- Home
- A-Z Publications
- Publications
Publications
Hydrogenerally - Episode 10: Green Hydrogen Production
Feb 2023
Publication
Debra Jones Chemistry Knowledge Transfer Manager and Simon Buckley Zero Emission Mobility Knowledge Transfer Manager from Innovate UK KTN talk about green hydrogen production with their special guest Chris Jackson CEO & Founder at Protium.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
Everything About Hydrogen Podcast: Reaching for the Stars
Mar 2023
Publication
Today Everything About Hydrogen had a chance to speak with Paul Barrett the CEO of Hysata and dig into what makes this electrolysis company different.
Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles
Mar 2023
Publication
Environmental emissions global warming and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand there has been significant progress in artificial intelligence machine learning and designing data-driven intelligent controllers. These techniques have found much attention within the community and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction control energy management and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve classify and compare and future trends and directions for sustainability are discussed.
Hydrogen Embrittlement Characteristics in Cold-drawn High-strength Stainless Steel Wires
Mar 2023
Publication
Hydrogen uptake and embrittlement characteristics of a cold-drawn austenitic stainless steel wire were investigated. Slow strain rate testing and fracture surface analysis were applied to determine the hydrogen embrittlement resistance providing an apparent decrease in resistance to hydrogen embrittlement for a 50% degree of cold deformation. The hydrogen content was assessed by thermal desorption and laser-induced breakdown spectroscopy establishing a correlation between the total absorbed hydrogen and the intensity of near-surface hydrogen. The sub-surface hydrogen content of the hot-rolled specimen was determined to be 791 wt.ppm.
Hydrogen-powered Refrigeration System for Environmentally Friendly Transport and Delivery in the Food Supply Chain
Mar 2023
Publication
Urban population and the trend towards online commerce leads to an increase in delivery solution in cities. The growth of the transport sector is very harmful to the environment being responsible for approximately 40% of greenhouse gas emissions in the European Union. The problem is aggravated when transporting perishable foodstuffs as the vehicle propulsion engine (VPE) must power not only the vehicle but also the refrigeration unit. This means that the VPE must be running continuously both on the road and stationary (during delivery) as the cold chain must be preserved. The result is costly (high fuel consumption) and harmful to the environment. At present refrigerated transport does not support full-electric solutions due to the high energy consumption required which motivates the work presented in this article. It presents a turnkey solution of a hydrogen-powered refrigeration system (HPRS) to be integrated into standard light trucks and vans for short-distance food transport and delivery. The proposed solution combines an air-cooled polymer electrolyte membrane fuel cell (PEMFC) a lithium-ion battery and low-weight pressurised hydrogen cylinders to minimise cost and increase autonomy and energy density. In addition for its implementation and integration all the acquisition power and control electronics necessary for its correct management have been developed. Similarly an energy management system (EMS) has been developed to ensure continuity and safety in the operation of the electrical system during the working day while maximizing both the available output power and lifetime of the PEMFC. Experimental results on a real refrigerated light truck provide more than 4 h of autonomy in intensive intercity driving profiles which can be increased if necessary by simply increasing the pressure of the stored hydrogen from the current 200 bar to whatever is required. The correct operation of the entire HPRS has been experimentally validated in terms of functionality autonomy and safety; with fuel savings of more than 10% and more than 3650 kg of CO2/ year avoided.
Impacts of Wind Conditions on Hydrogen Leakage During Refilling Hydrogen-powered Vehicles
Mar 2023
Publication
Although hydrogen leakage at hydrogen refueling stations has been a concern less effort has been devoted to hydrogen leakage during the refueling of hydrogen-powered vehicles. In this study hydrogen leakage and dilution from the hydrogen dispenser during the refueling of hydrogen-powered vehicles were numerically investigated under different wind configurations. The shape size and distribution of flammable gas clouds (FGC) during the leakage and dilution processes were analyzed. The results showed that the presence of hydrogen-powered vehicles resulted in irregular FGC shapes. Greater wind speeds (vwv) were associated with longer FGC propagation distances. At vwv =2 m/s and 10 m/s the FGC lengths at the end of the leakage were 7.9 m and 20.4 m respectively. Under downwind conditions higher wind speeds corresponded to lower FGC heights. The FGC height was larger under upwind conditions and was slightly affected by the magnitude of the wind speed. In the dilution process the existence of a region with a high hydrogen concentration led to the FGC volume first increasing and then gradually decreasing. Wind promoted the mixing of hydrogen and air accelerated FGC dilution inhibited hydrogen uplifting and augmented the horizontal movement of the FGC. At higher wind speeds the low-altitude FGC movements could induce potential safety hazards.
No more items...