- Home
- A-Z Publications
- Publications
Publications
Selection Criteria and Ranking for Sustainable Hydrogen Production Options
Aug 2022
Publication
This paper aims to holistically study hydrogen production options essential for a sustainable and carbon-free future. This study also outlines the benefits and challenges of hydrogen production methods to provide sustainable alternatives to fossil fuels by meeting the global energy demand and net-zero targets. In this study sixteen hydrogen production methods are selected for sustainability investigation based on seven different criteria. The criteria selected in the comparative evaluation cover various dimensions of hydrogen production in terms of economic technical environmental and thermodynamic aspects for better sustainability. The current study results show that steam methane reforming with carbon capture could provide sustainable hydrogen in the near future while the other technologies’ maturity levels increase and the costs decrease. In the medium- and long-terms photonic and thermal-based hydrogen production methods can be the key to sustainable hydrogen production.
Integration of Different Storage Technologies towards Sustainable Development—A Case Study in a Greek Island
Mar 2024
Publication
The necessity for transitioning to renewable energy sources and the intermittent nature of the natural variables lead to the integration of storage units into these projects. In this research paper wind turbines and solar modules are combined with pumped hydro storage batteries and green hydrogen. Energy management strategies are described for five different scenarios of hybrid renewable energy systems based on single or hybrid storage technologies. The motivation is driven by grid stability issues and the limited access to fresh water in the Greek islands. A RES-based desalination unit is introduced into the hybrid system for access to low-cost fresh water. The comparison of single and hybrid storage methods the exploitation of seawater for the simultaneous fulfillment of water for domestic and agricultural purposes and the evaluation of different energy economic and environmental indices are the innovative aspects of this research work. The results show that pumped hydro storage systems can cover the energy and water demand at the minimum possible price 0.215 EUR/kWh and 1.257 EUR/m3 while hybrid storage technologies provide better results in the loss of load probability payback period and CO2 emissions. For the pumped hydro– hydrogen hybrid storage system these values are 21.40% 10.87 years and 2297 tn/year respectively.
Research Progress and Application Prospects of Solid-State Hydrogen Storage Technology
Apr 2024
Publication
Solid-state hydrogen storage technology has emerged as a disruptive solution to the “last mile” challenge in large-scale hydrogen energy applications garnering significant global research attention. This paper systematically reviews the Chinese research progress in solid-state hydrogen storage material systems thermodynamic mechanisms and system integration. It also quantitatively assesses the market potential of solid-state hydrogen storage across four major application scenarios: on-board hydrogen storage hydrogen refueling stations backup power supplies and power grid peak shaving. Furthermore it analyzes the bottlenecks and challenges in industrialization related to key materials testing standards and innovation platforms. While acknowledging that the cost and performance of solid-state hydrogen storage are not yet fully competitive the paper highlights its unique advantages of high safety energy density and potentially lower costs showing promise in new energy vehicles and distributed energy fields. Breakthroughs in new hydrogen storage materials like magnesium-based and vanadium-based materials coupled with improved standards specifications and innovation mechanisms are expected to propel solid-state hydrogen storage into a mainstream technology within 10–15 years with a market scale exceeding USD 14.3 billion. To accelerate the leapfrog development of China’s solid-state hydrogen storage industry increased investment in basic research focused efforts on key core technologies and streamlining the industry chain from materials to systems are recommended. This includes addressing challenges in passenger vehicles commercial vehicles and hydrogen refueling stations and building a collaborative innovation ecosystem involving government industry academia research finance and intermediary entities to support the achievement of carbon peak and neutrality goals and foster a clean low-carbon safe and efficient modern energy system.
How to Connect Energy Islands: Trade-offs Between Hydrogen and Electricity Infrastructure
Apr 2023
Publication
In light of offshore wind expansions in the North and Baltic Seas in Europe further ideas on using offshore space for renewable-based energy generation have evolved. One of the concepts is that of energy islands which entails the placement of energy conversion and storage equipment near offshore wind farms. Offshore placement of electrolysers will cause interdependence between the availability of electricity for hydrogen production and for power transmission to shore. This paper investigates the trade-offs between integrating energy islands via electricity versus hydrogen infrastructure. We set up a combined capacity expansion and electricity dispatch model to assess the role of electrolysers and electricity cables given the availability of renewable energy from the islands. We find that the electricity system benefits more from connecting close-to-shore wind farms via power cables. In turn electrolysis is more valuable for far-away energy islands as it avoids expensive long-distance cable infrastructure. We also find that capacity investment in electrolysers is sensitive to hydrogen prices but less to carbon prices. The onshore network and congestion caused by increased activity close to shore influence the sizing and siting of electrolysers.
Balancing Electricity Supply and Demand in a Carbon-Neutral Northern Europe
Apr 2023
Publication
This work investigates how to balance the electricity supply and demand in a carbon-neutral northern Europe. Applying a cost-minimizing electricity system model including options to invest in eleven different flexibility measures and cost-efficient combinations of strategies to manage variations were identified. The results of the model were post-processed using a novel method to map the net load before and after flexibility measures were applied to reveal the contribution of each flexibility measure. The net load was mapped in the space spanned by the amplitude duration and number of occurrences. The mapping shows that depending on cost structure flexibility measures contribute to reduce the net load in three different ways; (1) by reducing variations with a long duration but low amplitude (2) by reducing variations with a high amplitude but short duration and low occurrence or (3) by reducing variations with a high amplitude short duration and high occurrence. It was found that cost-efficient variation management was achieved by combining wind and solar power and by combining strategies (1–3) to manage the variations. The cost-efficient combination of strategies depends on electricity system context where electricity trade flexible hydrogen and heat production (1) manage the majority of the variations in regions with good conditions for wind power while stationary batteries (3) were the main contributors in regions with good conditions for solar power.
Optimal Operation Strategy of PV-Charging-Hydrogenation Composite Energy Station Considering Demand Response
Apr 2023
Publication
Traditional charging stations have a single function which usually does not consider the construction of energy storage facilities and it is difficult to promote the consumption of new energy. With the gradual increase in the number of new energy vehicles (NEVs) to give full play to the complementary advantages of source-load resources and provide safe efficient and economical energy supply services this paper proposes the optimal operation strategy of a PV-charging-hydrogenation composite energy station (CES) that considers demand response (DR). Firstly the operation mode of the CES is analyzed and the CES model including a photovoltaic power generation system fuel cell hydrogen production hydrogen storage hydrogenation and charging is established. The purpose is to provide energy supply services for electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) at the same time. Secondly according to the travel law of EVs and HFCVs the distribution of charging demand and hydrogenation demand at different periods of the day is simulated by the Monte Carlo method. On this basis the following two demand response models are established: charging load demand response based on the price elasticity matrix and interruptible load demand response based on incentives. Finally a multi-objective optimal operation model considering DR is proposed to minimize the comprehensive operating cost and load fluctuation of CES and the maximum–minimum method and analytic hierarchy process (AHP) are used to transform this into a linearly weighted single-objective function which is solved via an improved moth–flame optimization algorithm (IMFO). Through the simulation examples operation results in four different scenarios are obtained. Compared with a situation not considering DR the operation strategy proposed in this paper can reduce the comprehensive operation cost of CES by CNY 1051.5 and reduce the load fluctuation by 17.8% which verifies the effectiveness of the proposed model. In addition the impact of solar radiation and energy recharge demand changes on operations was also studied and the resulting data show that CES operations were more sensitive to energy recharge demand changes.
Advancements in Hydrogen Production, Storage, Distribution and Refuelling for a Sustainable Transport Sector: Hydrogen Fuel Cell Vehicles
Jul 2023
Publication
Hydrogen is considered as a promising fuel in the 21st century due to zero tailpipe CO2 emissions from hydrogen-powered vehicles. The use of hydrogen as fuel in vehicles can play an important role in decarbonising the transport sector and achieving net-zero emissions targets. However there exist several issues related to hydrogen production efficient hydrogen storage system and transport and refuelling infrastructure where the current research is focussing on. This study critically reviews and analyses the recent technological advancements of hydrogen production storage and distribution technologies along with their cost and associated greenhouse gas emissions. This paper also comprehensively discusses the hydrogen refuelling methods identifies issues associated with fast refuelling and explores the control strategies. Additionally it explains various standard protocols in relation to safe and efficient refuelling analyses economic aspects and presents the recent technological advancements related to refuelling infrastructure. This study suggests that the production cost of hydrogen significantly varies from one technology to others. The current hydrogen production cost from fossil sources using the most established technologies were estimated at about $0.8–$3.5/kg H2 depending on the country of production. The underground storage technology exhibited the lowest storage cost followed by compressed hydrogen and liquid hydrogen storage. The levelised cost of the refuelling station was reported to be about $1.5–$8/kg H2 depending on the station's capacity and country. Using portable refuelling stations were identified as a promising option in many countries for small fleet size low-to-medium duty vehicles. Following the current research progresses this paper in the end identifies knowledge gaps and thereby presents future research directions.
Are Green and Blue Hydrogen Competitive or Complementary? Insights from a Decarbonised European Power System Analysis
Jun 2023
Publication
Hydrogen will be important in decarbonized energy systems. The primary ways to produce low emission hydrogen are from renewable electricity using electrolyzers called green hydrogen and by reforming natural gas and capturing and storing the CO2 known as blue hydrogen. In this study the degrees to which blue and green hydrogen are complementary or competitive are analyzed through a sensitivity analysis on the electrolyzer costs and natural gas price. This analysis is performed on four bases: what is the cost-effective relative share between blue and green hydrogen deployment how their deployment influences the price of hydrogen how the price of CO2 changes with the deployment of these two technologies and whether infrastructure can economically be shared between these two technologies. The results show that the choice of green and blue hydrogen has a tremendous impact where an early deployment of green leads to higher hydrogen costs and CO2 prices in 2030. Allowing for blue hydrogen thus has notable benefits in 2030 giving cheaper hydrogen with smaller wider socioeconomic impacts. In the long term these competitive aspects disappear and green and blue hydrogen can coexist in the European market without negatively influencing one another.
Understanding Degradation Effects of Elevated Temperature Operating Conditions in Polymer Electrolyte Water Electrolyzers
Apr 2021
Publication
The cost of polymer electrolyte water electrolysis (PEWE) is dominated by the price of electricity used to power the water splitting reaction. We present a liquid water fed polymer electrolyte water electrolyzer cell operated at a cell temperature of 100 °C in comparison to a cell operated at state-of-the-art operation temperature of 60 °C over a 300 h constant current period. The hydrogen conversion efficiency increases by up to 5% at elevated temperature and makes green hydrogen cheaper. However temperature is a stress factor that accelerates degradation causes in the cell. The PEWE cell operated at a cell temperature of 100 °C shows a 5 times increased cell voltage loss rate compared to the PEWE cell at 60 °C. The initial performance gain was found to be consumed after a projected operation time of 3500 h. Elevated temperature operation is only viable if a voltage loss rate of less than 5.8 μV h−1 can be attained. The major degradation phenomena that impact performance loss at 100 °C are ohmic (49%) and anode kinetic losses (45%). Damage to components was identified by post-test electron-microscopic analysis of the catalyst coated membrane and measurement of cation content in the drag water. The chemical decomposition of the ionomer increases by a factor of 10 at 100 °C vs 60 °C. Failure by short circuit formation was estimated to be a failure mode after a projected lifetime 3700 h. At elevated temperature and differential pressure operation hydrogen gas cross-over is limiting since a content of 4% hydrogen in oxygen represents the lower explosion limit.
An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines
Feb 2024
Publication
The utilization of hydrogen fuel in gas turbines brings significant changes to the thermophysical properties of flue gas including higher specific heat capacities and an enhanced steam content. Therefore hydrogen-fueled gas turbines are susceptible to health degradation in the form of steam-induced corrosion and erosion in the hot gas path. In this context the fault diagnosis of hydrogen-fueled gas turbines becomes indispensable. To the authors’ knowledge there is a scarcity of fault diagnosis studies for retrofitted gas turbines considering hydrogen as a potential fuel. The present study however develops an artificial neural network (ANN)-based fault diagnosis model using the MATLAB environment. Prior to the fault detection isolation and identification modules physics-based performance data of a 100 kW micro gas turbine (MGT) were synthesized using the GasTurb tool. An ANN-based classification algorithm showed a 96.2% classification accuracy for the fault detection and isolation. Moreover the feedforward neural network-based regression algorithm showed quite good training testing and validation accuracies in terms of the root mean square error (RMSE). The study revealed that the presence of hydrogen-induced corrosion faults (both as a single corrosion fault or as simultaneous fouling and corrosion) led to false alarms thereby prompting other incorrect faults during the fault detection and isolation modules. Additionally the performance of the fault identification module for the hydrogen fuel scenario was found to be marginally lower than that of the natural gas case due to assumption of small magnitudes of faults arising from hydrogen-induced corrosion.
Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application
May 2023
Publication
This paper provides a comprehensive review of the research progress current state-ofthe-art and future research directions of energy storage systems. With the widespread adoption of renewable energy sources such as wind and solar power the discourse around energy storage is primarily focused on three main aspects: battery storage technology electricity-to-gas technology for increasing renewable energy consumption and optimal configuration technology. The paper employs a visualization tool (CiteSpace) to analyze the existing works of literature and conducts an in-depth examination of the energy storage research hotspots in areas such as electrochemical energy storage hydrogen storage and optimal system configuration. It presents a detailed overview of common energy storage models and configuration methods. Based on the reviewed articles the future development of energy storage will be more oriented toward the study of power characteristics and frequency characteristics with more focus on the stability effects brought by transient shocks. This review article compiles and assesses various energy storage technologies for reference and future research.
Natural Hydrogen in the Energy Transition: Fundamentals, Promise, and Enigmas
Oct 2023
Publication
Beyond its role as an energy vector a growing number of natural hydrogen sources and reservoirs are being discovered all over the globe which could represent a clean energy source. Although the hydrogen amounts in reservoirs are uncertain they could be vast and they could help decarbonize energy-intensive economic sectors and facilitate the energy transition. Natural hydrogen is mainly produced through a geochemical process known as serpentinization which involves the reaction of water with low-silica ferrous minerals. In favorable locations the hydrogen produced can become trapped by impermeable rocks on its way to the atmosphere forming a reservoir. The safe exploitation of numerous natural hydrogen reservoirs seems feasible with current technology and several demonstration plants are being commissioned. Natural hydrogen may show variable composition and require custom separation purification storage and distribution facilities depending on the location and intended use. By investing in research in the mid-term more hydrogen sources could become exploitable and geochemical processes could be artificially stimulated in new locations. In the long term it may be possible to leverage or engineer the interplay between microorganisms and geological substrates to obtain hydrogen and other chemicals in a sustainable manner.
Hydrogen Fuel Cell Legal Framework in the United States, Germany, and South Korea—A Model for a Regulation in Malaysia
Feb 2021
Publication
As a party to the United Nation Framework Convention on Climate Change (UNFCCC) Malaysia is committed to reduce its greenhouse gases (GHG) emission intensity of gross domestic product (GDP) by 45% by 2030 relative to the emission intensity of GDP in 2005. One of the ways for Malaysia to reduce its GHG emission is to diversify its energy mix and to include hydrogen fuel cell (HFC) in its energy mix. Since Malaysia does not have any legal framework for HFCs it is best to see how other countries are doing and how can it be replicated in Malaysia. This paper reviews the HFC legal framework in the United States Germany and South Korea as these countries are among those that have advanced themselves in this technology. The researchers conducted a library-based research and obtained the related materials from online databases and public domain. Based on the reviews the researchers find that these countries have a proper legal framework in place for HFC. With these legal frameworks funds will be available to support research and development as well as demonstration of HFC. Thus it is recommended that Malaysia to have a proper HFC legal framework in place in order to support the development of the HFC industry.
The Role of Hydrogen and Batteries in Delivering Net Zero in the UK by 2050
Apr 2023
Publication
This report presents an analysis of how hydrogen and battery technologies are likely to be utilised in different sectors within the UK including transportation manufacturing the built environment and power. In particular the report compares the use of hydrogen and battery technology across these sectors. In addition it evaluates where these technologies will be in competition where one technology will dominate and where a combination of the two may be used. This sector analysis draws on DNV’s knowledge and experience within both the battery and hydrogen industries along with a review of studies available in the public domain. The analysis has been incorporated into DNV’s Energy Transition Outlook model an integrated system-dynamics simulation model covering the energy system which provides an independent view of the energy outlook from now until 2050. The modelling which includes data on costs demand supply policy population and economic indicators enables the non-linear interdependencies between different parameters to be considered so that decisions made in one sector influence the decision made in another.
Equivalent Minimum Hydrogen Consumption of Fuzzy Control-Based Fuel Cells: Exploration of Energy Management Strategies for Ships
Feb 2024
Publication
Aiming to solve the problems of insufficient dynamic responses the large loss of energy storage life of a single power cell and the large fluctuation in DC (direct current) bus voltage in fuel cell vessels this study takes a certain type of fuel cell ferry as the research object and proposes an improved equivalent minimum hydrogen consumption energy management strategy based on fuzzy logic control. First a hybrid power system including a fuel cell a lithium–iron–phosphate battery and a supercapacitor is proposed with the simulation of the power system of the modified mother ship. Second a power system simulation model and a double-closed-loop PI (proportion integration) control model are established in MATLAB/Simulink to design the equivalent hydrogen consumption model and fuzzy logic control strategy. The simulation results show that under the premise of meeting the load requirements the control strategy designed in this paper improves the Li-ion battery’s power the Li-ion battery’s SOC (state of charge) the bus voltage stability and the equivalent hydrogen consumption significantly compared with those before optimization which improves the stability and economy of the power system and has certain practical engineering value.
Design of Long-Life Wireless Near-Field Hydrogen Gas Sensor
Feb 2024
Publication
A compact wireless near-field hydrogen gas sensor is proposed which detects leaking hydrogen near its source to achieve fast responses and high reliability. A semiconductor-type sensing element is implemented in the sensor which can provide a significant response in 100 ms when stimulated by pure hydrogen. The overall response time is shortened by orders of magnitude compared to conventional sensors according to simulation results which will be within 200 ms compared with over 25 s for spatial concentration sensors under the worst conditions. Over 1 year maintenance intervals are enabled by wireless design based on the Bluetooth low energy protocol. The average energy consumption during a single alarm process is 153 µJ/s. The whole sensor is integrated on a 20 × 26 mm circuit board for compact use.
Identifying Social Aspect Related to the Hydrogen Economy: Review, Synthesis, and Research Perspectives
Oct 2023
Publication
Energy transition will reshape the power sector and hydrogen is a key energy carrier that could contribute to energy security. The inclusion of sustainability criteria is crucial for the adequate design/deployment of resilient hydrogen networks. While cost and environmental metrics are commonly included in hydrogen models social aspects are rarely considered. This paper aims to identify the social criteria related to the hydrogen economy by using a systematic hybrid literature review. The main contribution is the identification of twelve social aspects which are described ranked and discussed. “Accessibility” “Information” “H2 markets” and “Acceptability” are now emerging as the main themes of hydrogen-related social research. Identified gaps are e.g. lack of the definition of the value of H2 for society insufficient research for “socio-political” aspects (e.g. geopolitics wellbeing) scarce application of social lifecycle assessment and the low amount of works with a focus on social practices and cultural issues.
Thermal Design of a System for Mobile Powersupply
Sep 2023
Publication
Ever more stringent emission regulations for vehicles encourage increasing numbers of battery electric vehicles on the roads. A drawback of storing electric energy in a battery is the comparable low energy density low driving range and the higher propensity to deplete the energy storage before reaching the destination especially at low ambient temperatures. When the battery is depleted stranded vehicles can either be towed or recharged with a mobile recharging station. Several technologies of mobile recharging stations already exist however most of them use fossil fuels to recharge battery electric vehicles. The proposed novel zero emission solution for mobile charging is a combined high voltage battery and hydrogen fuel cell charging station. Due to the thermal characteristics of the fuel cell and high voltage battery (which allow only comparable low coolant temperatures) the thermal design for this specific application (available heat exchanger area zero vehicle speed air flow direction) becomes challenging and is addressed in this work. Experimental methods were used to obtain reliable thermal and electric power measurement data of a 30 kW fuel cell system which is used in the Mobile Hydrogen Powersupply. Subsequently simulation methods were applied for the thermal design and optimisation of the coolant circuits and heat exchangers. It is shown that an battery electric vehicle charging power of 22 kW requires a heat exchanger area of 1 m2 of which 60 % is used by the fuel cell heat exchanger and the remainder by the battery heat exchanger to achieve steady state operation at the highest possible ambient temperature of 436 °C. Furthermore the simulation showed that when the charging power of 22 kW is solely provided by the high voltage battery the highest possible ambient temperature is 42 °C. When the charging power is decreased operation up to the maximum ambient temperatures of 45 °C can be achieved. The results of maximum charging power and limiting ambient temperature give insights for further system improvements which are: sizing of fuel cell or battery trailer design and heat exchanger area operation strategy of the system (power split between high voltage battery and fuel cell) as well as possible dynamic operation scenarios.
Enriching Natural Gas with Hydrogen: Implications for Burner Operation
Feb 2024
Publication
This paper presents the results of increasing the hydrogen concentration in natural gas distributed within the territory of the Slovak Republic. The range of hydrogen concentrations in the mathematical model is considered to be from 0 to 100 vol.% for the resulting combustion products temperature and heating value and for the scientific assessment of the environmental and economic implications. From a technical perspective it is feasible to consider enriching natural gas with hydrogen up to a level of 20% within the Slovak Republic. CO2 emissions are estimated to be reduced by 3.76 tons for every 1 TJ of energy at an operational cost of EUR 10000 at current hydrogen prices.
Techno-Economic Analysis of Cement Decarbonization Techniques: Oxygen Enrichment vs. Hydrogen Fuel
Feb 2024
Publication
The Paris Agreement aims to limit global warming and one of the most polluting sectors is heavy industry where cement production is a significant contributor. This work briefly explores some alternatives recycling reducing clinker content waste heat recovery and carbon capture discussing their advantages and drawbacks. Then it examines the economic viability and benefits of increasing oxygen concentration in the primary burning air from 21 to 27 vol.% which could improve clinker production by 7% and the production of hydrogen through PEM electrolysis to make up 5% of the fuel thermal fraction considering both in a cement plant producing 3000 tons of clinker per day. This analysis used reference values from Secil an international company for cement and building materials to determine the required scale of the oxygen and hydrogen production respectively and calculate the CAPEX of each approach. It is concluded that oxygen enrichment can provide substantial fuel savings for a relatively low cost despite a possible significant increase in NOx emissions. However hydrogen production at this scale is not currently economically viable.
No more items...