Publications
Waste Aluminum Application as Energy Valorization for Hydrogen Fuel Cells for Mobile Low Power Machines Applications
Nov 2021
Publication
This article proposes a new model of power supply for mobile low power machines applications between 10 W and 30 W such as radio-controlled (RC) electric cars. This power supply is based on general hydrogen from residual aluminum and water with NaOH so it is proposed energy valorization of aluminum waste. In the present research a theoretical model allows us to predict the requested aluminum surface and the required flow of hydrogen has been developed also considering in addition to the geometry and purity of the material two key variables as the temperature and the molarity of the alkaline solution used in the hydrogen production process. Focusing on hydrogen production isopropyl alcohol plays a key role in the reactor’s fuel cell vehicle as it filters out NaOH particles and maintains a constant flow of hydrogen for the operation of the machine keeping the reactor temperature controlled. Finally a comparison of the theoretical and experimental data has been used to validate the developed model using aluminum sheets from ring cans to generate hydrogen which will be used as a source of hydrogen in a power fuel cell of an RC car. Finally the manuscript shows the parts of the vehicle’s powertrain its behavior and mode of operation.
Regional Insights into Low-carbon Hydrogen Scale Up: World Energy Insights Working Paper
May 2022
Publication
Following the release of the “Hydrogen on the Horizon” series in July and September 2021 the World Energy Council in collaboration with EPRI and PwC led a series of regional deep dives to understand regional differences within low-carbon hydrogen development. These regional deep dives aimed to uncover regional perspectives and differing dynamics for low-carbon hydrogen uptake.<br/>Although each region presents its own distinctive challenges and opportunities the deep dives revealed that the “regional paths” provide new insights into the global scaling up of low-carbon hydrogen in the coming years. In addition each region holds its own unique potential in achieving the Sustainable Development Goals.<br/>Key Takeaways:<br/>1. Our new regional insights indicate that low-carbon hydrogen can play a significant role by 2040 across the world by supporting countries’ efforts towards achieving Paris Agreement goals whilst contributing to the diversity and security of their energy portfolios. This would require significant global trade flows of hydrogen and hydrogen-based fuels.<br/>2. The momentum for hydrogen-based fuels is continuing to grow worldwide but differences are seen between regions – based on differing market activities and opportunities.<br/>3. Today moving from “whether” to “how” to develop low-carbon hydrogen highlights significant uncertainties which need to be addressed if hydrogen is to reach its full potential.<br/>Can the challenges in various supply chain options be overcome?<br/>Can hydrogen play a role in tackling climate change in the short term?<br/>Can bankable projects emerge and the gap between engineers and financers be bridged? Can the stability of supply of the main low-carbon hydrogen production sources be guaranteed?<br/>4. Enabling low-carbon hydrogen at scale would notably require greater coordination and cooperation amongst stakeholders worldwide to better mobilise public and private finance and to shift the focus to end-users and people through the following actions:<br/>Moving from production cost to end-use price<br/>Developing Guarantees of Origin schemes with sustainability requirements<br/>Developing a global monitoring and reporting tool on low-carbon hydrogen projects<br/>Better consideration of social impacts alongside economic opportunities
Import Options for Chemical Energy Carriers from Renewable Sources to Germany
Feb 2024
Publication
Import and export of fossil energy carriers are cornerstones of energy systems world-wide. If energy systems are to become climate neutral and sustainable fossil carriers need to be substituted with carbon neutral alternatives or electrified if possible. We investigate synthetic chemical energy carriers hydrogen methane methanol ammonia and Fischer-Tropsch fuels produced using electricity from Renewable Energy Source (RES) as fossil substitutes. RES potentials are obtained from GIS-analysis and hourly resolved time-series are derived using reanalysis weather data. We model the sourcing of feedstock chemicals synthesis and transport along nine different Energy Supply Chains to Germany and compare import options for seven locations around the world against each other and with domestically sourced alternatives on the basis of their respective cost per unit of hydrogen and energy delivered. We find that for each type of chemical energy carrier there is an import option with lower costs compared to domestic production in Germany. No single exporting country or energy carrier has a unique cost advantage since for each energy carrier and country there are cost-competitive alternatives. This allows exporter and infrastructure decisions to be made based on other criteria than energy and cost. The lowest cost means for importing of energy and hydrogen are by hydrogen pipeline from Denmark Spain and Western Asia and Northern Africa starting at 36 EUR/MWhLHV to 42 EUR/MWhLHV or 1.0 EUR/kgH2 to 1.3 EUR/kgH2 (in 2050 assuming 5% p.a. capital cost). For complex energy carriers derived from hydrogen like methane ammonia methanol or Fischer-Tropsch fuels imports from Argentina by ship to Germany are lower cost than closer exporters in the European Union or Western Asia and Northern Africa. For meeting hydrogen demand direct hydrogen imports are more attractive than indirect routes using methane methanol or ammonia imports and subsequent decomposition to hydrogen because of high capital investment costs and energetic losses of the indirect routes. We make our model and data available under open licenses for adaptation and reuse.
The Impact of Process Heat on the Decarbonisation Potential of Offshore Installations by Hybrid Energy Systems
Dec 2021
Publication
An opportunity to decarbonise the offshore oil and gas sector lies in the integration of renewable energy sources with energy storage in a hybrid energy system (HES). Such concept enables maximising the exploitation of carbon-free renewable power while minimising the emissions associated with conventional power generation systems such as gas turbines. Offshore plants in addition to electrical and mechanical power also require process heat for their operation. Solutions that provide low-emission heat in parallel to power are necessary to reach a very high degree of decarbonisation. This paper investigates different options to supply process heat in offshore HES while the electric power is mostly covered by a wind turbine. All HES configurations include energy storage in the form of hydrogen tied to proton exchange membrane (PEM) electrolysers and fuel cells stacks. As a basis for comparison a standard configuration relying solely on a gas turbine and a waste heat recovery unit is considered. A HES combined with a waste heat recovery unit to supply heat proved efficient when low renewable power capacity is integrated but unable to deliver a total CO2 emission reduction higher than around 40%. Alternative configurations such as the utilization of gas-fired or electric heaters become more competitive at large installed renewable capacity approaching CO2 emission reductions of up to 80%.
Research on High-Pressure Hydrogen Pre-Cooling Based on CFD Technology in Fast Filling Process
Dec 2021
Publication
In the fast filling process in order to control the temperature of the vehicle-mounted storage tank not to exceed the upper limit of 85 ◦C it is an effective method to add a hydrogen pre-cooling system upstream of the hydrogenation machine. In this paper Fluent is used to simulate the heat transfer process of high-pressure hydrogen in a shell-and-tube heat exchanger and the phase change process of refrigerant R23. The accuracy of the model is proven by a comparison with the data in the references. Using this model the temperature field and gas volume fraction in the heat transfer process are obtained which is helpful to analyze the heat transfer mechanism. At the same time the influence of hydrogen inlet temperature hydrogen inlet pressure and refrigerant flow rate on the refrigeration performance was studied. The current work shows that the model can be used to determine the best working parameters in the pre-cooling process and reduce the operating cost of the hydrogen refueling station.
Investigating Hydrogen-Based Non-Conventional Storage for PV Power in Eco-Energetic Optimization of a Multi-Energy System
Dec 2021
Publication
Through the integration of multiple energy carriers with related technologies multi-energy systems (MES) can exploit the synergies coming from their interplay for several benefits towards decarbonization. In such a context inclusion of Power-to-X technologies in periods of excess renewable electricity supply removes the need for curtailment of renewable electricity generation. In order to achieve the environmental benefits of MES without neglecting their economic feasibility the optimal design problem is as crucial as challenging and requires the adoption of a multi-objective approach. This paper extends the results of a previous work by investigating hydrogen-based non-conventional storage for PV power in the eco-energetic optimization of an MES. The system under study consists of a reversible fuel cell (r-SOC) photovoltaic (PV) electric heat pump absorption chiller and thermal storage and allows satisfying the multi-energy needs of a residential end-user. A multi-objective linear problem is established to find the optimal MES configuration including the sizes of the involved technologies with the goal of reducing the total annual cost and the fossil primary energy input. Simulation results are compared with those obtained in previous work with a conventional nanogrid where a combined heat and power (CHP) system with gas-fired internal combustion engine and a battery were present instead of an r-SOC. The optimized configuration of the non-conventional nanogrid allows achieving a maximum primary energy reduction amounting to 66.3% compared to the conventional nanogrid. In the face of the environmental benefits the non-conventional nanogrid leads to an increase in total annual costs which compared to the conventional nanogrid is in the range of 41–65%.
Global Gas Report 2022
May 2022
Publication
This edition of the Global Gas Report covers two very turbulent years in the global gas industry and the wider global energy markets. The Covid-19 pandemic lockdowns with a brief period of excess supply and low prices gave way to tight energy markets extreme price volatility and a compounding geopolitical challenge to energy security. At the time of writing the ongoing Russia-Ukraine conflict has been affecting the flows of gas and has put Europe on a quest to diversify its energy and gas supply that is now opening a new paradigm in the energy industry. This report comes at a time when the situation for global commodity and gas markets is in a state of rapid change and the strategic path forwards for the gas industry and energy policy-makers is continually developing. One thing is clear this is a critical and decisive moment for the gas industry. How it navigates the way through this crisis and charts a path forward will shape its long-term success and the role that it will play in the energy transition and beyond. This is the moment for the gas industry to demonstrate that gas can deliver a sustainable and secure energy future for all and that natural gas and a portfolio of decarbonized low- and zero-carbon gases are key to an achievable energy transition. This year’s report assesses key gas market trends from 2020 and 2021 including Covid-19 outcomes tightness of supply price volatility investments and the upward reversal in the global emissions trend. It then turns to the main topic on the global energy agenda – security – and considers key variables impacting it from industry and policy perspectives as well as considering possible paths to reinforce it. Finally the report looks at the main decarbonization pathways for gas supply as they progressively develop to make gas itself a low or zero-carbon fuel for the future. This report seeks to deliver insights about the global gas sector and to inform its stakeholders partners and importantly global decision-makers about the state of play today and possibilities for the future. It concludes with key insights on how sustainability security and competitiveness can help to deliver a sustainable future in line with the goals of the Paris Agreement and the UN Sustainable Development Agenda.
A Brief History of Process Safety Management
Sep 2021
Publication
Common root causes are often to be found in many if not most process safety incidents. Whilst largescale events are relatively rare such events can have devastating consequences. The subsequent investigations often uncover that the risks are rarely visible the direct causes are often hidden and that a ‘normalization of deviation’ is a common human characteristic. Process Safety Management (PSM) builds on the valuable lessons learned from past incidents to help prevent future recurrences. An understanding of how PSM originated and has evolved as a discipline over the past 200 years can be instructive when considering the safety implications of emerging technologies. An example is hydrogen production where risks must be effectively identified mitigated and addressed to provide safe production transportation storage and use .
Siting and Co-location with Hydrogen: What are the Risks?
Sep 2021
Publication
The demand for hydrogen has grown more than threefold since 1975 [1] and price is expected to significantly decrease by 2030 [2] concluding in an expected continual increase in demand. HyLaw defined by Hydrogen Europe lays out recommendations for hydrogen applications using identified Legal and Administrative Processes (LAPs) across 18 European countries. Regarding site location HyLaw refers to the land use plan. This defines the production and storage of hydrogen as an industrial activity and therefore regardless of the specific site methods of production or use the hydrogen site must be within a permitted industrial zone or under specific condition commercial areas [3]. Local authorities fire departments and other concerned parties may need to be consulted on site suitability for the project. Risktec explores a range of considerations for siting and layout of hydrogen developments including co-location with other assets for example with renewable energy sources hazardous facilities or public structures. Good practice tools and assessment techniques are presented to mitigate the risks associated with the production storage and use of hydrogen not just the surrounding site and environment but the operatives of the facility.
Gas Turbine Enclosures: Determining Ventilation Safety Criteria using Hydrogen Explosion Modelling
Sep 2021
Publication
Dilution ventilation is the current basis of safety following a flammable gas leak within a gas turbine enclosure and compliance requirements are defined for methane fuels in ISO 21789. These requirements currently define a safety criteria of a maximum flammable gas cloud size within an enclosure. The requirements are based on methane explosion tests conducted during a HSE Joint Industry Project which identified typical pressures associated with a range of gas cloud sizes. The industry standard approach is to assess the ventilation performance of specific enclosure designs against these requirements using CFD modelling. Gas turbine manufacturers are increasingly considering introducing hydrogen/methane fuel mixtures and looking towards operating with hydrogen alone. It is therefore important to review the applicability of current safety standards for these new fuels as the pressure resulting from a hydrogen explosion is expected to be significantly higher than that from a methane explosion. In this paper we replicate the previous methane explosion tests for hydrogen and hydrogen/methane fuel mixtures using the explosion modelling tool FLACS CFD. The results are used to propose updated limiting safety criteria for hydrogen fuels to support ventilation CFD analysis for specific enclosure designs. It is found that significantly smaller gas cloud sizes are likely to be acceptable for gas turbines fueled by hydrogen however significantly more hydrogen than methane is required per unit volume to generate a stoichiometric cloud (as hydrogen has a lower stoichiometric air fuel ratio than methane). This effect results in the total quantity of gas in the enclosure (and as such detectability of the gas) being broadly similar when operating gas turbines on hydrogen when compared to methane.
How Green Are the National Hydrogen Strategies?
Feb 2022
Publication
Since Japan promulgated the world’s first national hydrogen strategy in 2017 28 national (or regional in the case of the EU) hydrogen strategies have been issued by major world economies. As carbon emissions vary with different types of hydrogen and only green hydrogen produced from renewable energy can be zero-emissions fuel this paper interrogates the commitment of the national hydrogen strategies to achieve decarbonization objectives focusing on the question “how green are the national hydrogen strategies?” We create a typology of regulatory stringency for green hydrogen in national hydrogen strategies analyzing the text of these strategies and their supporting policies and evaluating their regulatory stringency toward decarbonization. Our typology includes four parameters fossil fuel penalties hydrogen certifications innovation enablement and the temporal dimension of coal phasing out. Following the typology we categorize the national hydrogen strategies into three groups: zero regulatory stringency scale first and clean later and green hydrogen now. We find that most national strategies are of the type “scale first and clean later” with one or more regulatory measures in place. This article identifies further challenges to enhancing regulatory stringency for green hydrogen at both national and international levels.
Hydrogen Production and Carbon Sequestration by Steam Methane Reforming and Fracking with Carbon Dioxide
Feb 2020
Publication
An opportunity to sequester large amounts of carbon dioxide (CO2) is made possible because hydraulic fracturing is used to produce most of America's natural gas. CO2 could be extracted from natural gas and water using steam methane reforming pressurized to its supercritical phase and used instead of water to fracture additional hydrocarbon-bearing rock. The useful energy carrier that remains is hydrogen with carbon returned to the ground. Research on the use of supercritical CO2 is reviewed with proppant entrainment identified as the major area where technical advances may be needed. The large potential for greenhouse-gas reduction through sequestration of CO2 and avoidance of methane leakage from the natural gas system is quantified.
Interaction of Hydrogen Infrastructures with other Sector Coupling Options Towards a Zero-emission Energy System in Germany
Aug 2021
Publication
The flexible coupling of sectors in the energy system for example via battery electric vehicles electric heating or electric fuel production can contribute significantly to the integration of variable renewable electricity generation. For the implementation of the energy system transformation however there are numerous options for the design of sector coupling each of which is accompanied by different infrastructure requirements. This paper presents the extension of the REMix energy system modelling framework to include the gas sector and its application for investigating the cost-optimal design of sector coupling in Germany's energy system. Considering an integrated optimisation of all relevant technologies in their capacities and hourly use a path to a climate-neutral system in 2050 is analysed. We show that the different options for flexible sector coupling are all needed and perform different functions. Even though flexible electrolytic production of hydrogen takes on a very dominant role in 2050 it does not displace other technologies. Hydrogen also plays a central role in the seasonal balancing of generation and demand. Thus large-scale underground storage is part of the optimal system in addition to a hydrogen transport network. These results provide valuable guidance for the implementation of the energy system transformation in Germany.
Hydrogen-electricity Hybrid Energy Pipelines for Railway Transportation: Design and Economic Evaluation
Mar 2024
Publication
With the decarbonization and electrification of modern railway transportation the demand for both the highcapacity electrical energy and hydrogen fuel energy is increasingly high. A novel scheme was proposed from liquid hydrogen production by surplus wind and solar energy to liquid hydrogen-electricity hybrid energy transmission for railway transportation. The 100 MW hybrid energy transmission pipeline was designed with the 10 kA/1.5 kV superconducting DC cable for electricity and cryogenic layers for liquid hydrogen and liquid nitrogen showing strong capability in transmitting “electricity + cold energy + chemical energy” simultaneously. Economic evaluation was performed with respect to the energy equipment capacity and costs with sensitivity and profitability analysis. With the discount rate 8% the dynamic payback period of the hybrid energy pipeline was 7.1 years. Results indicated that the shortest dynamic payback period of the hybrid energy pipeline was 4.8 years with the maximum transmission distance 93 km. Overall this article shows the novel concept and design of liquid hydrogen-electricity hybrid energy pipelines and proves the technical and economic feasibilities for future bulk hybrid energy transmission for railway transportation.
Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review
May 2022
Publication
The greatest challenge of our times is to identify low cost and environmentally friendly alternative energy sources to fossil fuels. From this point of view the decarbonization of industrial chemical processes is fundamental and the use of hydrogen as an energy vector usable by fuel cells is strategic. It is possible to tackle the decarbonization of industrial chemical processes with the electrification of systems. The purpose of this review is to provide an overview of the latest research on the electrification of endothermic industrial chemical processes aimed at the production of H2 from methane and its use for energy production through proton exchange membrane fuel cells (PEMFC). In particular two main electrification methods are examined microwave heating (MW) and resistive heating (Joule) aimed at transferring heat directly on the surface of the catalyst. For cases the catalyst formulation and reactor configuration were analyzed and compared. The key aspects of the use of H2 through PEM were also analyzed highlighting the most used catalysts and their performance. With the information contained in this review we want to give scientists and researchers the opportunity to compare both in terms of reactor and energy efficiency the different solutions proposed for the electrification of chemical processes available in the recent literature. In particular through this review it is possible to identify the solutions that allow a possible scale-up of the electrified chemical process imagining a distributed production of hydrogen and its consequent use with PEMs. As for PEMs in the review it is possible to find interesting alternative solutions to platinum with the PGM (Platinum Group Metal) free-based catalysts proposing the use of Fe or Co for PEM application.
UK Low Carbon Hydrogen Standard: Guidance on the Greenhouse Gas Emissions and Sustainability Criteria
Apr 2022
Publication
The Low Carbon Hydrogen Standard sets a maximum threshold for the amount of greenhouse gas emissions allowed in the production process for hydrogen to be considered ‘low carbon hydrogen’. Compliance with the standard will help ensure new low carbon hydrogen production makes a direct contribution to our carbon reduction targets.
This guidance sets out the methodology for calculating the emissions associated with hydrogen production and the steps producers should take to prove that the hydrogen they produce is compliant with the standard.
It is for use by hydrogen producers seeking support from government schemes and policies that have adopted the standard.
The standard requires hydrogen producers to:
This guidance sets out the methodology for calculating the emissions associated with hydrogen production and the steps producers should take to prove that the hydrogen they produce is compliant with the standard.
It is for use by hydrogen producers seeking support from government schemes and policies that have adopted the standard.
The standard requires hydrogen producers to:
- meet a GHG emissions intensity of 20g CO2e/MJLHV of produced hydrogen or less for the hydrogen to be considered low carbon
- calculate their greenhouse gas (GHG) emissions up to the ‘point of production’
- set out a risk mitigation plan for fugitive hydrogen emissions
- meet additional requirements for the use of biogenic inputs where relevant and as appropriate for the feedstock source and classification
Evaluating the Opportunity to Repurpose Gas Transmission Assets for Hydrogen Transportation
Sep 2021
Publication
The UK National Transmission System (NTS) is a key enabler to decarbonise the gas network in Great Britain (GB) in order to meet the UK government’s target of net-zero emissions by 2050. FutureGrid is National Grid’s research programme assessing the capability of the transmission system to transport hydrogen. Our goal is to accelerate the decarbonisation of power industry and heat by delivering a safe supply of energy to all customers both during and after the energy transition. FutureGrid will lead to a better understanding of what the technical parameters are around the ultimate role of the NTS in the energy system and how the transition can be managed. Under FutureGrid National Grid will construct a NTS hydrogen test facility at DNV’s Spadeadam testing and research site. NTS assets due to be decommissioned in early RIIO2 will be reconstructed to create a test network that can be used to answer some of the fundamental questions around safety and operation of a converted network. Flows of hydrogen/natural gas blends including 100% hydrogen will be tested for the first time in GB at transmission pressures. This system will connect to the existing H21 distribution network test facility at Spadeadam to prove a complete beach-to-meter network can be decarbonised to develop a comprehensive programme for the hydrogen transition. The project will provide a transmission facility which is a key enabler for more advanced hydrogen testing on industrial equipment such as hydrogen separation technology hydrogen compressors and/or purification of hydrogen for transport. Our paper will detail the current position and aims of the project.
Risk Assessment of a Gaseous Hydrogen Fueling Station (GHFs)
Sep 2021
Publication
Promoted by national and European investment plans promoting the use of hydrogen as energy carrier the number of Gaseous Hydrogen Fueling Station (or GHFS) has been growing up quite significantly over the past years. Considering the new possible hazards and the related accidents induced by these installations like seen in 2019 in Norway this paper presents a risk assessment of a typical GHFS using the same methodology as the one required in France by the authorities for Seveso facilities. The fact that a hydrogen fueling station could be used by a public not particularly trained to handle hydrogen underlines the importance of this risk assessment. In this article typical components related to GHFS (dispenser high pressure storage compressor low pressure storage) are listed and the hazard potentials linked to these components and the substances involved are identified. Based on these elements and an accidentology a risk analysis has been conducted in order to identify all accidental situations that could occur. The workflow included a detailed risk assessment consisting in modeling the thermal and explosion effects of all hazardous phenomena and in assessing the probability of occurrence for these scenarios. Regarding possible mitigation measures the study was based on an international benchmark for codes and standards made for GFHS. These preliminary outcomes of this study may be useful for any designer and/or owner of a GFHS.
Measurement and Modeling on Hydrogen Jet and Combustion from a Pressurize Vessel
Sep 2021
Publication
Hydrogen safety is an important topic for hydrogen energy application. Unintended hydrogen releases and combustions are potential accident scenarios which are of great interest for developing and updating the safety codes and standards. In this paper hydrogen releases and delayed ignitions were studied.
Supporting Hydrogen Technologies Deployment in EU Regions and Member States: The Smart Specialisation Platform on Energy (S3PEnergy)
May 2018
Publication
In order to maximise European national and regional research and innovation potential the European Union is investing in these fields through different funding mechanisms such as the ESIF or H2020 programme. This investment plan is part of the European 2020 strategy where the concept of Smart Specialisation is also included.<br/>Smart Specialisation is an innovation policy concept designed to promote the efficient and effective use of public investment in regional innovation in order to achieve economic growth. The Smart Specialisation Platform was created to support this concept by assisting regions and Member States in developing implementing and reviewing their research and innovation Smart Specialisation strategies.<br/>The Smart Specialisation Platform comprises several thematic platforms. The thematic Smart Specialisation Platform on energy (S3PEnergy) is a joint initiative of three European Commission services: DG REGIO DG ENER and the Joint Research Centre (JRC). The main objective of the S3PEnergy is to support the optimal and effective uptake of the Cohesion Policy funds for energy and to better align energy innovation activities at national local and regional level through the identification of the technologies and innovative solutions that support in the most cost-effective way the EU energy policy priorities.<br/>In the particular case of hydrogen technologies the activities of the platform are mainly focused on supporting the new Fuel Cells and Hydrogen Joint Undertaking (FCH JU) initiative involving regions and cities. To date more than 80 European cities and regions have committed to participate in this initiative through the signature of a Memorandum of Understanding and more participants are expected to join. S3PEnergy is helping in the identification of potential combination of H2020 funding (provided through FCH JU) and ESIF.<br/>To identify potential synergies among these two funding sources a mapping of the different ESIF opportunities has been performed. In order to map these opportunities Operational Programmes (OPs) and research and innovation strategies for Smart Specialisation (RIS3) of the different European regions and Member States were analysed. The results of this mapping and analysis are presented in this paper."
No more items...