- Home
- A-Z Publications
- Publications
Publications
Metal‐Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis and Energy Storage Applications: A Review
Feb 2022
Publication
Biochar (BCH) is a carbon‐based bio‐material produced from thermochemical conversion of biomass. Several activation or functionalization methods are usually used to improve physicochemical and functional properties of BCHs. In the context of green and sustainable future development activated and functionalized biochars with abundant surface functional groups and large surface area can act as effective catalysts or catalyst supports for chemical transformation of a range of bioproducts in biorefineries. Above the well‐known BCH applications their use as adsorbents to remove pollutants are the mostly discussed although their potential as catalysts or catalyst supports for advanced (electro)catalytic processes has not been comprehensively explored. In this review the production/activation/functionalization of metal‐supported biochar (M‐BCH) are scrutinized giving special emphasis to the metal‐functionalized biochar‐based (electro)catalysts as promising catalysts for bioenergy and bioproducts production. Their performance in the fields of biorefinery processes and energy storage and conversion as electrode materials for oxygen and hydrogen evolutions oxygen reduction and supercapacitors are also reviewed and discussed.
The EOS Project- A SOFC Pilot Plant in Italy Safety Aspects
Sep 2005
Publication
This paper deals with the main safety aspects of the EOS project. The partners of the project – Politecnico di Torino Gas Turbine Technologies (GTT Siemens group) Hysylab (Hydrogen System Laboratory) of Environment Park and Regione Piemonte – aim to create the main node of a regional fuel cell generator network. As a first step the Pennsylvania-based Stationary Fuel Cells division of Siemens Westinghouse Power Corporation (SWPC) supplied GTT with a CHP 100 kWe SOFC (Solide Oxide Fuel Cell) field unit fuelled by natural gas with internal reforming. The fuel cell is connected to the electricity national grid and provides part of the industrial district energy requirement. The thermal energy from the fuel cells is used for heating and air-conditioning of GTT offices bringing the total first Law efficiency of the plant to 70-80%. In the second phase of the EOS project (2007/2008) the maximum power produced by the SOFC systems installed in the GTT EOS test room will be increased to a total of about 225 kWe by means of an additional SOFC generator rated 125 kWe and up to 115 kWth. The paper provides information about the safety analysis which was performed during the main steps of the design of the system i.e. the HAZOP during the SOFC design by SWPC and the safety evaluations during the test hall design by GTT and Politecnico di Torino.
Tracking Hydrogen Embrittlement Using Short Fatigue Crack Behavior of Metals
Dec 2018
Publication
Understanding hydrogen embrittlement phenomenon that leads to deterioration of mechanical properties of metallic components is vital for applications involving hydrogen environment. Among these understanding the influence of hydrogen on the fatigue behaviour of metals is of great interest. Total fatigue life of a material can be divided into fatigue crack initiation and fatigue crack growth phase. While fatigue crack initiation can be linked with the propagation of short fatigue cracks the size of which is of the order of grain size (few tens of microns) that are generally not detectable by conventional crack detection techniques applicable for the long fatigue crack growth behaviour using conventional CT specimens. Extensive literature is available on hydrogen effect on long fatigue crack growth behaviour of metals that leads to the change in crack growth rate and the threshold stress intensity factor range (ΔKth). However it is the short fatigue crack growth behaviour that provides the fundamental understanding and correlation of the metallic microstructure with hydrogen embrittlement phenomenon. Short fatigue crack growth behaviour is characteristically different from long crack growth behaviour showing high propagation rate at much lower values than threshold stress intensity factor range as well as a strong dependency on the microstructural features such as grain boundaries phase boundaries and inclusions. To this end a novel experimental framework is developed to investigate the short fatigue crack behaviour of hydrogen charged materials involving in-situ observation of propagating short cracks coupled with image processing to obtain their da/dN vs a curves. Various metallic materials ranging from austenitic stainless steel (AISI 316L) to reactor pressure vessel steel (SA508 Grade 3 Class I low alloy steel) and line pipe steels (API 5L X65 & X80) are studied in this work.
Hy4Heat Hydrogen Colourant Report
May 2021
Publication
As part of Work Package 2 (WP2) of the Hy4Heat programme DNV produced a substantive report regarding colourant within a potential hydrogen gas network within the UK. Considering the advances within the hydrogen industry over the past year this covering document provides an update to the results as presented by DNV based on current industry progress and research.
The Hydrogen Colourant report was a study to determine if there is a requirement for adding a colourant to hydrogen to ensure that safe burning and user acceptance is achieved and to investigate the optimum solution if a colourant is required. The recommendation is that adding colourant to a future hydrogen gas network for use within buildings is not necessary if engineering measures are put in place to enable safe appliance operation."
- Advancements have been made in the understanding of key topics:
- Flame visibility and supervision
- Health and safety of colourant additives
- Production of Nitrogen Oxides (NOx)
- Likelihood of ignition from domestic electrical installations
- Nature of gas escapes
The Hydrogen Colourant report was a study to determine if there is a requirement for adding a colourant to hydrogen to ensure that safe burning and user acceptance is achieved and to investigate the optimum solution if a colourant is required. The recommendation is that adding colourant to a future hydrogen gas network for use within buildings is not necessary if engineering measures are put in place to enable safe appliance operation."
A Comprehensive Review of Microbial Electrolysis Cells (MEC) Reactor Designs and Configurations for Sustainable Hydrogen Gas Production
Nov 2015
Publication
Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles. A cutting edge technology called a microbial electrolysis cell (MEC) can achieve sustainable and clean hydrogen production from a wide range of renewable biomass and wastewaters. Enhancing the hydrogen production rate and lowering the energy input are the main challenges of MEC technology. MEC reactor design is one of the crucial factors which directly influence on hydrogen and current production rate in MECs. The rector design is also a key factor to upscaling. Traditional MEC designs incorporated membranes but it was recently shown that membrane-free designs can lead to both high hydrogen recoveries and production rates. Since then multiple studies have developed reactors that operate without membranes. This review provides a brief overview of recent advances in research on scalable MEC reactor design and configurations.
Simulation of a Multi-Functional Energy System for Cogeneration of Steam, Power and Hydrogen in a Coke Making Plant
Mar 2013
Publication
In this paper a multifunctional energy system (MES) is proposed for recovering energy from the extra of coke oven gas (COG) which is usually flared or vented out as a waste stream in coke making plants. The proposed system consists of a pressure swing adsorption (PSA) unit for extracting some of the hydrogen from COG a gas turbine for producing heat and power from PSA offgas and a heat recovery steam generator (HRSG) for generating the steam required by the plant's processes. o assess the performance of the system practically simulations are carried out on the basis of the design and operational conditions of Zarand Coke Making Plant in Iran. The results indicate that by utilizing about 4.39 tons of COG per hour 6.5 MW of net electric power can be approximately produced by the gas turbine which can supply the coke making plant's total electrical power demand. Furthermore through recovering heat from gas turbine's exhaust close to 57% of the plant's steam demand can be supplied by the HRSG unit. It is also found that around 350 kilograms per hour of nearly pure hydrogen (99.9% purity) at 200 bar can be produced by the PSA unit. According to the sensitivity analysis results if the hydrogen content of the coke oven gas decreases by about 10% the gross power output of the gas turbine also declines by around 5.2% due to the reduction of LHV of the PSA offgas. Moreover economic evaluation of the system shows that the payback period of the investment which is estimated at 36.1 M$ is about 5.5 years. The net present value (NPV) and internal rate of return on investment (ROI) are calculated to be 17.6% and 43.3 M$ respectively.
Hydrogen Non-premixed Combustion in Enclosure with One Vent and Sustained Release: Numerical Experiments
Sep 2013
Publication
Numerical experiments are performed to understand different regimes of hydrogen non-premixed combustion in an enclosure with passive ventilation through one horizontal or vertical vent located at the top of a wall. The Reynolds averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) model with a reduced chemical reaction mechanism is described in detail. The model is based on the renormalization group (RNG) k-ε turbulence model the eddy dissipation concept (EDC) model for simulation of combustion coupled with the 18-step reduced chemical mechanism (8 species) and the in-situ adaptive tabulation (ISAT) algorithm that accelerates the reacting flow calculations by two to three orders of magnitude. The analysis of temperature and species (hydroxyl hydrogen oxygen water) concentrations in time as well as the velocity through the vent shed a light on regimes and dynamics of indoor hydrogen fires. A well-ventilated fire is simulated in the enclosure at a lower release flow rate and complete combustion of hydrogen within the enclosure. Fire becomes under-ventilated at higher release flow rates with two different modes observed. The first mode is the external flame stabilised at the enclosure vent at moderate release rates and the second mode is the self-extinction of combustion inside and outside the enclosure at higher hydrogen release rates. The simulations demonstrated a complex reacting flow dynamics in the enclosure that leads to formation of the external flame or the self-extinction. The air intake into the enclosure at later stages of the process through the whole vent area is a characteristic feature of the self-extinction regime. This air intake is due to faster cooling of hot combustion products by sustained colder hydrogen leak compared to the generation of hot products by the ceasing chemical reactions inside the enclosure and hydrogen supply. In general an increase of hydrogen sustained release flow rate will change fire regime from the well-ventilated combustion within the enclosure through the external flame stabilised at the vent and finally to the self-extinction of combustion throughout the domain.
The Role of the Argon and Helium Bath Gases on the Detonation Structure of H2/)2 Mixture
Sep 2021
Publication
Recent modeling efforts of non-equilibrium effects in detonations have suggested that hydrogen-based detonations may be affected by vibrational non-equilibrium of the hydrogen and oxygen molecules effects which could explain discrepancies of cell sizes measured experimentally and calculated without relaxation effects. The present study addresses the role of vibrational relaxation in 2H2/O2 detonations by considering two-bath gases argon and helium. These two gases have the same thermodynamic and kinetic effects when relaxation is neglected. However due to the bath gases differences in molecular weight and reduced mass differences which affect the molecular collisions relaxation rates can be changed by approximately 50-70%. Experiments were performed in a narrow channel in mixtures of 2H2/O2/7Ar and 2H2/O2/7He to evaluate the role of the bath gas on detonation cellular structures. The experiments showed differences in velocity deficits and cell sizes for experimental conditions keeping the induction zone length constant in each of the mixtures. These differences were negligible in sensitive mixtures but increased with the increase in velocity deficits while the cell sizes approaching the channel dimensions. Near the limits differences of cell size in two mixtures approached a factor of 2. These differences were however reconciled by accounting for the viscous losses to the tube walls evaluated using a modified version of Mirels' laminar boundary layer theory and generalized Chapman-Jouguet theory for eigenvalue detonations. The experiments suggest that there is an influence of relaxation effects on the cellular structure of detonations which is more sensitive to wall boundary conditions. However the previous works showed that the impact of vibrational non-equilibrium in a mixture of H2/Air is more visible due to the effects of N2 in the air slowest to relax. Previous discrepancies suggested to be indicative of relaxation effects should be reevaluated by the inclusion of wall loss effects.
Molybdenum Carbide Microcrystals: Efficient and Stable Catalyst for Photocatalytic H2 Evolution From Water in The Presence Of Dye Sensitizer
Sep 2016
Publication
Rod-like molybdenum carbide (Mo2C) microcrystals were obtained from the pyrolysis of Mo-containing organic-inorganic hybrid composite. We investigated the photocatalytic H2 evolution activity of Mo2C by constructing a Mo2C-dye sensitizer photocatalyst system. A high quantum efficiency of 29.7% was obtained at 480 nm. Moreover Mo2C catalyst can be easily recycled by simple filtration.
Engineering a Sustainable Gas Future
Nov 2021
Publication
The Institution of Gas Engineers & Managers (IGEM) is the UK’s Professional Engineering Institution supporting individuals and businesses working in the global gas industry. IGEM was founded in 1863 with the purpose of advancing the science and relevant knowledge of gas engineering for the benefit of the public.
As a not-for-profit independent organisation IGEM acts as a trusted source of technical information guidance and services for the gas sector. In today’s net zero context IGEM is focused on engineering a sustainable gas future – we do this by:
This document outlines the current UK gas policy landscape our stance and what contribution we are making as an organisation.
As a not-for-profit independent organisation IGEM acts as a trusted source of technical information guidance and services for the gas sector. In today’s net zero context IGEM is focused on engineering a sustainable gas future – we do this by:
- Helping our members achieve and uphold the highest standards of professional competence to ensure the safety of the public
- Supporting our members in achieving their career goals by providing high quality products services and personal and professional development opportunities
- Acting as the voice of the gas industry when working with stakeholders to develop and improve gas policy.
This document outlines the current UK gas policy landscape our stance and what contribution we are making as an organisation.
Life Cycle Assessment of Hydrogen Production and Consumption in an Isolated Territory
Apr 2018
Publication
Hydrogen produced from renewables works as an energy carrier and as energy storage medium and thus hydrogen can help to overcome the intermittency of typical renewable energy sources. However there is no comprehensive environmental performance study of hydrogen production and consumption. In this study detailed cradle to grave life cycle analyses are performed in an isolated territory. The hydrogen is produced on-site by Polymer Electrolyte Membrane (PEM) water electrolysis based on electricity from wind turbines that would otherwise have been curtailed and subsequently transported with gas cylinder by road and ferry. The hydrogen is used to provide electricity and heat through fuel cell stacks as well as hydrogen fuel for fuel cell vehicles. In order to evaluate the environmental impacts related to the hydrogen production and utilisation this work conducts an investigation of the entire life cycle of the described hydrogen production transportation and utilisation. All the processes related to the equipment manufacture operation maintenance and disposal are considered in this study.
On Flame Ball-to-Deflagration Transition in Hydrogen-air Mixtures
Sep 2021
Publication
Ultra-lean hydrogen-air combustion is characterized by two phenomena: the difference in upward and downward flame propagation concentration limits and the incomplete combustion. The clear answers on the two basic questions are still absent: What is a reason and what is a mechanism for their manifestation? Problem statement and the principal research topics of the Flame Ball to Deflagration Transition (FBDT) phenomenon in gaseous hydrogen-air mixtures are presented. The non-empirical concept of the fundamental concentration limits discriminates two basic low-speed laminar combustion patterns - self-propagating locally planar deflagration fronts and drifting locally spherical flame balls. To understand - at what critical conditions and how the baric deflagrations are transforming into iso- baric flame balls? - the photographic studies of the quasi-2-dim flames freely propagating outward radially via thin horizontal channel were performed. For gradual increase of initial hydrogen concentration from 3 to 12 vol.% the three representative morphological types of combustion (star-like dendrite-like and quasi-homogeneous) and two characteristic processes of reaction front bifurcation were revealed. Key elements of the FBDT mechanism both for 2-dim and 3-dim combustion are the following. Locally spherical ""leading centres"" (drifting flame balls) are the ""elementary building blocks"" of all ultra-lean flames. System of the drifting flame balls is formed due to primary bifurcation of the pre-flame kernel just after ignition. Subsequent mutual dynamics and overall morphology of the ultra-lean flames are governed by competitive non-local interactions of the individual drifting flame balls and their secondary/tertiary/etc. bifurcations defined by initial stoichiometry."
Flexibility in Great Britain
May 2021
Publication
The Flexibility in Great Britain project analysed the system-level value of deploying flexibility across the heat transport industry and power sectors in Great Britain to provide a robust evidence-base on the role and value of flexibility in a net zero system.
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
- Embedding greater flexibility across the entire energy system will reduce the cost of achieving net zero for all consumers while assuring energy security.
- Investing in flexibility is a no-regrets decision as it has the potential to deliver material net savings of up to £16.7bn per annum across all scenarios analysed in 2050.
- A more flexible system will accelerate the benefits of decarbonisation supported by decentralisation and digitalisation.
- To maximise the benefits of flexibility households and businesses should play an active role in the development and operation of the country’s future energy system as energy use for transport heat and appliances becomes more integrated.
- Policymakers should preserve existing flexibility options and act now to maximise future flexibility such as by building it into ‘smart’ appliances or building standards.
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
2020 It's Time To Get Real
Mar 2020
Publication
Gi Editor Sharon Baker-Hallam sits down with Chris Stark CEO of the Committee on Climate Change to talk about this year’s Sir Denis Rooke Memorial Lecture the economic opportunities to be found in going green and why 2020 is a critical year in the ongoing battle against rising global temperatures
Study of the Effects of Changes in Gas Composition as Well as Ambient and Gas Temperature on Errors of Indications of Thermal Gas Meters
Oct 2020
Publication
Thermal gas meters represent a promising technology for billing customers for gaseous fuels however it is essential to ensure that measurement accuracy is maintained in the long term and in a broad range of operating conditions. The effect of hydrogen addition to natural gas will change the physicochemical properties of the mixture of natural gas and hydrogen. Such a mixture will be supplied through the gas system to consumers including households where the amounts of received gas will be metered. The physicochemical properties of hydrogen including the specific density or viscosity differ significantly from those of the natural gas components such as methane ethane propane nitrogen etc. Therefore it is of utmost importance to establish the impact of the changes in the gas composition caused by the addition of hydrogen to natural gas on the metrological properties of household gas meters including thermal gas meters. Furthermore since household gas meters can be installed outdoors and taking into account the fact that household gas meters are good heat exchangers the influence of ambient and gas temperature on the metrological properties of those meters should be investigated. This article reviews a test bench and a testing method concerning errors of thermal gas meter indicators using air and natural gas including the type containing hydrogen. The indication errors for thermal gas meters using air natural gas and natural gas with an addition of 2% 4% 5% 10% and 15% hydrogen were determined and then subjected to metrological analysis. Moreover the test method and test bench are discussed and the results of tests on the impact of ambient and gas temperatures (-25 ◦C and 55 ◦C respectively) on the errors of indications of thermal gas meters are presented. Conclusions for distribution system operators in terms of gas meter selection were drawn based on the test results.
Seasonal and Multi-Seasonal Energy Storage by Power-to-Methane Technology
Jun 2021
Publication
The time-range of applicability of various energy-storage technologies are limited by self-discharge and other inevitable losses. While batteries and hydrogen are useful for storage in a time-span ranging from hours to several days or even weeks for seasonal or multi-seasonal storage only some traditional and quite costly methods can be used (like pumped-storage plants Compressed Air Energy Storage or energy tower). In this paper we aim to show that while the efficiency of energy recovery of Power-to-Methane technology is lower than for several other methods due to the low self-discharge and negligible standby losses it can be a suitable and cost-effective solution for seasonal and multi-seasonal energy storage.
Timmermans’ Dream: An Electricity and Hydrogen Partnership Between Europe and North Africa
Oct 2021
Publication
Because of differences in irradiation levels it could be more efficient to produce solar electricity and hydrogen in North Africa and import these energy carriers to Europe rather than generating them at higher costs domestically in Europe. From a global climate change mitigation point of view exploiting such efficiencies can be profitable since they reduce overall renewable electricity capacity requirements. Yet the construction of this capacity in North Africa would imply costs associated with the infrastructure needed to transport electricity and hydrogen. The ensuing geopolitical dependencies may also raise energy security concerns. With the integrated assessment model TIAM-ECN we quantify the trade-off between costs and benefits emanating from establishing import-export links between Europe and North Africa for electricity and hydrogen. We show that for Europe a net price may have to be paid for exploiting such interlinkages even while they reduce the domestic investments for renewable electricity capacity needed to implement the EU’s Green Deal. For North African countries the potential net benefits thanks to trade revenues may build up to 50 billion €/yr in 2050. Despite fears over costs and security Europe should seriously consider an energy partnership with North Africa because trade revenues are likely to lead to positive employment income and stability effects in North Africa. Europe can indirectly benefit from such impacts.
Estimation of Hydrogen Production using Wind Energy in Algeria
Aug 2015
Publication
In response to problems involved in the current crisis of petrol in Algeria with the decrease in the price of the oil barrel the rate of growth in domestic electricity demand and with an associated acceleration of global warming as a result of significantly increased greenhouse gas (GHG) emissions renewable energy seems today as a clean and strategic substitution for the next decades. However the greatest obstacles which face electric energy comes from renewable energy systems are often referred to the intermittency of these sources as well as storage and transport problems the need for their conversion into a versatile energy carrier in its use storable transportable and environmentally acceptable are required. Among all the candidates answering these criteria hydrogen presents the best answer. In the present work particular attention is paid to the production of hydrogen from wind energy. The new wind map of Algeria shows that the highest potential wind power was found in Adrar Hassi-R'Mel and Tindouf regions. The data obtained from these locations have been analyzed using Weibull probability distribution function. The wind energy produced in these locations is exploited for hydrogen production through water electrolysis. The objective of this paper is to realize a technological platform allowing the evaluation of emergent technologies of hydrogen production from wind energy using four wind energy conversion systems of 600 1250 1500 and 2000 kW rated capacity. The feasibility study shows that using wind energy in the selected sites is a promising solution. It is shown that the turbine " De Wind D7" is sufficient to supply the electricity and hydrogen with a least cost and a height capacity factor. The minimum cost of hydrogen production of 1.214 $/kgH2 is obtained in Adrar.
CFD Modeling and Consequence Analysis of an Accidental Hydrogen Release in a Large Scale Facility
Sep 2013
Publication
In this study the consequences of an accidental release of hydrogen within large scale (>15000 m3) facilities were modelled. To model the hydrogen release an LES Navier–Stokes CFD solver called fireFoam was used to calculate the dispersion and mixing of hydrogen within a large scale facility. The performance of the CFD modelling technique was evaluated through a validation study using experimental results from a 1/6 scale hydrogen release from the literature and a grid sensitivity study. Using the model a parametric study was performed varying release rates and enclosure sizes and examining the concentrations that develop. The hydrogen dispersion results were then used to calculate the corresponding pressure loads from hydrogen-air deflagrations in the facility.
Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
Jun 2021
Publication
Renewable methanol obtained from CO2 and hydrogen provided from renewable energy was proposed to close the CO2 loop. In industry methanol synthesis using the catalyst CuO/ZnO/Al2O3 occurs at a high pressure. We intend to make certain modification on the traditional catalyst to work at lower pressure maintaining high selectivity. Therefore three heterogeneous catalysts were synthesized by coprecipitation to improve the activity and the selectivity to methanol under mild conditions of temperature and pressure. Certain modifications on the traditional catalyst Cu/Zn/Al2O3 were employed such as the modification of the synthesis time and the addition of Pd as a dopant agent. The most efficient catalyst among those tested was a palladium-doped catalyst 5% Pd/Cu/Zn/Al2O3. This had a selectivity of 64% at 210 °C and 5 bar.
No more items...