrogen from Ukraine. To govern the production and import of “green” hydrogen Germany and Ukraine shall introduce legal regulations the initial analysis of which is covered in this study. Based on observation and comparison this paper presents and compares approaches while exploring the current stage and further perspectives for legal regulation of hydrogen in Germany and Ukraine. This research identifies opportunities in hydrogen production to improve the flexibility of the Ukrainian power system. This is an important issue for Ukrainian energy security. In the meantime hydrogen can be a driver for decarbonisation according to the initial plans of Germany and it may also have positive impact on the operation of Germany’s energy system with a high share of renewables.
Hydrogen Roadmap: A Commitment to Renewable Hydrogen - Executive Summary
Oct 2020
Publication
This Hydrogen Roadmap aims to identify the challenges and opportunities for the full development of renewable hydrogen in Spain providing a series of measures aimed at boosting investment action taking advantage of the European consensus on the role that this energy vector should play in the context of green recovery. This Roadmap is therefore aligned with the 2021 Annual Sustainable Growth Strategy published by the European Commission which identifies the future Recovery and Resilience Mechanism as an opportunity to create emblematic areas of action at European level making two of these areas of action (Power up and Recharge and Refuel) an explicit mention of the development of renewable hydrogen in the European Union.
Updated Jet Flame Radiation Modelling with Corrections for Buoyancy and Wind
Sep 2013
Publication
Radiative heat fluxes from small to medium-scale hydrogen jet flames (<10 m) compare favorably to theoretical predictions provided the product species thermal emittance and optical flame thickness are corrected for. However recent heat flux measurements from two large-scale horizontally orientated hydrogen flames (17.4 and 45.9 m respectively) revealed that current methods underpredicted the flame radiant fraction by 40% or more. Newly developed weighted source flame radiation models have demonstrated substantial improvement in the heat flux predictions particularly in the near-field and allow for a sensible way to correct potential ground surface reflective irradiance. These updated methods are still constrained by the fact that the flame is assumed to have a linear trajectory despite buoyancy effects that can result in significant flame deformation. The current paper discusses a method to predict flame centerline trajectories via a one-dimensional flame integral model which enables optimized placement of source emitters for weighted multi-source heat flux prediction methods. Flame shape prediction from choked releases was evaluated against flame envelope imaging and found to depend heavily on the notional nozzle model formulation used to compute the density weighted effective nozzle diameter. Nonetheless substantial improvement in the prediction of downstream radiative heat flux values occurred when emitter placement was corrected by the flame integral model regardless of the notional nozzle model formulation used.
Numerical Investigation on the Dispersion of Hydrogen Leaking from a Hydrogen Fuel Cell Vehicle in Seaborne Transportation
Oct 2015
Publication
The International Maritime Organization under the United Nations has developed safety requirements for seaborne transportation of hydrogen fuel cell vehicles in consideration of a recent increase in such transportation. Japan has led the development of new regulations in the light of some research outcomes including numerical simulations on hydrogen dispersion in a cargo space of a vehicle carrier in case of accidental leakage of hydrogen from the vehicle. Numerical results indicate that the region of space occupied by flammable hydrogen/air mixture strongly depends on the direction of ventilation openings. These findings have contributed to the development of new international regulations.
Dependence of Hydrogen Embrittlement on Hydrogen in the Surface Layer in Type 304 Stainless Steel
Sep 2013
Publication
Hydrogen embrittlement (HE) together with the hydrogen transport behaviour in hydrogen-charged type 304 stainless steel was investigated by combined tension and outgassing experiments. The hydrogen release rate and HE of hydrogen-charged 304 specimens increase with the hydrogen pressure for hydrogen-charging (or hydrogen content) and almost no HE is observed below the hydrogen content of 8.5 mass ppm. Baking at 433 K for 48 h can eliminate HE of the hydrogen-charged 304 specimen while removing the surface layer will restore HE which indicates that hydrogen in the surface layer plays the primary role in HE. Scanning electron microscopy (SEM) and scanning tunnel microscopy (STM) observations show that particles attributed to the strain-induced α′ martensite formation break away from the matrix and the small holes form during deformation on the specimen surface. With increasing strain the connection among small holes along {111} slip planes of austenite will cause crack initiation on the surface and then the hydrogen induced crack propagates from the surface to interior.
Material Testing and Design Recommendations for Components Exposed to Hydrogen Enhanced Fatigue – the Mathryce Project
Sep 2013
Publication
The three years European MATHRYCE project dedicated to material testing and design recommendations for components exposed to hydrogen enhanced fatigue started in October 2012. Its main goal is to provide an “easy” to implement methodology based on lab-scale experimental tests under hydrogen gas to assess the service life of a real scale component taking into account fatigue loading under hydrogen gas. Dedicated experimental tests will be developed for this purpose. In the present paper the proposed approach is presented and compared to the methodologies currently developed elsewhere in the world.
Digital Navigation of Energy–structure–function Maps for Hydrogen-bonded Porous Molecular Crystals
Feb 2021
Publication
Energy–structure–function (ESF) maps can aid the targeted discovery of porous molecular crystals by predicting the stable crystalline arrangements along with their functions of interest. Here we compute ESF maps for a series of rigid molecules that comprise either a triptycene or a spiro-biphenyl core functionalized with six different hydrogen-bonding moieties. We show that the positioning of the hydrogen-bonding sites as well as their number has a profound influence on the shape of the resulting ESF maps revealing promising structure–function spaces for future experiments. We also demonstrate a simple and general approach to representing and inspecting the high-dimensional data of an ESF map enabling an efficient navigation of the ESF data to identify ‘landmark’ structures that are energetically favourable or functionally interesting. This is a step toward the automated analysis of ESF maps an important goal for closed-loop autonomous searches for molecular crystals with useful functions.
CFD Modeling OF LH2 Dispersion Using the ADREA-HF Code
Sep 2011
Publication
In the present work the computational fluid dynamics (CFD) code ADREA-HF has been applied to simulate the very recent liquefied hydrogen spill experiments performed by the Health Safety Laboratory (HSL). The experiment consists of four LH2 release trials over concrete at a fixed rate of 60 lt/min but with different release direction height and duration. In the modeling the hydrogen source was treated as a two phase jet enabling simultaneous modeling of pool formation spreading as well as hydrogen vapor dispersion. Turbulence was modeled with the standard k- model modified for buoyancy effects. The effect of solidification of the atmospheric humidity was taken into account. The predicted concentration at the experimental sensors? locations was compared with the observed one. The results from the comparison of the predicted concentration with and without solidification of the atmospheric humidity indicate that the released heat from the solidification affects significantly the buoyant behavior of the hydrogen vapor. Therefore the simulation with solidification of the atmospheric humidity is in better agreement with the experiment.
Visualisation of Jet Fires from Hydrogen Release
Sep 2009
Publication
In order to achieve a high level of safety while using hydrogen as a vehicle fuel the possible hazards must be estimated. Especially hydrogen release tests with defined ignition represent a very important way to characterize the basics of hydrogen combustion in a potential accident. So ICT participated on a hydrogen jet release campaign at HSL (Buxton) in 2008 to deploy their measurement techniques and evaluation methods to visualize jets ignition and subsequent flames. The following paper shows the application of high speed cinematography in combination with image processing techniques the Background Oriented Schlieren (BOS) and a difference method to visualize the shape of hydrogen jet. In addition these methods were also used to observe ignition and combustion zone after defined initiation. In addition the combustion zone was recorded by a fast spectral radiometer and a highspeed-IR-camera. The IR-camera was synchronized with a rotating filter wheel to generate four different motion pictures at 100Hz each on a defined spectral range. The results of this preliminary evaluation provide some detailed information that might be used for improving model predictions.
Mechanism of High Pressure Hydrogen Auto-Ignition When Spouting Into Air
Sep 2009
Publication
High pressure hydrogen leak is one of the top safety issues presently. This study elucidates the physics and mechanism of high pressure hydrogen jet ignition when the hydrogen suddenly spouts into the air. The experimental work was done elsewhere while we did the numerical work on this high pressure hydrogen leak problem. The direct numerical simulation based on the compressible fluid dynamics considering viscous effect was carried out with the two-dimensional axisymmetric coordinate system A detailed model of hydrogen reaction is applied and a narrow tube attached to a high pressure reservoir is assumed in the numerical simulation. The exit of the tube is opened in the atmosphere. When high pressure hydrogen is passing through the tube filled by atmospheric air a strong shock wave is formed and heats up hydrogen behind the shock wave by compression effect. The leading shock wave is expanded widely after the exit hydrogen then mixed with air by several vortices generated around the exit of the tube. As a result a couple of auto-ignitions of hydrogen occur. It is found that there is a certain relationship between the auto-ignition and tube length. When the tube becomes longer the tendency of auto-ignition is increased. Additionally other type of auto-ignitions is predicted. An explosion is also occurred in the tube under a certain condition. Vortex is generated behind the shock wave in the long tube. There is a possibility of an auto-ignition induced by vortices.
Experimental Study of Hydrogen Release Accidents in a Vehicle Garage
Sep 2009
Publication
Storing a hydrogen fuel-cell vehicle in a garage poses a potential safety hazard because of the accidents that could arise from a hydrogen leak. A series of tests examined the risk involved with hydrogen releases and deflagrations in a structure built to simulate a one-car garage. The experiments involved igniting hydrogen gas that was released inside the structure and studying the effects of the deflagrations. The “garage” measured 2.72 m high 3.64 m wide and 6.10 m long internally and was constructed from steel using a reinforced design capable of withstanding a detonation. The front face of the garage was covered with a thin transparent plastic film. Experiments were performed to investigate extended-duration (20–40 min) hydrogen leaks. The effect that the presence of a vehicle in the garage has on the deflagration was also studied. The experiments examined the effectiveness of different ventilation techniques at reducing the hydrogen concentration in the enclosure. Ventilation techniques included natural upper and lower openings and mechanical ventilation systems. A system of evacuated sampling bottles was used to measure hydrogen concentration throughout the garage prior to ignition and at various times during the release. All experiments were documented with standard and infrared (IR) video. Flame front propagation was monitored with thermocouples. Pressures within the garage were measured by four pressure transducers mounted on the inside walls of the garage. Six free-field pressure transducers were used to measure the pressures outside the garage.
Numerical Simulation of the Helium Dispersion in a Semi-confined Air-filled Cavity
Sep 2013
Publication
This paper deals with the build-up of concentration when a continuous source of helium is supplied in an air-filled enclosure. Our aim is to reproduce the results of a small-scale experimental study. To begin with the size of the experiment is reduced from 1/10 to 3/5 for the present analysis. Hypotheses are made in order to reduce the dimension of the real problem. Numerical simulations are carried out on fine grids without any turbulence modelling. The flow structure and the concentration profile of the resulting flow are analyzed and compared with theoretical results.
Analysis of Composite Hydrogen Storage Cylinders under Transient Thermal Loads
Sep 2007
Publication
In order to ensure safe operation of hydrogen storage cylinders under adverse conditions one should be able to predict the extremities under which these cylinders are capable of operating without failing catastrophically. It is therefore necessary to develop a comprehensive model which can predict the behavior and failure of composite storage cylinders when subjected to various types of loading conditions and operating environments. In the present work a finite element model has been developed to analyze composite hydrogen storage cylinders subjected to transient localized thermal loads and internal pressure. The composite cylinder consists of an aluminium liner that serves as a hydrogen gas permeation barrier. A filament-wound carbon/epoxy composite laminate placed over the liner provides the desired load bearing capacity. A glass/epoxy layer or other material is placed over the carbon/epoxy laminate to provide damage resistance for the carbon/epoxy laminates. A doubly curved composite shell element accounting for transverse shear deformation and geometric nonlinearity is used. A temperature dependent material model has been developed and implemented in ABAQUS using user subroutine. A failure model based on Hashin's failure theory is used to predict the various types of failure in the cylinder. A progressive damage model has also been implemented to account for reduction in modulus due to failure. A sublaminate model has been developed to save computational time and reduce the complications in the analysis. A numerical study is conducted to analyze a typical hydrogen storage cylinder and possible failure trends due to localized thermal loading and internal pressure is presented.
Electric and Hydrogen Buses: Shifting from Conventionally Fuelled Cars in the UK
May 2020
Publication
For the UK to meet their national target of net zero emissions as part of the central Paris Agreement target further emphasis needs to be placed on decarbonizing public transport and moving away from personal transport (conventionally fuelled vehicles (CFVs) and electric vehicles (EVs)). Electric buses (EBs) and hydrogen buses (HBs) have the potential to fulfil requirements if powered from low carbon renewable energy sources.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
Quantitative Evaluations of Hydrogen Diffusivity in V-X (X = Cr, Al, Pd) Alloy Membranes Based on Hydrogen Chemical Potential
Jan 2021
Publication
Vanadium (V) has higher hydrogen permeability than Pd-based alloy membranes but exhibits poor resistance to hydrogen-induced embrittlement. The alloy elements are added to reduce hydrogen solubility and prevent hydrogen-induced embrittlement. To enhance hydrogen permeability the alloy elements which improve hydrogen diffusivity in V are more suitable. In the present study hydrogen diffusivity in V-Cr V-Al and V-Pd alloy membranes was investigated in view of the hydrogen chemical potential and compared with the previously reported results of V-Fe alloy membranes. The additions of Cr and Fe to V improved the mobility of hydrogen atoms. In contrast those of Al and Pd decreased hydrogen diffusivity. The first principle calculations revealed that the hydrogen atoms cannot occupy the first-nearest neighbour T sites (T1 sites) of Al and Pd in the V crystal lattice. These blocking effects will be a dominant contributor to decreasing hydrogen diffusivity by the additions of Al and Pd. For V-based alloy membranes Fe and Cr are more suitable alloy elements compared with Al and Pd in view of hydrogen diffusivity.
A Modelling Study for the Integration of a PEMFC Micro-CHP in Domestic Building Services Design
May 2018
Publication
Fuel cell based micro-combined heat and power (CHP) units used for domestic applications can provide significant cost and environmental benefits for end users and contribute to the UK’s 2050 emissions target by reducing primary energy consumption in dwellings. Lately there has been increased interest in the development of systematic methods for the design of such systems and their smoother integration with domestic building services. Several models in the literature whether they use a simulation or an optimisation approach ignore the dwelling side of the system and optimise the efficiency or delivered power of the unit. However the design of the building services is linked to the choice of heating plant and its characteristics. Adding the dwelling’s energy demand and temperature constraints in a model can produce more general results that can optimise the whole system not only the micro-CHP unit. The fuel cell has various heat streams that can be harvested to satisfy heat demand in a dwelling and the design can vary depending on the proportion of heat needed from each heat stream to serve the energy demand. A mixed integer non-linear programming model (MINLP) that can handle multiple heat sources and demands is presented in this paper. The methodology utilises a process systems engineering approach. The model can provide a design that integrates the temperature and water flow constraints of a dwelling’s heating system with the heat streams within the fuel cell processes while optimising total CO2 emissions. The model is demonstrated through different case studies that attempt to capture the variability of the housing stock. The predicted CO2 emissions reduction compared to a conventionally designed building vary from 27% to 30% and the optimum capacity of the fuel cell ranges between 1.9 kW and 3.6 kW. This research represents a significant step towards an integrated fuel cell micro-CHP and dwelling design.
Operation Analysis of Selected Domestic Appliances Supplied with Mixture of Nitrogen-Rich Natural Gas with Hydrogen
Dec 2021
Publication
This is article presents the results of the testing of the addition of a hydrogen-to-nitrogen-rich natural gas of the Lw group and its influence on the operation of selected gas-fired domestic appliances. The tests were performed on appliances used for the preparation of meals and hot water production for hygienic and heating purposes. The characteristics of the tested gas appliances are also presented. The burners and their controllers with which the tested appliances were equipped were adapted for the combustion of Lw natural gas. The tested appliances reflected the most popular designs for domestic gas appliances in their group used both in Poland and in other European countries. The tested appliances were supplied with nitrogen-rich natural gas of the Lw group and a mixture of this gas with hydrogen at 13.2% content. The article presents the approximate percentage compositions of the gases used during the tests and their energy parameters. The research was focused on checking the following operating parameters and the safety of the tested appliances: the rated heat input thermal efficiency combustion quality ignition flame stability and transfer. The article contains an analysis of the test results referring in detail to the issue of decreasing the heat input of the appliances by lowering the energy parameters of the nitrogen-rich natural gas of the Lw group mixture with a hydrogen addition and how it influenced the thermal efficiency achieved by the appliances. The conclusions contain an explanation regarding among other things how the design of an appliance influences the thermal efficiency achieved by it in relation to the heat input decrease. In the conclusions on the basis of the research results answers have been provided to the following questions: (1) Whether the hydrogen addition to the nitrogen-rich natural gas of the Lw group will influence the safe and proper operation of domestic gas appliances; (2) What hydrogen percentage can be added to the nitrogen-rich natural gas of the Lw group in order for the appliances adapted for combusting it to operate safely and effectively without the need for modifying them?
Two-Stage Energy Management Strategies of Sustainable Wind-PV-Hydrogen-Storage Microgrid Based on Receding Horizon Optimization
Apr 2022
Publication
Hydrogen and renewable electricity-based microgrid is considered to be a promising way to reduce carbon emissions promote the consumption of renewable energies and improve the sustainability of the energy system. In view of the fact that the existing day-ahead optimal operation model ignores the uncertainties and fluctuations of renewable energies and loads a two-stage energy management model is proposed for the sustainable wind-PV-hydrogen-storage microgrid based on receding horizon optimization to eliminate the adverse effects of their uncertainties and fluctuations. In the first stage the day-ahead optimization is performed based on the predicted outpower of WT and PV the predicted demands of power and hydrogen loads. In the second stage the intra-day optimization is performed based on the actual data to trace the day-ahead operation schemes. Since the intra-day optimization can update the operation scheme based on the latest data of renewable energies and loads the proposed two-stage management model is effective in eliminating the uncertain factors and maintaining the stability of the whole system. Simulations show that the proposed two-stage energy management model is robust and effective in coordinating the operation of the wind-PV-hydrogen-storage microgrid and eliminating the uncertainties and fluctuations of WT PV and loads. In addition the battery storage can reduce the operation cost alleviate the fluctuations of the exchanged power with the power grid and improve the performance of the energy management model.
Deflagration Safety Study of Mixtures of Hydrogen and Natural Gas in a Semi-open Space
Sep 2007
Publication
In the transition to a hydrogen economy it is likely that hydrogen will be used or stored in close proximity to other flammable fuels and gases. Accidents can occur that result in the release of two or more fuels such as hydrogen and natural gas that can mix and form a hazard. A series of five medium-scale semi-open-space deflagration experiments have been conducted with hydrogen natural gas and air mixtures. The natural gas consisted of 90% methane 6% ethane 3% propane and 1% butane by volume. Mixtures of hydrogen and natural gas were created with the hydrogen mole fraction in the fuel varying from 1.000 to 0.897 and the natural gas mole fraction varying from 0.000 to 0.103. The hydrogen and natural gas mixture was then released inside a 5.27-m³ thin plastic tent. The stoichiometric fuel-air mixtures were ignited with a 40-J spark located at the bottom center of the tent. Overpressure and impulse data were collected using pressure transducers located within the mixture volume and in the free field. Flame front time-of-arrival was measured using fast response thermocouples and infrared video. Flame speeds relative to a fixed observer were measured between 36.2 m/s and 19.7 m/s. Average peak overpressures were measured between 2.0 kPa and 0.3 kPa. The addition of natural gas inhibited the combustion when the hydrogen mole fraction was less than or equal to 0.949. For these mixtures there was a significant decrease in overpressures. When the hydrogen mole fraction in the fuel was between 0.999 and 0.990 the overpressures were slightly higher than for the case of hydrogen alone. This could be due to experimental scatter or there may be a slight enhancement of the combustion when a very small amount of natural gas was present. From a safety standpoint variation in overpressure was small and should have little effect on safety considerations.
Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting
Apr 2022
Publication
Electrocatalysts are capable of transforming water into hydrogen oxygen and therefore into energy in an environmentally friendly and sustainable manner. However the limitations in the research of high performance catalysts act as an obstructer in the development of using water as green energy. Here we report on a delicate method to prepare novel bimetallic metal organic framework derived electrocatalysts (C–NiCu–BDC–GO–CC) using graphene oxide (GO) modified carbon cloth as a 3D flexible and conductive substrate. The resultant electrocatalyst C–NiCu–BDC– GO–CC exhibited very low electron transfer resistance which benefited from its extremely thin 3D sponge-like morphology. Furthermore it showed excellent oxygen evolution reaction (OER) activity achieving 10 mA/cm2 at a low overpotential of 390 mV in 1 M KOH electrolyte with a remarkable durability of 10 h.
A Homogeneous Non-equilibrium Two-phase Critical Flow Model
Sep 2011
Publication
A non-equilibrium two-phase single-component critical (choked) flow model for cryogenic fluids is developed from first principle thermodynamics. Modern equations-of-state (EOS) based upon the Helmholtz free energy concepts are incorporated into the methodology. Extensive validation of the model is provided with the NASA cryogenic data tabulated for hydrogen methane nitrogen and oxygen critical flow experiments performed with four different nozzles. The model is used to develop a hydrogen critical flow map for stagnation states in the liquid and supercritical regions.
Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production
Dec 2021
Publication
Development of efficient and affordable photocatalysts is of great significance for energy production and environmental sustainability. Transition metal chalcogenides (TMCs) with particle sizes in the 1–100 nm have been used for various applications such as photocatalysis photovoltaic and energy storage due to their quantum confinement effect optoelectronic behavior and their stability. In particular TMCs and their heterostructures have great potential as an emerging inexpensive and sustainable alternative to metal-based catalysts for hydrogen evolution. Herein the methods used for the fabrication of TMCs characterization techniques employed and the different methods of solar hydrogen production by using different TMCs as photocatalyst are reviewed. This review provides a summary of TMC photocatalysts for hydrogen production.
Living Carbon Free – Exploring What a Net-zero Target Means for Households
Jun 2019
Publication
The Energy Systems Catapult (ESC) explored the role of households in a net-zero emissions society to accompany the CCC’s Net Zero report looking at opportunities and challenges for households to reduce emissions from today’s levels and to support the stretch from an 80% emissions reduction to a net-zero greenhouse gas target. As well as describing a net-zero emissions world for households of different types the ESC looked at average household emissions under different decarbonisation scenarios and the options households can take to contribute to the decarbonisation effort.
This supported the Net Zero Technical report.
This supported the Net Zero Technical report.
Theoretical Insights into the Hydrogen Evolution Reaction on the Ni3N Electrocatalyst
Jun 2021
Publication
Ni-based catalysts are attractive alternatives to noble metal electrocatalysts for the hydrogen evolution reaction (HER). Herein we present a dispersion-corrected density functional theory (DFT-D3) insight into HER activity on the (111) (110) (001) and (100) surfaces of metallic nickel nitride (Ni3N). A combination of water and hydrogen adsorption was used to model the electrode interactions within the water splitting cell. Surface energies were used to characterise the stabilities of the Ni3N surfaces along with adsorption energies to determine preferable sites for adsorbate interactions. The surface stability order was found to be (111) < (100) < (001) < (110) with calculated surface energies of 2.10 2.27 2.37 and 2.38 Jm−2 respectively. Water adsorption was found to be exothermic at all surfaces and most favourable on the (111) surface with Eads = −0.79 eV followed closely by the (100) (110) and (001) surfaces at −0.66 −0.65 and −0.56 eV respectively. The water splitting reaction was investigated at each surface to determine the rate determining Volmer step and the activation energies (Ea) for alkaline HER which has thus far not been studied in detail for Ni3N. The Ea values for water splitting on the Ni3N surfaces were predicted in the order (001) < (111) < (110) < (100) which were 0.17 0.73 1.11 and 1.60 eV respectively overall showing the (001) surface to be most active for the Volmer step of water dissociation. Active hydrogen adsorption sites are also presented for acidic HER evaluated through the ΔGH descriptor. The (110) surface was shown to have an extremely active Ni–N bridging site with ΔGH = −0.05 eV.
PRD Hydrogen Release and Dispersion, a Comparison of CFD Results Obtained from Using Ideal and Real Gas Law Properties.
Sep 2005
Publication
In this paper CFD techniques were applied to the simulations of hydrogen release from a 400-bar tank to ambient through a Pressure Relieve Device (PRD) 6 mm (¼”) opening. The numerical simulations using the TOPAZ software developed by Sandia National Laboratory addressed the changes of pressure density and flow rate variations at the leak orifice during release while the PHOENICS software package predicted extents of various hydrogen concentration envelopes as well as the velocities of gas mixture for the dispersion in the domain. The Abel-Noble equation of state (AN-EOS) was incorporated into the CFD model implemented through the TOPAZ and PHOENICS software to accurately predict the real gas properties for hydrogen release and dispersion under high pressures. The numerical results were compared with those obtained from using the ideal gas law and it was found that the ideal gas law overestimates the hydrogen mass release rates by up to 35% during the first 25 seconds of release. Based on the findings the authors recommend that a real gas equation of state be used for CFD predictions of high-pressure PRD releases.
Effect of Hydrogen on the Deformation Behavior and Localization of Plastic Deformation of the Ultrafine-Grained Zr–1Nb Alloy
Oct 2020
Publication
In this paper comparison studies of the hydrogen effect on the structural and phase state deformation behavior and mechanical properties of the fine- (average grain size 4 µm) and ultrafine-grained (average element size 0.3 and 0.4 µm) Zr–1wt.%Nb (hereinafter Zr–1Nb) alloy under tension at temperatures in the range of 293–873 K were conducted. The formation of an ultrafine-grained structure is established to increase the strength characteristics of the Zr–1Nb alloy by a factor of 1.5–2 with a simultaneous reduction of its resistance to the localization of plastic deformation at the macro level and the value of deformation to failure. The presence of hydrogen in the Zr–1Nb alloy in the form of a solid solution and hydride precipitates increases its resistance to the localization of plastic deformation at the macro level if the alloy has an ultrafine-grained structure and decreases if the structure of the alloy is fine-grained. In the studied temperature range the Zr–1Nb alloy in the ultrafine-grained state has a higher resistance to hydrogen embrittlement than the alloy in the fine-grained state.
Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments
May 2018
Publication
Direct internal reforming enables optimal heat integration and reduced complexity in solid oxide fuel cell (SOFC) systems but thermal stresses induced by the increased temperature gradients may inflict damage to the stack. Therefore the development of adequate control strategies requires models that can accurately predict the temperature profiles in the stack. A 1D dynamic modelling platform is developed in this study and used to simulate SOFCs in both single cell and stack configurations. The single cell model is used to validate power law and Hougen-Watson reforming kinetics derived from experiments in previous work. The stack model based on the same type of cells accounts for heat transfer in the inactive area and to the environment and is validated with data reported by the manufacturer. The reforming kinetics are then implemented in the stack model to simulate operation with direct internal reforming. Although there are differences between the temperature profiles predicted by the two kinetic models both are more realistic than assuming chemical equilibrium. The results highlight the need to identify rate limiting steps for the reforming and hydrogen oxidation reactions on anodes of functional SOFC assemblies. The modelling approach can be used to study off-design conditions transient operation and system integration as well as to develop adequate energy management and control strategies.
Hydrogen Embrittlement of Medium Mn Steels
Feb 2021
Publication
Recent research efforts to develop advanced–/ultrahigh–strength medium-Mn steels have led to the development of a variety of alloying concepts thermo-mechanical processing routes and microstructural variants for these steel grades. However certain grades of advanced–/ultrahigh–strength steels (A/UHSS) are known to be highly susceptible to hydrogen embrittlement due to their high strength levels. Hydrogen embrittlement characteristics of medium–Mn steels are less understood compared to other classes of A/UHSS such as high Mn twinning–induced plasticity steel because of the relatively short history of the development of this steel class and the complex nature of multiphase fine-grained microstructures that are present in medium–Mn steels. The motivation of this paper is to review the current understanding of the hydrogen embrittlement characteristics of medium or intermediate Mn (4 to 15 wt pct) multiphase steels and to address various alloying and processing strategies that are available to enhance the hydrogen-resistance of these steel grades.
Feasibility Investigation of Hydrogen Refuelling Infrastructure for Heavy‐Duty Vehicles in Canada
Apr 2022
Publication
A potentially viable solution to the problem of greenhouse gas emissions by vehicles in the transportation sector is the deployment of hydrogen as alternative fuel. A limitation to the diffusion of the hydrogen‐fuelled vehicles option is the intricate refuelling stations that vehicles will require. This study examines the practical use of hydrogen fuel within the internal combustion engine (ICE)‐powered long‐haul heavy‐duty trucking vehicles. Specifically it appraises the techno‐ economic feasibility of constructing a network of long‐haul truck refuelling stations using hydrogen fuel across Canada. Hydrogen fuel is chosen as an option for this study due to its low carbon emissions rate compared to diesel. This study also explores various operational methods including variable technology integration levels and truck traffic flows truck and pipeline delivery of hydrogen to stations and the possibility of producing hydrogen onsite. The proposed models created for this work suggest important parameters for economic development such as capital costs for station construction the selling price of fuel and the total investment cost for the infrastructure of a nation‐ wide refuelling station. Results showed that the selling price of hydrogen gas pipeline delivery op‐ tion is more economically stable. Specifically it was found that at 100% technology integration the range in selling prices was between 8.3 and 25.1 CAD$/kg. Alternatively at 10% technology integration the range was from 12.7 to 34.1 CAD$/kg. Moreover liquid hydrogen which is delivered by trucks generally had the highest selling price due to its very prohibitive storage costs. However truck‐delivered hydrogen stations provided the lowest total investment cost; the highest is shown by pipe‐delivered hydrogen and onsite hydrogen production processes using high technology integration methods. It is worth mentioning that once hydrogen technology is more developed and deployed the refuelling infrastructure cost is likely to decrease considerably. It is expected that the techno‐economic model developed in this work will be useful to design and optimize new and more efficient hydrogen refuelling stations for any ICE vehicles or fuel cell vehicles.
Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production
Mar 2017
Publication
The study is focused on the technology and manipulation of production strategies for the cultivation of biomass from four strains of microalgae. Species of microalgae studied are: Chlorella vulgaris Dunaliella Scenedesmus quadricauda and Synechococcus spp. The effects of the rate and amount of CO2 removal from the atmosphere and sequestration with dissolved oxygen on lipid production from accumulated biomass were studied. Also the rate of sequestration of both total and dissolved carbon was investigated. Daily measurements of total organic and inorganic carbon sequestrated optical densities proximate analysis and kinetic parameters of the growing and cultivated microalga were monitored and carried out during the two phases of cultivation: dark and light phases. The values of maximum rate of carbon (IV) oxide removed rmax varied from 11.73 mg L -1 min -1 to 18.84 mg L -1 min -1 from Chlorella vulgaris to Synechoccocus spp. Important parameters such as biomass productivity maximum pH values obtained at cultivation lipid content of the produced biomass and the hydraulic detection time for all four strains of microalgae were considered and presented in comparison and with their individual and collective effects. The ratios of the rate of CO2 absorption constant and the constant for the CO2 desorption rate (k1/k2) occurred highest in Dunaliella suggesting that with a high uptake of CO2 the algal strain is more effective in CO2 CO2 sequestration. The best biomass producer in this study was the C. vulgaris (Xmax = 5400 mg L-1 and Px = 35.1 mg L h -1) where biomass productivity is Px and the maximum cellular concentration is Xmax. C. vulgaris has the highest lipids productivity of 27% while Synechoccocus has the least (11.72%). In general biomass productivity may be inversely related; this fact may be explained by greater metabolic involvement of lipid biosynthesis. This pioneer study may be advanced further to developing models for strategic manipulation and optimisation approach in micro algal biomass cultivation.
Study on the Explosion of the Hydrogen Fuel Tank of Fuel Cell Electric Vehicles in Semi-Enclosed Spaces
Dec 2022
Publication
The rise in hydrogen fuel cell electric vehicles (FCEVs) is expected to pose a variety of hazards on the road. Vehicles using hydrogen could cause significant damage owing to hydrogen vapor cloud explosions jet fires caused by leakage or hydrogen tank explosions. This risk is expected to further increase in semi-enclosed spaces such as underground parking lots and road tunnels. Therefore it is necessary to study the fire safety of hydrogen vehicles in semi-enclosed spaces. In this study an experiment on hydrogen tank explosion was performed. In addition the CFD numerical model was verified using the experimental results and the damaging effect due to pressure propagation during hydrogen tank explosions in underground parking lots and road tunnels was analyzed using numerical analysis. From the experiment results the hydrogen tank exploded at about 80 Mpa a maximum incident pressure is generated 267 kPa at a distance of 1.9 m. As a result of numerical analysis based on the experimental results the limit distance that can cause serious injury due to the explosion of a hydrogen tank in a road tunnel or underground parking lot was analyzed up to about 20 m from the point of explosion.
High-stability, High-capacity Oxygen Carriers: Iron Oxide-perovskite Composite Materials for Hydrogen Production by Chemical Looping
Jun 2015
Publication
Iron oxide has been widely used as an oxygen carrier material (OCM) for hydrogen production by chemical looping due to its favourable thermodynamic properties. In spite of this iron oxide loses much of its activity after redox cycling mainly due to sintering and agglomeration. Perovskites such as La0.7Sr0.3FeO3-d (LSF731) have been suggested as potential candidate OCMs for hydrogen production due to their excellent oxygen transport properties and stability under cycling. However hydrogen production per cycle for a similar carrier weight is lower than with iron oxide. This work proposes the use of composite OCMs made of iron oxide clusters embedded in an LSF731 matrix. The perovskite matrix facilitates oxygen transport to the iron oxide clusters while preventing agglomeration. Two preparation methods mechanical mixing and a modified Pechini method were used to obtain composite materials with different iron oxide weight fractions 11 and 30 wt.%. The reactivity of these OCMs was studied in a thermogravimetric analyser. Hydrogen production and carrier stability were investigated in a microreactor over 25 redox cycles while periodically feeding carbon monoxide and water in order to produce carbon dioxide and hydrogen in separate streams. Hydrogen production was stable over 25 cycles for LSF731 and the composite OCM with 30 wt.% iron oxide produced by the modified Pechini method but iron oxide particles alone underwent a decrease in the hydrogen production with cycling. The hydrogen production during the 25th cycle was eight times higher for the composite material than for iron oxide alone and four times higher than for LSF731. The hydrogen production was therefore also higher than that expected from a simple combination of the iron oxide and LSF731 alone indicating a synergetic effect whereby the LSF731 may have a higher effective oxygen capacity when in the form of the composite material.
Electrochemical and Mechanical Stability of Catalyst Layers in Anion Exchange Membrane Water Electrolysis
Dec 2021
Publication
Anion exchange membrane (AEM) water electrolysis is considered a promising solution to future cost reduction of electrochemically produced hydrogen. We present an AEM water electrolyzer with CuCoOx as the anode catalyst and Aemion as membrane and electrode binder. Full cell experiments in pure water and 0.1 M KOH revealed that the optimum binder content depended on the type of electrolyte employed. Online dissolution measurements suggested that Aemion alone was not sufficient to establish an alkaline environment for thermodynamically stabilizing the synthesized CuCoOx in a neutral electrolyte feed. A feed of base is thus indispensable to ensure the thermodynamic stability of such non-noble catalyst materials. Particle loss and delamination of the catalyst layer during MEA operation could be reduced by employing a heat treatment step after electrode fabrication. This work summarizes possible degradation pathways for low-cost anodes in AEMWE and mitigation strategies for enhanced system durability and performance.
Challenges and Important Considerations When Benchmarking Single-cell Alkaline Electrolyzers
Nov 2021
Publication
This study outlines an approach to identifying the difficulties associated with the bench-marking of alkaline single cells under real electrolyzer conditions. A challenging task in the testing and comparison of different catalysts is obtaining reliable and meaningful benchmarks for these conditions. Negative effects on reproducibility were observed due to the reduction in conditioning time. On the anode side a stable passivation layer of NiO can be formed by annealing of the Ni foams which is even stable during long-term operation. Electrical contact resistance and impedance measurements showed that most of the contact resistance derived from the annealed Ni foam. Additionally analysis of various overvoltages indicated that most of the total overvoltage comes from the anode and cathode activation overpotential. Different morphologies of the substrate material exhibited an influence on the performance of the alkaline single cell based on an increase in the ohmic resistance.
Hydrogen Fuelling Station, CEP-Berlin – Safety Risk Assessment and Authority Approval Experience and Lessons Learned
Sep 2005
Publication
The CEP (Clean Energy Partnership) – Berlin is one of the most diversified hydrogen demonstration projects at present. The first hydrogen fuelling station serving 16 cars is fully integrated in an ordinary highly frequented Aral service station centrally located at Messedamm in Berlin. Hydro has supplied and is the owner of the electrolyser with ancillary systems. This unit produces gaseous hydrogen at 12 bar with use of renewable energy presently serving 13 of the cars involved. The CEP project is planned to run for a period of five years and is supported by the German Federal Government and is part of the German sustainability strategy. During the planning and design phase there have been done several safety related assessments and analyses:
- Hydro has carried out a HAZOP (HAZard and OPerability) analysis of the electrolyser and ancillary systems delivered by Hydro Electrolysers.
- Hydro arranged with support from the partners a HAZOP analysis of the interface between the electrolyser and the compressor an interface with two different suppliers on each side.
- A QRA (Quantitative Risk Assessment) of the entire fuelling station has been carried out.
- Hydro has carried out a quantitative explosion risk analysis of the electrolyser container supplied by Hydro Electrolysers.
Decentral Hydrogen
Apr 2022
Publication
This concept study extends the power-to-gas approach to small combined heat and power devices in buildings that alternately operate fuel cells and electrolysis. While the heat is used to replace existing fossil heaters on-site the power is either fed into the grid or consumed via heatcoupled electrolysis to balance the grid power at the nearest grid node. In detail the power demand of Germany is simulated as a snapshot for 2030 with 100% renewable sourcing. The standard load profile is supplemented with additional loads from 100% electric heat pumps 100% electric cars and a fully electrified industry. The renewable power is then scaled up to match this demand with historic hourly yield data from 2018/2019. An optimal mix of photovoltaics wind biomass and hydropower is calculated in respect to estimated costs in 2030. Hydrogen has recently entered a large number of national energy roadmaps worldwide. However most of them address the demands of heavy industry and heavy transport which are more difficult to electrify. Hydrogen is understood to be a substitute for fossil fuels which would be continuously imported from non-industrialized countries. This paper focuses on hydrogen as a storage technology in an all-electric system. The target is to model the most cost-effective end-to-end use of local renewable energies including excess hydrogen for the industry. The on-site heat coupling will be the principal argument for decentralisation. Essentially it flattens the future peak from massive usage of electric heat pumps during cold periods. However transition speed will either push the industry or the prosumer approach in front. Batteries are tried out as supplementary components for short-term storage due to their higher round trip efficiencies. Switching the gas net to hydrogen is considered as an alternative to overcome the slow power grid expansions. Further decentral measures are examined in respect to system costs.
Local Degradation Effects in Automotive Size Membrane Electrode Assemblies Under Realistic Operating Conditions
Dec 2019
Publication
In automotive applications the operational parameters for fuel cell (FC) systems can vary over a wide range. To analyze their impact on fuel cell degradation an automotive size single cell was operated under realistic working conditions. The parameter sets were extracted from the FC system modelling based on on-road customer data. The parameter variation included simultaneous variation of the FC load gas pressures cell temperature stoichiometries and relative humidity. Current density distributions and the overall cell voltage were recorded in real time during the tests. The current densities were low at the geometric anode gas outlet and high at the anode gas inlet. After electrochemical tests post mortem analysis was conducted on the membrane electrode assemblies using scanning electron microscopy. The ex-situ analysis showed significant cathode carbon corrosion in areas associated with low current densities. This suggests that fuel starvation close to the anode outlet is the origin of the cathode electrode degradation. The results of the numerical simulations reveal high relative humidity at that region and therefore water flooding is assumed to cause local anode fuel starvation. Even though the hydrogen oxidation reaction has low kinetic overpotentials “local availability” of H2 plays a significant role in maintaining a homogeneous current density distribution and thereby in local degradation of the cathode catalyst layer. The described phenomena occurred while the overall cell voltage remained above 0.3 V. This indicates that only voltage monitoring of fuel cell systems does not contain straightforward information about this type of degradation.
Explosion Characteristics of Hydrogen Gas in Varying Ship Ventilation Tunnel Geometries: An Experimental Study
Apr 2022
Publication
Hydrogen is widely regarded as a key element of prospective energy solutions for alleviating environmental emission problems. However hydrogen is classified as a high-risk gas because of its wide explosive range high overpressure low ignition energy and fast flame propagation speed compared with those of hydrocarbon-based gases. In addition deflagration can develop into detonation in ventilation or explosion guide tunnels if explosion overpressure occurs leading to the explosion of all combustible gases. However quantitative evidence of an increase in the explosion overpressure of ventilation tunnels is unavailable because the explosive characteristics of hydrogen gas are insufficiently understood. Therefore this study investigated an explosion chamber with the shape of a ventilation pipe in a ship compartment. The effect of tunnel length on explosion overpressure was examined experimentally. For quantitative verification the size of the hydrogen gas explosion overpressure was analyzed and compared with experimental values of hydrocarbon-based combustible gases (butane and LPG (propane 98%)). The experimental database can be used for explosion risk analyses of ships when designing ventilation holes and piping systems and developing new safety guidelines for hydrogen carriers and hydrogen-fueled ships.
Simulations of Hydrogen Releases from a Storage Tanks- Dispersion and Consequences of Ignition
Sep 2005
Publication
We present results from hydrogen dispersion simulations from a pressurized reservoir at constant flow rate in the presence and absence of a wall. The dispersion simulations are performed using a commercial finite volume solver. Validation of the approach is discussed. Constant concentration envelopes corresponding to the 2% 4% and 15% hydrogen concentration in air are calculated for a subcritical vertical jet and for an equivalent subcritical horizontal jet from a high pressure reservoir. The consequences of ignition and the resulting overpressure are calculated for subcritical horizontal and vertical hydrogen jets and in the latter case compared to available experimental data.
Sustainable Hydrogen Society - Vision, Findings and Development of a Hydrogen Economy Using the Example of Austria
Oct 2021
Publication
Based on technical environmental economic and social facts and recent findings the feasibility of the transition from our current fossil age to the new green age is analyzed in detail at both global and local level. To avert the threats of health problems environmental pollution and climate change to our quality and standard of life a twofold radical paradigm shift is outlined: Green Energy Revolution means the complete change from fossil-based to green primary energy sources such as sun wind water environmental heat and biomass; Green Hydrogen Society means the complete change from fossil-based final energy to green electricity and green hydrogen in all areas of mobility industries households and energy services. Renewable energies offer a green future and are in combination with electrochemical machines such as electrolysers batteries and fuel cells able to achieve higher efficiencies and zero emissions.
Statistics, Lessons Learned and Recommendations from Analysis of HIAD 2.0 Database
Mar 2022
Publication
The manuscript firstly describes the data collection and validation process for the European Hydrogen Incidents and Accidents Database (HIAD 2.0) a public repository tool collecting systematic data on hydrogen-related incidents and near-misses. This is followed by an overview of HIAD 2.0 which currently contains 706 events. Subsequently the approaches and procedures followed by the authors to derive lessons learned and formulate recommendations from the events are described. The lessons learned have been divided into four categories including system design; system manufacturing installation and modification; human factors and emergency response. An overarching lesson learned is that minor events which occurred simultaneously could still result in serious consequences echoing James Reason's Swiss Cheese theory. Recommendations were formulated in relation to the established safety principles adapted for hydrogen by the European Hydrogen Safety Panel considering operational modes industrial sectors and human factors. This work provide an important contribution to the safety of systems involving hydrogen benefitting technical safety engineers emergency responders and emergency services. The lesson learned and the discussion derived from the statistics can also be used in training and risk assessment studies being of equal importance to promote and assist the development of sound safety culture in organisations.
Everything About Hydrogen Podcast: Is This the End of the Diesel Train?
Jan 2020
Publication
For this show the team are taking a dive into the world of hydrogen trains and who better to speak to this space than Mike Muldoon Head of Business Development and Marketing for Alstom UK&I. Alstom have been the pioneers of hydrogen powered rail and in addition to two operating trains in Germany have secured over Eur500 million of orders for hydrogen trains. On the show we talk to Mike about why Alstom see hydrogen as a key part of the evolution of the rail industry towards zero emissions and why hydrogen today is such a compelling proposition for operators and investors.
The podcast can be found on their website
The podcast can be found on their website
Global Energy Review 2020- The Impacts of the Covid-19 Crisis on Global Energy Demand and CO2 Emissions
Apr 2020
Publication
In response to the exceptional circumstances stemming from the coronavirus pandemic the annual IEA Global Energy Review has expanded its coverage to include real-time analysis of developments to date in 2020 and possible directions for the rest of the year. In addition to reviewing 2019 energy and CO2 emissions data by fuel and country for this section of the Global Energy Review we have tracked energy use by country and fuel over the past three months and in some cases – such as electricity – in real time. Some tracking will continue on a weekly basis. The uncertainty surrounding public health the economy and hence energy over the rest of 2020 is unprecedented. This analysis therefore not only charts a possible path for energy use and CO2 emissions in 2020 but also highlights the many factors that could lead to differing outcomes. We draw key lessons on how to navigate this once-in-a-century crisis.
Link to Document on IEA websitte
Link to Document on IEA websitte
Optimized Operation Plan for Hydrogen Refueling Station with On-Site Electrolytic Production
Dec 2022
Publication
The cost reduction of hydrogen refueling stations (HRSs) is very important for the popularization of hydrogen vehicles. This paper proposes an optimized operation algorithm based on hydrogen energy demand estimation for on-site hydrogen refueling stations. Firstly the user’s hydrogen demand was estimated based on the simulation of their hydrogenation behavior. Secondly mixed integer linear programming method was used to optimize the operation of the hydrogen refueling station to minimize the unit hydrogen energy cost by using the peak–valley difference of the electricity price. We then used three typical scenario cases to evaluate the optimized operation method. The results show that the optimized operation method proposed in this paper can effectively reduce the rated configuration of electrolyzer and storage tank for HRS and can significantly reduce the unit hydrogen energy cost considering the construction cost compared with the traditional method. Therefore the optimization operation method of a local hydrogen production and hydrogen refueling station proposed in this paper can reduce the cost of a hydrogen refueling station and accelerate the popularization of hydrogen energy vehicles. Finally the scope of application of the proposed optimization method and the influence of the variation of the electricity price curve and the unit cost of the electrolyzer are discussed.
Effect of Hydrogen-diesel Fuel Co-combustion on Exhaust Emissions with Verification Using an Inecylinder Gas Sampling Technique
Aug 2014
Publication
The paper presents an experimental investigation of hydrogen-diesel fuel co-combustion carried out on a naturally aspirated direct injection diesel engine. The engine was supplied with a range of hydrogen-diesel fuel mixture proportions to study the effect of hydrogen addition (aspirated with the intake air) on combustion and exhaust emissions. The tests were performed at fixed diesel injection periods with hydrogen added to vary the engine load between 0 and 6 bar IMEP. In addition a novel inecylinder gas sampling technique was employed to measure species concentrations in the engine cylinder at two inecylinder locations and at various instants during the combustion process. The results showed a decrease in the particulates CO and THC emissions and a slight increase in CO2 emissions with the addition of hydrogen with fixed diesel fuel injection periods. NOx emissions increased steeply with hydrogen addition but only when the combined diesel and hydrogen co-combustion temperatures exceeded the threshold temperature for NOx formation. The inecylinder gas sampling results showed higher NOx levels between adjacent spray cones in comparison to sampling within an individual spray cone.
Rayleigh-Taylor Instability: Modelling and Effect on Coherent Deflagrations
Sep 2013
Publication
The modelling of Rayleigh–Taylor instability during premixed combustion scenarios is presented. Experimental data obtained from experiments undertaken by FM Global using their large-scale vented deflagration chamber was used to develop the modelling approach. Rayleigh–Taylor instability is introduced as an additional time-dependent combustion enhancing mechanism. It is demonstrated that prior to the addition of this mechanism the LES deflagration model under-predicted the experimental pressure transients. It is confirmed that the instability plays a significant role throughout the coherent deflagration process. The addition of the mechanism led to the model more closely replicating the pressure peak associated with the external deflagration.
Optimal Scheduling of Electricity-Hydrogen Coupling Virtual Power Plant Considering Hydrogen Load Response
Mar 2024
Publication
With the rapid development of hydrogen production by water electrolysis the coupling between the electricity-hydrogen system has become closer providing an effective way to consume surplus new energy generation. As a form of centralized management of distributed energy resources virtual power plants can aggregate the integrated energy production and consumption segments in a certain region and participate in electricity market transactions as a single entity to enhance overall revenue. Based on this this paper proposes an optimal scheduling model of an electricity-hydrogen coupling virtual power plant (EHC-VPP) considering hydrogen load response relying on hydrogen to ammonia as a flexibly adjustable load-side resource in the EHC-VPP to enable the VPP to participate in the day-ahead energy market to maximize benefits. In addition this paper also considers the impact of the carbon emission penalty to practice the green development concept of energy saving and emission reduction. To validate the economy of the proposed optimization scheduling method in this paper the optimization scheduling results under three different operation scenarios are compared and analyzed. The results show that considering the hydrogen load response and fully exploiting the flexibility resources of the EHC-VPP can further reduce the system operating cost and improve the overall operating efficiency.
Decarbonizing Vehicle Transportation with Hydrogen from Biomass Gasification: An Assessment in the Nigerian Urban Environment
Apr 2022
Publication
Tailpipe emissions from vehicles consist of CO2 and other greenhouse gases which con‐ tribute immensely to the rise in global temperatures. Green hydrogen produced from the gasification of biomass can reduce the amount of CO2 emissions to zero. This study aims to provide a modelling framework to optimize the production of hydrogen from biomass waste obtained from different cities for use in the road transport sector in Nigeria. A gasification model with post‐treatment shift conversion and CO2 removal by adsorption is proposed. In this study six cities are simulated based on technical and environmental considerations using the Aspen Plus software package. The results revealed that Kaduna has the highest hydrogen generation potential of 0.148 million metric tons per year which could reduce CO2 emissions to 1.60 and 1.524 million metric tons by the dis‐ placement of an equivalent volume of gasoline and diesel. This amounts to cost savings of NGN 116 and 161.8 billion for gasoline and diesel respectively. In addition the results of the sensitivity analysis revealed that the steam‐to‐biomass ratio and the temperature of gasification are positively correlated with the amount of avoided CO2 emissions while the equivalence ratio shows a negative correlation.
Combustion Features of CH4/NH3/H2 Ternary Blends
Mar 2022
Publication
The use of so-called “green” hydrogen for decarbonisation of the energy and propulsion sectors has attracted considerable attention over the last couple of decades. Although advancements are achieved hydrogen still presents some constraints when used directly in power systems such as gas turbines. Therefore another vector such as ammonia can serve as a chemical to transport and distribute green hydrogen whilst its use in gas turbines can limit combustion reactivity compared to hydrogen for better operability. However pure ammonia on its own shows slow complex reaction kinetics which requires its doping by more reactive molecules thus ensuring greater flame stability. It is expected that in forthcoming years ammonia will replace natural gas (with ~ 90% methane in volume) in power and heat production units thus making the co-firing of ammonia/methane a clear path towards replacement of CH4 as fossil fuel. Hydrogen can be obtained from the precracking of ammonia thus denoting a clear path towards decarbonisation by the use of ammonia/hydrogen blends. Therefore ammonia/methane/hydrogen might be co-fired at some stage in current combustion units hence requiring a more intrinsic analysis of the stability emissions and flame features that these ternary blends produce. In return this will ensure that transition from natural gas to renewable energy generated e-fuels such as so-called “green” hydrogen and ammonia is accomplished with minor detrimentals towards equipment and processes. For this reason this work presents the analysis of combustion properties of ammonia/methane/hydrogen blends at different concentrations. A generic tangential swirl burner was employed at constant power and various equivalence ratios. Emissions OH*/NH*/NH2*/CH* chemiluminescence operability maps and spectral signatures were obtained and are discussed. The extinction behaviour has also been investigated for strained laminar premixed flames. Overall the change from fossils to e-fuels is led by the shift in reactivity of radicals such as OH CH CN and NH2 with an increase of emissions under low and high ammonia content. Simultaneously hydrogen addition improves operability when injected up to 30% (vol) an amount at which the hydrogen starts governing the reactivity of the blends. Extinction strain rates confirm phenomena found in the experiments with high ammonia blends showing large discrepancies between values at different hydrogen contents. Finally a 20/55/25% (vol) methane/ammonia/hydrogen blend seems to be the most promising at high equivalence ratios (1.2) with no apparent flashback low emissions and moderate formation of NH2/OH radicals for good operability.
A Coupled Transient Gas Flow Calculation with a Simultaneous Calorific-value-gradient Improved Hydrogen Tracking
Apr 2022
Publication
Gas systems can provide considerable flexibility in integrated energy systems to accommodate hydrogen produced from Power-to-Hydrogen units using excess volatile renewable energy generation. To use the flexibility in integrated energy systems while ensuring a secure and reliable system operation gas system operators need to accurately and easily analyze the effects of varying hydrogen levels on the dynamic gas behavior and vice versa. Existing methods for hydrogen tracking however either solve the hydrogen propagation and dynamic gas behavior separately or must cope with a large inaccuracy. Hence existing methods do not allow an accurate and coupled analysis of gas systems in integrated energy systems considering varying hydrogen levels. This paper proposes a calorific-value-gradient method which can accurately track the propagation of varying hydrogen levels in a gas system even with large simulation time increments of up to one hour. The new method is joined and simultaneously solved with an implicit finite difference scheme describing the transient gas behavior in a single equation system in a coupled Newton–Raphson gas flow calculation. As larger simulation time increments can be chosen without reducing the accuracy the computation time can be strongly reduced compared to existing Euler-based methods. With its high accuracy and its coupled approach this paper provides gas system operators a method to accurately analyze how the propagation of hydrogen affects the entire gas system. With its coupled approach the presented method can enhance the investigation of integrated energy systems as the transient gas behavior and varying hydrogen propagation of the gas system can be easily included in such analyses.
No more items...