- Home
- A-Z Publications
- Publications
Publications
Environmentally-Assisted Cracking of Type 316L Austenitic Stainless Steel in Low Pressure Hydrogen Steam Environments
Aug 2019
Publication
A low pressure superheated hydrogen-steam system has been used to accelerate the oxidation kinetics while keeping the electrochemical conditions similar to those of the primary water in a pressurized water reactor. The initiation has been investigated using a Constant Extension Rate Tensile (CERT) test. Tests were performed on flat tapered specimens made from Type 316L austenitic stainless steel with strain rates of 2×10-6 and 2×10-8 ms-1 at room temperature and at an elevated temperature of 350 °C. R = 1/6 was chosen as a more oxidizing environment and R = 6 was selected as a more reducing environment where the parameter R represents the ratio between the oxygen partial pressure at the Ni/NiO transition and the oxygen partial pressure. Different exposures (1 day and 5 days) prior to loading were investigated post-test evaluation by scanning electron microscopy.
Sustainability Assessment of Fuel Cell Buses in Public Transport
May 2018
Publication
Hydrogen fuel cell (H2FC) buses operating in every day public transport services around Europe are assessed for their sustainability against environmental economic and social criteria. As part of this assessment the buses are evaluated against diesel buses both in terms of sustainability and in terms of meeting real world requirements with respect to operational performance. The study concludes that H2FC buses meet operability and performance criteria and are sustainable environmentally when ‘green’ hydrogen is used. The economic sustainability of the buses in terms of affordability achieves parity with their fossil fuel equivalent by 2030 when the indirect costs to human health and climate change are included. Societal acceptance by those who worked with and used the buses supports the positive findings of earlier studies although satisfactory operability and performance are shown to be essential to positive attitudes. Influential policy makers expressed positive sentiments only if ‘green’ hydrogen is used and the affordability issues can be addressed. No “show-stopper” is identified that would prevent future generations from using H2FC buses in public transport on a broad scale due to damage to the environment or to other factors that impinge on quality of life.
FPGA-Based Implementation of an Optimization Algorithm to Maximize the Productivity of a Microbial Electrolysis Cell
Jun 2021
Publication
In this work the design of the hardware architecture to implement an algorithm for optimizing the Hydrogen Productivity Rate (HPR) in a Microbial Electrolysis Cell (MEC) is presented. The HPR in the MEC is maximized by the golden section search algorithm in conjunction with a super-twisting controller. The development of the digital architecture in the implementation step of the optimization algorithm was developed in the Very High Description Language (VHDL) and synthesized in a Field Programmable Gate Array (FPGA). Numerical simulations demonstrated the feasibility of the proposed optimization strategy embedded in an FPGA Cyclone II. Results showed that only.
CFD Simulations of Large Scale LH2 Dispersion in Open Environment
Sep 2021
Publication
An inter-comparison among partners’ CFD simulations has been carried out within the EU-funded project PRESLHY to investigate the dispersion of the mixture cloud formed from large scale liquid hydrogen release. Rainout experiments performed by Health and Safety Executive (HSE) have been chosen for the work. From the HSE experimental series trial-11 was selected forsimulation due to its conditions where only liquid flow at the nozzle was achieved. During trial-11 liquid hydrogen is spilled horizontally 0.5 m above a concrete pad from a 5 barg tank pressure through a 12 mm (1/2 inch) nozzle. The dispersion takes place outdoors and thus it is imposed to variant wind conditions. Comparison of the CFD results with the measurements at several sensors is presented and useful conclusions are drawn.
Flexible Electricity Use for Heating in Markets with Renewable Energy
Mar 2020
Publication
Using electricity for heating can contribute to decarbonization and provide flexibility to integrate variable renewable energy. We analyze the case of electric storage heaters in German 2030 scenarios with an open-source electricity sector model. We find that flexible electric heaters generally increase the use of generation technologies with low variable costs which are not necessarily renewables. Yet making customary night-time storage heaters temporally more flexible offers only moderate benefits because renewable availability during daytime is limited in the heating season. Respective investment costs accordingly have to be very low in order to realize total system cost benefits. As storage heaters feature only short-term heat storage they also cannot reconcile the seasonal mismatch of heat demand in winter and high renewable availability in summer. Future research should evaluate the benefits of longer-term heat storage.
Development of an Operation Strategy for Hydrogen Production Using Solar PV Energy Based on Fluid Dynamic Aspects
Apr 2017
Publication
Alkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However wind and solar energy sources are highly dependent on weather conditions. As a result power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency a novel operation strategy is proposed in this study. It is based on pumping the electrolyte according to the current density supplied by a solar PV module in order to achieve the suitable fluid dynamics conditions in an electrolysis cell. To this aim a mathematical model including the influence of electrode-membrane distance temperature and electrolyte flow rate has been developed and used as optimization tool. The obtained results confirm the convenience of the selected strategy especially when the electrolyzer is powered by renewable energies.
Energy Modeling Approach to the Global Energy-mineral Nexus: Exploring Metal Requirements and the Well-below 2 °C Target with 100 Percent Renewable Energy
Jun 2018
Publication
Detailed analysis of pathways to future sustainable energy systems is important in order to identify and overcome potential constraints and negative impacts and to increase the utility and speed of this transition. A key aspect of a shift to renewable energy technologies is their relatively higher metal intensities. In this study a bottom-up cost-minimizing energy model is used to calculate aggregate metal requirements in different energy technology including hydrogen and climate policy scenarios and under a range of assumptions reflecting uncertainty in future metal intensities recycling rate and life time of energy technologies. Metal requirements are then compared to current production rates and resource estimates to identify potentially “critical” metals. Three technology pathways are investigated: 100 percent renewables coal & nuclear and gas & renewables each under the two different climate policies: net zero emissions satisfying the well-below 2 °C target and business as usual without carbon constraints resulting together in six scenarios. The results suggest that the three different technology pathways lead to an almost identical degree of warming without any climate policy while emissions peaks within a few decades with a 2 °C policy. The amount of metals required varies significantly in the different scenarios and under the various uncertainty assumptions. However some can be deemed “critical” in all outcomes including Vanadium. The originality of this study lies in the specific findings and in the employment of an energy model for the energy-mineral nexus study to provide better understanding for decision making and policy development.
Exergetic Aspects of Hydrogen Energy Systems—The Case Study of a Fuel Cell Bus
Feb 2017
Publication
Electrifying transportation is a promising approach to alleviate climate change issues arising from increased emissions. This study examines a system for the production of hydrogen using renewable energy sources as well as its use in buses. The electricity requirements for the production of hydrogen through the electrolysis of water are covered by renewable energy sources. Fuel cells are being used to utilize hydrogen to power the bus. Exergy analysis for the system is carried out. Based on a steady-state model of the processes exergy efficiencies are calculated for all subsystems. The subsystems with the highest proportion of irreversibility are identified and compared. It is shown that PV panel has exergetic efficiency of 12.74% wind turbine of 45% electrolysis of 67% and fuel cells of 40%.
Ex Situ Thermo-catalytic Upgrading of Biomass Pyrolysis Vapors Using a Traveling Wave Microwave Reactor
Sep 2016
Publication
Microwave heating offers a number of advantages over conventional heating methods such as rapid and volumetric heating precise temperature control energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the catalyst bed for thermo-catalytic upgrading of pyrolysis vapors. HZSM-5 catalyst was tested at three different temperatures (290 330 and 370°C) at a catalyst to biomass ratio of 2. Results were compared with conventional heating and induction heating method of catalyst bed. The yields of aromatic compounds and coke deposition were dependent on temperature and method of heating. Microwave heating yielded higher aromatic compounds and lower coke deposition. Microwave heating was also energy efficient compared to conventional reactors. The rate of catalyst deterioration was lower for catalyst heated in microwave system.
Numerical Study on Optics and Heat Transfer of Solar Reactor for Methane Thermal Decomposition
Oct 2021
Publication
This study aims to reduce greenhouse gas emissions to the atmosphere and effectively utilize wasted resources by converting methane the main component of biogas into hydrogen. Therefore a reactor was developed to decompose methane into carbon and hydrogen using solar thermal sources instead of traditional energy sources such as coal and petroleum. The optical distributions were analyzed using TracePro a Monte Carlo ray-tracing-based program. In addition Fluent a computational fluid dynamics program was used for the heat and mass transfer and chemical reaction. The cylindrical indirect heating reactor rotates at a constant speed to prevent damage by the heat source concentrated at the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition and the outside was surrounded by insulation to reduce heat loss. The performance of the reactor according to the cavity model was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/m2 wind speed of 1 m/s and outdoor temperature of 25 °C. As a result temperature methane mass fraction distribution and heat loss amounts for the two cavities were obtained and it was found that the effect on the conversion rate was largely dependent on a temperature over 1000 °C in the reactor. Moreover the heat loss of the full-cavity model decreased by 12.5% and the methane conversion rate increased by 33.5% compared to the semi-cavity model. In conclusion the high-temperature environment of the reactor has a significant effect on the increase in conversion rate with an additional effect of reducing heat loss.
Assessment of Fossil-free Steelmaking Based on Direct Reduction Applying High-temperature Electrolysis
Jun 2021
Publication
Preventing humanity from serious impact of climate crisis requires carbon neutrality across all economic sectors including steel industry. Although fossil-free steelmaking routes receiving increasing attention fundamental process aspects especially approaches towards the improvement of efficiency and flexibility are so far not comprehensively studied. In this paper optimized process concepts allowing for a gradual transition towards fossil-free steelmaking based on the coupling of direct reduction process electric arc furnace and electrolysis are presented. Both a high-temperature and low-temperature electrolysis were modeled and possibilities for the integration into existing infrastructure are discussed. Various schemes for heat integration especially when using high-temperature electrolysis are highlighted and quantified. It is demonstrated that the considered direct reduction-based process concepts allow for a high degree of flexibility in terms of feed gas composition when partially using natural gas as a bridge technology. This allows for an implementation in the near future as well as the possibility of supplying power grid services in a renewable energy system. Furthermore it is shown that an emission reduction potential of up to 97.8% can be achieved with a hydrogen-based process route and 99% with a syngas-based process route respectively provided that renewable electricity is used.
Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System
Feb 2022
Publication
Greenhouse gas emissions need to be drastically reduced to mitigate the environmental impacts caused by climate change and to lead to a transformation of the European energy system. A model landscape consisting of four final energy consumption sector models with high spatial (NUTS-3) and temporal (hourly) resolution and the multi-energy system model ISAaR is extended and applied to investigate the transformation pathway of the European energy sector in the deep emission mitigation scenario solidEU. The solidEU scenario describes not only the techno-economic but also the socio-political contexts and it includes the EU27 + UK Norway and Switzerland. The scenario analysis shows that volatile renewable energy sources (vRES) dominate the energy system in 2050. In addition the share of flexible sector coupling technologies increases to balance electricity generation from vRES. Seasonal differences are balanced by hydrogen storage with a seasonal storage profile. The deployment rates of vRES in solidEU show that a fast profound energy transition is necessary to achieve European climate protection goals.
How To Transport and Store Hydrogen – Facts and Figures
Apr 2021
Publication
The EU has set a goal of achieving climate neutrality by 2050 and decided to raise its 2030 climate target to 55%. For this the EU needs to transform its energy system. It is of paramount importance that it will become more efficient affordable and interconnected. Hydrogen can play a pivotal role in the EU’s decarbonisation efforts and be at the centre of the energy system integration supporting transport of renewable energy over very long distances and facilitating renewables storage from one season to another.<br/><br/>ENTSOG GIE and Hydrogen Europe have joined forces on a factsheet that answers a number of fundamental questions about gaseous and liquid hydrogen transport and storage titled “How to transport and store hydrogen? Facts and figures”. This factsheet provides an objective and informative analysis on key concepts terminology and facts and figures from different public sources.<br/><br/>The factsheet illustrates the EU’s potential to enable a global hydrogen economy and to become a global technology leader due to its extensive gas infrastructure that can be used to transport blends of hydrogen or be converted to transport pure hydrogen.
Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review
Oct 2021
Publication
The European Commission have just stated that hydrogen would play a major role in the economic recovery of post-COVID-19 EU countries. Hydrogen is recognised as one of the key players in a fossil fuel-free world in decades to come. However commercially practiced pathways to hydrogen production todays are associated with a considerable amount of carbon emissions. The Paris Climate Change Agreement has set out plans for an international commitment to reduce carbon emissions within the forthcoming decades. A sustainable hydrogen future would only be achievable if hydrogen production is “designed” to capture such emissions. Today nearly 98% of global hydrogen production relies on the utilisation of fossil fuels. Among these steam methane reforming (SMR) boasts the biggest share of nearly 3 50% of the global generation. SMR processes correspond to a significant amount of carbon emissions at various points throughout the process. Despite the dark side of the SMR processes they are projected to play a major role in hydrogen production by the first half of this century. This that a sustainable yet clean short/medium-term hydrogen production is only possible by devising a plan to efficiently capture this co-produced carbon as stated in the latest International Energy Agency (IEA) reports. Here we have carried out an in-depth technical review of the processes employed in sorption-enhanced steam methane reforming (SE-SMR) an emerging technology in low-carbon SMR for combined carbon capture and hydrogen production. This paper aims to provide an in-depth review on two key challenging elements of SE-SMR i.e. the advancements in catalysts/adsorbents preparation and current approaches in process synthesis and optimisation including the employment of artificial intelligence in SE-SMR processes. To the best of the authors‟ knowledge there is a clear gap in the literature where the above areas have been scrutinised in a systematic and coherent fashion. The gap is even more pronounced in the application of AI in SE-SMR technologies. As a result this work aims to fill this gap within the scientific literature.
Grand Canonical Monte Carlo Simulations of the Hydrogen Storage Capacities of Slit-shaped Pores, Nanotubes and Torusenes
Jan 2022
Publication
Grand Canonical Monte Carlo GCMC simulations are used to study the gravimetric and volumetric hydrogen storage capacities of different carbon nanopores shapes: Slit-shaped nanotubes and torusenes at room temperature 298.15 K and at pressures between 0.1 and 35 MPa and for pore diameter or width between 4 and 15 A. The influence of the pore shape or curvature on the storage capacities as a function of pressure temperature and pore diameter is investigated and analyzed. A large curvature of the pores means in general an increase of the storage capacities of the pores. While torusenes and nanotubes have surfaces with more curvature than the slit-shaped planar pores their capacities are lower than those of the slit-shaped pores according to the present GCMC simulations. Torusene a less studied carbon nanostructure has two radii or curvatures but their storage capacities are similar or lower than those of nanotubes which have only one radius or curvature. The goal is to obtain qualitative and quantitative relationships between the structure of porous materials and the hydrogen storage capacities in particular or especially the relationship between shape and width of the pores and the hydrogen storage capacities of carbon-based porous materials.
Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources
Jan 2023
Publication
To become sustainable the production of electricity has been oriented towards the adoption of local and renewable sources. Distributed electric and thermal energy generation is more suitable to avoid any possible waste and the Micro Gas Turbine (MGT) can play a key role in this scenario. Due to the intrinsic properties and the high flexibility of operation of this energy conversion system the exploitation of alternative fuels and the integration of the MGT itself with other energy conversion systems (solar field ORC fuel cells) represent one of the most effective strategies to achieve higher conversion efficiencies and to reduce emissions from power systems. The present work aims to review the results obtained by the researchers in the last years. The different technologies are analyzed in detail both separately and under a more complete view considering two or more solutions embedded in micro-grid configurations.
Impacts of Load Profiles on the Optimization of Power Management of a Green Building Employing Fuel Cells
Dec 2018
Publication
This paper discusses the performance improvement of a green building by optimization procedures and the influences of load characteristics on optimization. The green building is equipped with a self-sustained hybrid power system consisting of solar cells wind turbines batteries proton exchange membrane fuel cell (PEMFC) electrolyzer and power electronic devices. We develop a simulation model using the Matlab/SimPowerSystemTM and tune the model parameters based on experimental responses so that we can predict and analyze system responses without conducting extensive experiments. Three performance indexes are then defined to optimize the design of the hybrid system for three typical load profiles: the household the laboratory and the office loads. The results indicate that the total system cost was reduced by 38.9% 40% and 28.6% for the household laboratory and office loads respectively while the system reliability was improved by 4.89% 24.42% and 5.08%. That is the component sizes and power management strategies could greatly improve system cost and reliability while the performance improvement can be greatly influenced by the characteristics of the load profiles. A safety index is applied to evaluate the sustainability of the hybrid power system under extreme weather conditions. We further discuss two methods for improving the system safety: the use of sub-optimal settings or the additional chemical hydride. Adding 20 kg of NaBH4 can provide 63 kWh and increase system safety by 3.33 2.10 and 2.90 days for the household laboratory and office loads respectively. In future the proposed method can be applied to explore the potential benefits when constructing customized hybrid power systems.
Loss of Integrity of Hydrogen Technologies: A Critical Review
Jul 2020
Publication
Hydrogen is one of the main candidates in replacing fossil fuels in the forthcoming years. However hydrogen technologies must deal with safety aspects due to the specific substance properties. This study aims to provide an overview on the loss of integrity (LOI) of hydrogen equipment which may lead to serious consequences such as fires and explosions. Substantial information regarding the hydrogen lifecycle its properties and safety related aspects has gathered. Furthermore focus has placed on the phenomena responsible for the LOI (e.g. hydrogen embrittlement) and material selection for hydrogen services. Moreover a systematic review on the hydrogen LOI topic has conducted to identify and connect the most relevant and active research group within the topic. In conclusion a significant dearth of knowledge in material behaviour of hydrogen technologies has highlighted. It is thought that is possible to bridge this gap by strengthening the collaborations between scientists from different research fields.
Experimental Study of Hydrogen Embrittlement in Maraging Steels
Feb 2018
Publication
This research activity aims at investigating the hydrogen embrittlement of Maraging steels in connection to real sudden failures of some of the suspension blades of the Virgo Project experimental apparatus. Some of them failed after 15 years of service in working conditions. Typically in the Virgo detector blades are loaded up to 50-60% of the material yield strength. For a deeper understanding of the failure the relationship between hydrogen concentration and mechanical properties of the material have been investigated with specimens prepared in order to simulate blade working conditions. A mechanical characterization of the material has been carried out by standard tensile testing in order to establish the effect of hydrogen content on the material strength. Further experimental activity was executed in order to characterize the fracture surface and to measure the hydrogen content. Finally some of the failed blades have been analyzed in DICI-UNIPI laboratory. The experimental results show that the blades failure can be related with the hydrogen embrittlement phenomenon.
At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?
Apr 2020
Publication
The results of a techno-economic model of distributed wind-hydrogen systems (WHS) located at each existing wind farm on the island of Ireland are presented in this paper. Hydrogen is produced by water electrolysis from wind energy and backed up by grid electricity compressed before temporarily stored then transported to the nearest injection location on the natural gas network. The model employs a novel correlation-based approach to select an optimum electrolyser capacity that generates a minimum levelised cost of hydrogen production (LCOH) for each WHS. Three scenarios of electrolyser operation are studied: (1) curtailed wind (2) available wind and (3) full capacity operations. Additionally two sets of input parameters are used: (1) current and (2) future techno-economic parameters. Additionally two electricity prices are considered: (1) low and (2) high prices. A closest facility algorithm in a geographic information system (GIS) package identifies the shortest routes from each WHS to its nearest injection point. By using current parameters results show that small wind farms are not suitable to run electrolysers under available wind operation. They must be run at full capacity to achieve sufficiently low LCOH. At full capacity the future average LCOH is 6–8 €/kg with total hydrogen production capacity of 49 kilotonnes per year or equivalent to nearly 3% of Irish natural gas consumption. This potential will increase significantly due to the projected expansion of installed wind capacity in Ireland from 5 GW in 2020 to 10 GW in 2030
No more items...