Publications
Can the Hydrogen Economy Concept be the Solution to the Future Energy Crisis?
Feb 2022
Publication
The Hydrogen Economy concept is being proposed as a means of reducing and eventually decarbonising the world’s energy use. It looks to hydrogen as being a replacement for methane (natural gas) and generally as a way of removing all fossil fuels from the energy supply. The concept however has at least four flaws as follows: (1) hydrogen has significantly different properties to methane; (2) hydrogen has properties that create significant hazards; (3) hydrogen has a very small initiation (activation) energy; and (4) liquid hydrogen cannot readily replace liquefied natural gas (LNG). Hydrogen’s hazards will prevent it from being accepted in a societal sense. To the question ‘Can the Hydrogen Economy concept be the solution to the future energy crisis?’ the answer is ‘no’. Hydrogen has and will have a role in world energy but that role will be limited to industry. For the future we need an advanced electric economy.
Increasing Energy Efficiency of Hydrogen Refueling Stations via Optimal Thermodynamic Paths
Sep 2023
Publication
This work addresses the energy efficiency of hydrogen refueling stations (HRS) using a first principles model and optimal control methods to find minimal entropy production operating paths. The HRS model shows good agreement with experimental data achieving maximum state of charge and temperature discrepancies of 1 and 7% respectively. Model solution and optimization is achieved at a relatively low computational time (40 s) when compared to models of the same degree of accuracy. The entropy production mapping indicates the flow control valve as the main source of irreversibility accounting for 85% of the total entropy production in the process. The minimal entropy production refueling path achieves energy savings from 20 to 27% with respect to the SAE J2601 protocol depending on the ambient temperature. Finally the proposed method under nearreversible refueling conditions shows a theoretical reduction of 43% in the energy demand with respect to the SAE J2601 protocol.
Fuelling the Transition Podcast: The Future of Electrolysers and Hydrogen in the UK
Nov 2021
Publication
ITM Power is a leading electrolyser manufacturer and is a globally recognised expert in hydrogen technologies. In this episode Graham Cooley Chief Executive Officer at ITM Power and John Williams Head of Hydrogen Expertise Cluster at AFRY Management Consulting join us to discuss ITM’s recent announcements. This includes raising £250 million to scale up its electrolyser manufacturing capacity to 5GW per annum by 2024 and forming a partnership with Linde to halve electrolyser manufacturing costs within five years. The episode also explores the UK hydrogen strategy how blue hydrogen compares with green hydrogen the role of electrolysers in hydrogen production and providing flexibility to power grids.
The podcast can be found on their website.
The podcast can be found on their website.
Hydrogen from Offshore Wind: Investor Perspective on the Profitability of a Hybrid System Including for Curtailment
Mar 2020
Publication
Accommodating renewables on the electricity grid may hinder development opportunities for offshore wind farms (OWFs) as they begin to experience significant curtailment or constraint. However there is potential to combine investment in OWFs with Power-to-Gas (PtG) converting electricity to hydrogen via electrolysis for an alternative/complementary revenue. Using historic wind speed and simulated system marginal costs data this work models the electricity generated and potential revenues of a 504 MW OWF. Three configurations are analysed; (1) all electricity is sold to the grid (2) all electricity is converted to hydrogen and sold and (3) a hybrid system where power is converted to hydrogen when curtailment occurs and/or when the system marginal cost is low with the effect of curtailment analysed in each scenario. These represent the status quo a potential future configuration and an innovative business model respectively. The willingness of an investor to build PtG are determined by changes to the net present value (NPV) of a project. Results suggest that configuration (1) is most profitable and that curtailment mitigation alone is not sufficient to secure investment in PtG. By acting as an artificial floor in the electricity price a hybrid configuration (3) is promising and increases NPV for all hydrogen values greater than €4.2/kgH2. Hybrid system attractiveness increases with curtailment only if the hydrogen value is significantly above the levelised cost of €3.77/kgH2. In order for an investor to choose to pursue configuration (2) the offshore wind farm would have to anticipate 8.5% curtailment and be able to receive €4.5/kgH2 or 25% curtailment and receive €4/kgH2. The capital costs and discount rates are the most sensitive parameters and ambitious combinations of technology improvements could produce a levelised cost of €3/kgH2.
Prospects and Impediments for Hydrogen Fuel Cell Buses
Jun 2021
Publication
The number of demonstration projects with fuel cell buses has been increasing worldwide. The goal of this paper is to analyse prospects and barriers for fuel cell buses focusing on their economic- technical- and environmental performance. Our results show that the prices of fuel cell buses although decreasing over time are still about 40% higher than those of diesel buses. With the looming ban of diesel vehicles and current limitations of battery electric vehicles fuel cell buses could become a viable alternative in the mid-to long-term. With the requirements for a better integration of renewable energy sources in the transport system interest in hydrogen is rising. Hydrogen produced from renewables used in fuel cell buses has the potential to save about 93% of CO2 emissions in comparison to diesel buses. Yet from environmental point-of-view it has to be ensured that hydrogen is produced from renewables. Currently the major barrier for a faster penetration of fuel cell buses are their high purchase prices which could be significantly reduced with the increasing number of buses through technological learning. The final conclusion is that a tougher transport policy framework is needed which fully reflects the environmental impact of different buses used.
Circular Economy for the Energy System as a Leverage for Low-carbon Transition: Long-Ter, Analysis of the Case of the South-East Region of France
Mar 2024
Publication
The circular economy is a decisive strategy for reconciling economic development and the environment. In France the CE was introduced into the law in 2015 with the objective of closing the loop. The legislation also delegates energy policy towards the French regions by granting them the jurisdiction to directly plan the energy–climate issues on their territory and to develop local energy resources. Thereby the SUD PACA region has redefined its objectives and targeted carbon neutrality and the transition to a CE by 2050. To study this transition we developed a TIMESPACA optimization model. The results show that following a CE perspective to develop a local energy system could contribute to reducing CO2 emissions by 50% in final energy consumption and reaching almost free electricity production. To obtain greater reductions the development of the regional energy systems should follow a careful policy design favoring the transition to low energy-consuming behavior and the strategical allocation of resources across the different sectors. Biomethane should be allocated to the buildings and industrial sector while hydrogen should be deployed for buses and freight transport vehicles.
Preliminary Design of a Fuel Cell/Battery Hybrid Powertrain for a Heavy-duty Yard Truck for Port Logistics
Jun 2021
Publication
The maritime transport and the port-logistic industry are key drivers of economic growth although they represent major contributors to climate change. In particular maritime port facilities are typically located near cities or residential areas thus having a significant direct environmental impact in terms of air and water quality as well as noise. The majority of the pollutant emissions in ports comes from cargo ships and from all the related ports activities carried out by road vehicles. Therefore a progressive reduction of the use of fossil fuels as a primary energy source for these vehicles and the promotion of cleaner powertrain alternatives is in order. The present study deals with the design of a new propulsion system for a heavy-duty vehicle for port applications. Specifically this work aims at laying the foundations for the development of a benchmark industrial cargo–handling hydrogen-fueled vehicle to be used in real port operations. To this purpose an on-field measurement campaign has been conducted to analyze the duty cycle of a commercial Diesel-engine yard truck currently used for terminal ports operations. The vehicle dynamics has been numerically modeled and validated against the acquired data and the energy and power requirements for a plug-in fuel cell/battery hybrid powertrain replacing the Diesel powertrain on the same vehicle have been evaluated. Finally a preliminary design of the new powertrain and a rule-based energy management strategy have been proposed and the electric energy and hydrogen consumptions required to achieve the target driving range for roll-on and roll-off operations have been estimated. The results are promising showing that the hybrid electric vehicle is capable of achieving excellent energy performances by means of an efficient use of the fuel cell. An overall amount of roughly 12 kg of hydrogen is estimated to be required to accomplish the most demanding port operation and meet the target of 6 h of continuous operation. Also the vehicle powertrain ensures an adequate all-electric range which is between approximately 1 and 2 h depending on the specific port operation. Potentially the hydrogen-fueled yard truck is expected to lead to several benefits such as local zero emissions powertrain noise elimination reduction of the vehicle maintenance costs improving of the energy management and increasing of operational efficiency.
Efficient Use of Low-Emission Power Supply for Means of Transport
Apr 2023
Publication
The paper presents the possibilities of low-emission-powered vehicles based mainly on compressed hydrogen. It shows currently used forms of powering vehicles based on their genesis process of obtention and popularity. They are also compared to each other presenting the advantages and disadvantages of a given solution. The share of electricity in transport its forecasts for the future and the possibilities of combination with conventional energy sources are also described. Based on current technological capabilities hydrogen plays a crucial role as presented in the above work constituting a fundamental basis for future transport solutions.
The Role of Hydrogen and H2 Mobility on the Green Transition of Islands: The Case of Anafi (Greece)
Apr 2023
Publication
The holistic green energy transition of non-interconnected islands faces several challenges if all the energy sectors are included i.e. electricity heating/cooling and mobility. On the one hand the penetration of renewable energy systems (RES) is limited due to design restrictions with respect to the peak demand. On the other hand energy-intensive heating and mobility sectors pose significant challenges and may be difficult to electrify. The focus of this study is on implementing a hybrid Wind–PV system on the non-interconnected island of Anafi (Greece) that utilizes surplus renewable energy production for both building heating through heat pumps and hydrogen generation. This comprehensive study aims to achieve a holistic green transition by addressing all three main sectors—electricity heating and transportation. The produced hydrogen is utilized to address the energy needs of the mobility sector (H2 mobility) focusing primarily on public transportation vehicles (buses) and secondarily on private vehicles. The overall RES production was modeled to be 91724 MWh with a RES penetration of 84.68%. More than 40% of the produced electricity from RES was in the form of excess electricity that could be utilized for hydrogen generation. The modeled generated hydrogen was simulated to be more than 40 kg H2/day which could cover all four bus routes of the island and approximately 200 cars for moderate use i.e. traveled distances of less than 25 km/day for each vehicle.
An Insight into Underground Hydrogen Storage in Italy
Apr 2023
Publication
Hydrogen is a key energy carrier that could play a crucial role in the transition to a low-carbon economy. Hydrogen-related technologies are considered flexible solutions to support the large-scale implementation of intermittent energy supply from renewable sources by using renewable energy to generate green hydrogen during periods of low demand. Therefore a short-term increase in demand for hydrogen as an energy carrier and an increase in hydrogen production are expected to drive demand for large-scale storage facilities to ensure continuous availability. Owing to the large potential available storage space underground hydrogen storage offers a viable solution for the long-term storage of large amounts of energy. This study presents the results of a survey of potential underground hydrogen storage sites in Italy carried out within the H2020 EU Hystories “Hydrogen Storage In European Subsurface” project. The objective of this work was to clarify the feasibility of the implementation of large-scale storage of green hydrogen in depleted hydrocarbon fields and saline aquifers. By analysing publicly available data mainly well stratigraphy and logs we were able to identify onshore and offshore storage sites in Italy. The hydrogen storage capacity in depleted gas fields currently used for natural gas storage was estimated to be around 69.2 TWh.
Technical, Economic, Carbon Footprint Assessment, and Prioritizing Stations for Hydrogen Production Using Wind Energy: A Case Study
Jul 2021
Publication
While Afghanistan’s power sector is almost completely dependent on fossil fuels it still cannot meet the rising power demand of this country. Deploying a combination of renewable energy systems with hydrogen production as the excess energy storage mechanism could be a sustainable long-term approach for addressing some of the energy problems of Afghanistan. Since Badakhshan is known to have a higher average wind speed than any other Afghan province in this study a technical economic and carbon footprint assessment was performed to investigate the potential for wind power and hydrogen production in this province. Wind data of four stations in Badakhshan were used for technical assessment for three heights of 10 30 and 40 m using the Weibull probability distribution function. This technical assessment was expanded by estimating the energy pattern factor probability of wind speeds greater than 5 m/s wind power density annual power output and annual hydrogen output. This was followed by an economic assessment which involved computing the Leveled Cost Of Energy (LCOE) the Leveled Cost Of Hydrogen (LCOH) and the payback period and finally an carbon footprint assessment which involved estimating the consequent CO2 reduction in two scenarios. The assessments were performed for 22 turbines manufactured by reputable companies with capacities ranging from 600 kW to 2.3 MW. The results showed that the entire Badakhshan province and especially Qal’eh-ye Panjeh and Fayazabad have excellent potentials in terms of wind energy that can be harvested for wind power and hydrogen production. Also wind power generation in this province will be highly cost-effective as the produced electricity will cost about one-third of the price of electricity supplied by the government. For better evaluation the GIS maps of wind power and hydrogen outputs were prepared using the IDW method. These maps showed that the eastern and northeastern parts of Badakhshan province have higher wind power-hydrogen production potentials. The results of ranking the stations with SWARA-EDAS hybrid MCDM methods showed that Qal’eh-ye Panjeh station was the best location to produce hydrogen from wind energy.
Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid
Apr 2023
Publication
The Brazilian energy grid is considered as one of the cleanest in the world because it is composed of more than 80% of renewable energy sources. This work aimed to apply the levelized costs (LCOH) and environmental cost accounting techniques to demonstrate the feasibility of producing hydrogen (H2 ) by alkaline electrolysis powered by the Brazilian energy grid. A project of hydrogen production with a lifetime of 20 years had been evaluated by economical and sensitivity analysis. The production capacity (8.89 to 46.67 kg H2/h) production volume (25 to 100%) hydrogen sale price (1 to 5 USD/kg H2 ) and the MAR rate were varied. Results showed that at 2 USD/kg H2 all H2 production plant sizes are economically viable. On this condition a payback of fewer than 4 years an IRR greater than 31 a break-even point between 56 and 68% of the production volume and a ROI above 400% were found. The sensitivity analysis showed that the best economic condition was found at 35.56 kg H2/h of the plant size which generated a net present value of USD 10.4 million. The cost of hydrogen varied between 1.26 and 1.64 USD/kg and a LCOH of 37.76 to 48.71 USD/MWh. LCA analysis showed that the hydrogen production project mitigated from 26 to 131 thousand tons of CO2 under the conditions studied.
Transition Analysis of Budgetary Allocation for Projects on Hydrogen-Related Technologies in Japan
Oct 2020
Publication
Hydrogen technologies are promising candidates of new energy technologies for electric power load smoothing. However regardless of long-term public investment hydrogen economy has not been realized. In Japan the National Research and Development Institute of New Energy and Industrial Technology Development Organization (NEDO) a public research-funding agency has invested more than 200 billion yen in the technical development of hydrogen-related technologies. However hydrogen technologies such as fuel cell vehicles (FCVs) have not been disseminated yet. Continuous and strategic research and development (R&D) are needed but there is a lack of expertise in this field. In this study the transition of the budgetary allocations by NEDO were analyzed by classifying NEDO projects along the hydrogen supply chain and research stage. We found a different R&D focus in different periods. From 2004 to 2007 empirical research on fuel cells increased with the majority of research focusing on standardization. From 2008 to 2011 investment in basic research of fuel cells increased again the research for verification of fuel cells continued and no allocation for research on hydrogen production was confirmed. Thereafter the investment trend did not change until around 2013 when practical application of household fuel cells (ENE-FARM) started selling in 2009 in terms of hydrogen supply chain. Hydrogen economy requires a different hydrogen supply infrastructure that is an existing infrastructure of city gas for ENE-FARM and a dedicated infrastructure for FCVs (e.g. hydrogen stations). We discussed the possibility that structural inertia could prevent the transition to investing more in hydrogen infrastructure from hydrogen utilization technology. This work has significant implications for designing national research projects to realize hydrogen economy.
An On-Board Pure H2 Supply System Based on A Membrane Reactor for A Fuel Cell Vehicle: A Theoretical Study
Jul 2020
Publication
In this novel conceptual fuel cell vehicle (FCV) an on-board CH4 steam reforming (MSR) membrane reformer (MR) is considered to generate pure H2 for supplying a Fuel Cell (FC) system as an alternative to the conventional automobile engines. Two on-board tanks are forecast to store CH4 and water useful for feeding both a combustion chamber (designed to provide the heat required by the system) and a multi tubes Pd-Ag MR useful to generate pure H2 via methane steam reforming (MSR) reaction. The pure H2 stream is hence supplied to the FC. The flue gas stream coming out from the combustion chamber is used to preheat the MR feed stream by two heat exchangers and one evaporator. Then this theoretical work demonstrates by a 1-D model the feasibility of the MR based system in order to generate 5 kg/day of pure H2 required by the FC system for cruising a vehicle for around 500 km. The calculated CH4 and water consumptions were 50 and 70 kg respectively per 1 kg of pure H2. The on-board MR based FCV presents lower CO2 emission rates than a conventional gasoline-powered vehicle also resulting in a more environmentally friendly solution.
Maximisation of PV Energy Use and Performance Analysis of a Stand-alone PV-hydrogen System
Sep 2023
Publication
The development of clean hydrogen and photovoltaic (PV) systems is lagging behind the goals set in the Net Zero Emissions scenario of the International Energy Agency. For this reason efficient hydrogen production systems powered from renewable energy need to be deployed faster. This work presents an optimization procedure for a stand-alone fully PVpowered alkaline electrolysis system. The approach is based on the Particle Swarm Optimization algorithm to obtain the best configuration of the PV plant that powers the electrolyzer and its compressor. The best configuration is determined with one of three indicators: cost efficiency or wasted energy. The PV plant needs to be oversized 2.63 times with respect to the electrolyzer to obtain minimum cost while for high efficiency this number increases by 2%. Additionally the configuration that minimizes cost wasted energy or maximizes efficiency does not correspond to the configuration that maximizes the annual PV yield. Optimizing for cost results also leads to the best operation of the electrolyzer at partial loads than optimizing for efficiency or wasted energy.
Recent Progress on Rational Design of Catalysts for Fermentative Hydrogen Production
May 2022
Publication
The increasingly severe energy crisis has strengthened the determination todevelop environmentally friendly energy. And hydrogen has emerged as a candi-date for clean energy. Among many hydrogen generation methods biohydrogenstands out due to its environmental sustainability simple operating environ-ment and cost advantages. This review focuses on the rational design of catalystsfor fermentative hydrogen production. The principles of microbial dark fermen-tation and photo-fermentation are elucidated exhaustively. Various strategiesto increase the efficiency of fermentative hydrogen production are summa-rized and some recent representative works from microbial dark fermentationand photo-fermentation are described. Meanwhile perspectives and discussionson the rational design of catalysts for fermentative hydrogen production areprovided.
Hydrogenization of Underground Storage of Natural Gas
Aug 2015
Publication
The intermittent production of the renewable energy imposes the necessity to temporarily store it. Large amounts of exceeding electricity can be stored in geological strata in the form of hydrogen. The conversion of hydrogen to electricity and vice versa can be performed in electrolyzers and fuel elements by chemical methods. The nowadays technical solution accepted by the European industry consists of injecting small concentrations of hydrogen in the existing storages of natural gas. The progressive development of this technology will finally lead to the creation of underground storages of pure hydrogen. Due to the low viscosity and low density of hydrogen it is expected that the problem of an unstable displacement including viscous fingering and gravity overriding will be more pronounced. Additionally the injection of hydrogen in geological strata could encounter chemical reactivity induced by various species of microorganisms that consume hydrogen for their metabolism. One of the products of such reactions is methane produced from Sabatier reaction between H2 and CO2. Other hydrogenotrophic reactions could be caused by acetogenic archaea sulfate-reducing bacteria and iron-reducing bacteria. In the present paper a mathematical model is presented which is capable to reflect the coupled hydrodynamic and bio-chemical processes in UHS. The model has been numerically implemented by using the open source code DuMuX developed by the University of Stuttgart. The obtained bio-chemical version of DuMuX was used to model the evolution of a hypothetical underground storage of hydrogen. We have revealed that the behavior of an underground hydrogen storage is different than that of a natural gas storage. Both the hydrodynamic and the bio-chemical effects contribute to the different characteristics.
Utilization of Hydrogen in Gas Turbines: A Comprehensive Review
Feb 2022
Publication
The concerns regarding the consumption of traditional fuels such as oil and coal have driven the proposals for several cleaner alternatives in recent years. Hydrogen energy is one of the most attractive alternatives for the currently used fossil fuels with several superiorities such as zero-emission and high energy content. Hydrogen has numerous advantages compared to conventional fuels and as such has been employed in gas turbines (GTs) in recent years. The main benefit of using hydrogen in power generation with the GT is the considerably lower emission of greenhouse gases. The performance of the GTs using hydrogen as a fuel is influenced by several factors including the performance of the components the operating condition ambient condition etc. These factors have been investigated by several scholars and scientists in this field. In this article studies on hydrogen-fired GTs are reviewed and their results are discussed. Furthermore some recommendations are proposed for the upcoming works in this field.
Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles
Jul 2014
Publication
Autonomous Underwater Vehicles (AUVs) are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time they are usually powered by lithium-ion secondary batteries which have insufficient specific energies. In order for this technology to achieve a mature state increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed examining solutions adopted in the analogous aerial vehicle applications as well as the underwater ones to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally some closing remarks on the future of this technology are given.
Tourist Preferences for Fuel Cell Vehicle Rental: Going Green with Hydrogen on the Island of Tenerife
Mar 2023
Publication
Using a discrete choice experiment (DCE) a survey of international tourists on the island of Tenerife is conducted to examine preferences for fuel cell vehicle (FCV) rental while on vacation. Survey respondents were generally supportive of FCVs and willing to hire one as part of their trip but for most individuals this is contingent on an adequate fuel station infrastructure. A latent class model was used to identify three distinct groups; one of which potentially represent early adopters e they have a high willingness-to-pay (WTP) for green hydrogen and are more likely to accept a low number of fuel stations but it could be challenging to convince them to use FCVs if they are not run on green hydrogen.
No more items...