Publications
A Review of Life Cycle Assessment for Fuel Cell Technologies: Advancing Clean Energy and Climate Solutions
Jun 2025
Publication
Fuel cell (FC) technologies are often regarded as a sustainable alternative to conventional combustion-based energy systems due to their low environmental impact and high efficiency. Thorough environmental assessments using Life Cycle Assessment (LCA) methodologies are needed to understand and mitigate their impacts. However there has been a lack of comprehensive reviews on LCA studies across all major types of FCs. This study reviews and synthesizes results from 44 peer-reviewed LCA studies from 2015 to 2024 covering six major FC types: alkaline (AFC) direct methanol (DMFC) molten carbonate (MCFC) proton- exchange membrane (PEMFC) solid oxide (SOFC) and phosphoric acid (PAFC). The review provides an updated overview of LCA practices and results over the past decade while identifying methodological inconsistencies and gaps. PEMFCs are the most frequently assessed FC typology covering 49 % of the studies followed by SOFCs at 38 % with no studies on DMFCs. Only 11 % of comparative studies carry out inter-comparison between FC types. Discrepancies in system boundary definitions across studies are identified highlighting the need for standardization to enhance comparability between studies. Global Warming Potential (GWP) evaluated in 100 % of the studies is the most assessed impact category. Fuel supply in the use phase a major contributor to greenhouse gas (GHG) emissions is under-assessed as it is usually aggregated with Operation and Maintenance (O&M) phase instead of discussed separately. GWP of energy production by all FC typologies spans from 0.026 to 1.76 kg CO₂-equivalent per kWh. Insufficient quantitative data for a meta-analysis and limited inter-comparability across FC types are noted as critical gaps. The study highlights the need for future research and policies focusing on green hydrogen supply and circular economy practices to improve FC sustainability.
Green Hydrogen Production from Biogas or Landfill Gas by Steam Reforming or Dry Reforming: Specific Production and Energy Requirements
May 2025
Publication
Biogas is a crucial renewable energy source for green hydrogen (H2) production reducing greenhouse gas emissions and serving as a carbon-free energy carrier with higher specific energy than traditional fuels. Currently methane reforming dominates H2 production to meet growing global demand with biogas/landfill gas (LFG) reform offering a promising alternative. This study provides a comprehensive simulation-based evaluation of Steam Methane Reforming (SMR) and Dry Methane Reforming (DMR) of biogas/LFG using Aspen Plus. Simulations were conducted under varying operating conditions including steam-to-carbon (S/C) for SMR and steam-to-carbon monoxide (S/CO) ratios for DMR reforming temperatures pressures and LFG compositions to optimize H2 yield and process efficiency. The comparative study showed that SMR attains higher specific H2 yields (0.14–0.19 kgH2/Nm3 ) with specific energy consumption between 0.048 and 0.075 MWh/kg of H2 especially at increased S/C ratios. DMR produces less H2 than SMR (0.104–0.136 kg H2/Nm3 ) and requires higher energy inputs (0.072–0.079 MWh/kg H2) making it less efficient. Both processes require an additional 1.4–2.1 Nm3 of biogas/LFG per Nm3 of feed for energy. These findings provide key insights for improving biogas-based H2 production for sustainable energy with future work focusing on techno–economic and environmental assessments to evaluate its feasibility scalability and industrial application.
Reduction of Liquid Steelmaking Slag Using Hydrogen Gas as a Reductant
Sep 2025
Publication
Electric arc furnace slag is a major by-product of steelmaking yet its industrial utilization remains limited due to its complex chemical and mineralogical composition. This study presents a hydrogen-based approach to recover metallic components from EAF slag for potential reuse in steelmaking. Laboratory experiments were conducted by melting 50 g of industrial slag samples at 1600 ◦C and injecting hydrogen gas through a ceramic tube into the liquid slag. After cooling both the slag and the metallic phases were analyzed for their chemical and phase compositions. Additionally the reduction process was modeled using a combination of approaches including the thermochemical software FactSage 8.1 models for density surface tension and viscosity as well as a diffusion model. The injection of hydrogen resulted in the reduction of up to 40% of the iron oxide content in the liquid slag. In addition the fraction of reacted hydrogen gas was calculated.
Energy Transition in Public Transport: A Cost-Benefit Analysis of Diesel, Electric, and Hydrogen Fuel Cell Buses in Poland’s GZM Metropolis
Sep 2025
Publication
Energy transformation is one of the processes shaping contemporary urban transport systems with public transport being the subject of initiatives designed to enhance its attractiveness and transport utility including electromobility. This article presents a case study for a metropolitan conurbation—the GZM Metropolis in Poland—considering the economic efficiency of implementing buses with conventional diesel engines electric buses (battery electric buses) and hydrogen fuel cell-powered buses. The analysis is based on the cost-benefit analysis (CBA) method using the discounted cash flow (DCF) method.
Hydrogen Blending in Natural Gas Pipelines: A Comprehensive Review of Material Compatibility and Safety Considerations
Nov 2024
Publication
The increasing demand for energy and the urgent need to reduce carbon emissions have positioned hydrogen as a promising alternative. This review paper explores the potential of hydrogen blending in natural gas pipelines focusing on the compatibility of pipeline materials and the associated safety challenges. Hydrogen blending can significantly reduce carbon emissions from homes and industries as demonstrated by various projects in Canada and globally. However the introduction of hydrogen into natural gas pipelines poses risks such as hydrogenassisted materials degradation which can compromise the integrity of pipeline materials. This study reviews the effects of hydrogen on the mechanical properties of both vintage and modern pipeline steels cast iron copper aluminum stainless steel as well as plastics elastomers and odorants that compose an active natural gas pipeline network. The review highlights the need for updated codes and standards to ensure safe operation and discusses the implications of hydrogen on material selection design and safety considerations. Overall this manuscript aims to provide a comprehensive resource on the current state of pipeline materials in the context of hydrogen blending emphasizing the importance of further research to address the gaps in current knowledge and to develop robust guidelines for the integration of hydrogen into existing natural gas infrastructure.
Matching and Control Optimisation of Variable-Geometry Turbochargers for Hydrogen Fuel Cell Systems
Apr 2025
Publication
The turbocharging of hydrogen fuel cell systems (FCSs) has recently become a prominent research area aiming to improve FCS efficiency to help decarbonise the energy and transport sectors. This work compares the performance of an electrically assisted variable-geometry turbocharger (VGT) with a fixed-geometry turbocharger (FGT) by optimising both the sizing of the components and their operating points ensuring both designs are compared at their respective peak performance. A MATLAB-Simulink reducedorder model is used first to identify the most efficient components that match the fuel cell air path requirements. Maps representing the compressor and turbines are then evaluated in a 1D flow model to optimise cathode pressure and stoichiometry operating targets for net system efficiency using an accelerated genetic algorithm (A-GA). Good agreement was observed between the two models’ trends with a less than 10.5% difference between their normalised e-motor power across all operating points. Under optimised conditions the VGT showed a less than 0.25% increase in fuel cell system efficiency compared to the use of an FGT. However a sensitivity study demonstrates significantly lower sensitivity when operating at non-ideal flows and pressures for the VGT when compared to the FGT suggesting that VGTs may provide a higher level of tolerance under variable environmental conditions such as ambient temperature humidity and transient loading. Overall it is concluded that the efficiency benefits of VGT are marginal and therefore not necessarily significant enough to justify the additional cost and complexity that they introduce.
What Will it Take to Get to Net-zero Emissions in California?
Sep 2025
Publication
In this work a new modeling tool called DECAL (DEcarbonize CALifornia) is developed and used to evaluate what it will take to reach California’s climate mandate of net-zero emissions by 2045. DECAL is a scenario-based model that projects emissions society-wide costs and resource consumption in response to user-defined inputs. DECAL has sufficient detail to model true net-zero pathways and reveal fine-grain technology insights. Using DECAL we find the State can achieve 52 % of the emissions abatement needed to meet net-zero by 2045 using technologies that are already commercially available such as electric vehicles heat pumps and renewable electricity & storage. While these technologies are mature the speed and scale of deployment required will still pose significant practical challenges if not technical ones. In addition we find that 25 % of emissions abatement will come from technologies currently at early-stage deployment and 23 % from technologies at research scale motivating the continued research & development of these technologies including zero-emission heavy-duty vehicles carbon capture & sequestration clean industrial heating low global warming potential refrigerants and direct air capture. Significant carbon dioxide removal will also be needed for California to meet its net-zero target on time at least 45 Mt/yr and more likely up to 75 Mt/yr by 2045. Accelerating deployment of mature technologies can further reduce the need for carbon removal nevertheless establishing enforceable carbon removal targets and conducting policy planning to make said goals a reality will be needed if California is to meet its net-zero by 2045 goal.
Modelling Hydrogen Storage Requirements to Balance the Future Western Australian Grid
Sep 2025
Publication
Increasing renewable energy technology penetration into electrical grids to meet net zero CO2 emission targets is a key challenge in terms of intermittency; one solution is the provision of sufficient energy storage. In the current study we considered future projections of electrical demand and renewable energy (in 2042) for the Southwest Interconnected System grid in Western Australia. Required energy storage considered is a mixture of battery energy storage systems and underground hydrogen storage in a depleted gas reservoir. The Southwest Interconnected System serves as an excellent case study given that it is a comparatively large isolated grid with substantial potential access to renewable energy resources as well as potential underground hydrogen storage sites. This work utilised a dynamic energy model that summates the wind and solar energy resources on an hourly basis. Excess energy utilised battery energy storage systems capacity first followed by underground hydrogen storage. The relative size of the renewables and the storage options is then optimised in terms of minimising wholesale energy production costs. This unique optimisation analysis across the full integrated system clearly indicated that both battery energy storage systems and underground hydrogen storage are required; underground hydrogen storage is predominately necessary to meet seasonal unmet energy demand that amounts to approximately 6% of total demand. Underground hydrogen storage costs were dominated by the required electrolyser requirements. The optimised levelised cost of electricity was found to be US$106/MWh which is approximately 45% larger than current wholesale electricity prices.
Research on the Optimal Scheduling Strategy of the Integrated Energy System of Electricity to Hydrogen under the Stepped Carbon Trading Mechanism
Sep 2024
Publication
Under the guidance of energy-saving and emission reduction goals a lowcarbon economic operation method for integrated energy systems (IES) has been proposed. This strategy aims to enhance energy utilization efficiency bolster equipment operational flexibility and significantly cut down on carbon emissions from the IES. Firstly a thorough exploration of the two-stage operational framework of Power-to-Gas (P2G) technology is conducted. Electrolyzers methane reactors and hydrogen fuel cells (HFCs) are introduced as replacements for traditional P2G equipment with the objective of harnessing the multiple benefits of hydrogen energy. Secondly a cogeneration and HFC operational strategy with adjustable heat-to-electricity ratio is introduced to further enhance the IES’s low-carbon and economic performance. Finally a step-by-step carbon trading mechanism is introduced to effectively steer the IES towards carbon emission control.
Hydrogen Embrittlement as a Conspicuous Material Challenge - Comprehensive Review and Future Directions
May 2024
Publication
Hydrogen is considered a clean and efficient energy carrier crucial for shapingthe net-zero future. Large-scale production transportation storage and use of greenhydrogen are expected to be undertaken in the coming decades. As the smallest element inthe universe however hydrogen can adsorb on diffuse into and interact with many metallicmaterials degrading their mechanical properties. This multifaceted phenomenon isgenerically categorized as hydrogen embrittlement (HE). HE is one of the most complexmaterial problems that arises as an outcome of the intricate interplay across specific spatialand temporal scales between the mechanical driving force and the material resistancefingerprinted by the microstructures and subsequently weakened by the presence of hydrogen. Based on recent developments in thefield as well as our collective understanding this Review is devoted to treating HE as a whole and providing a constructive andsystematic discussion on hydrogen entry diffusion trapping hydrogen−microstructure interaction mechanisms and consequencesof HE in steels nickel alloys and aluminum alloys used for energy transport and storage. HE in emerging material systems such ashigh entropy alloys and additively manufactured materials is also discussed. Priority has been particularly given to these lessunderstood aspects. Combining perspectives of materials chemistry materials science mechanics and artificial intelligence thisReview aspires to present a comprehensive and impartial viewpoint on the existing knowledge and conclude with our forecasts ofvarious paths forward meant to fuel the exploration of future research regarding hydrogen-induced material challenges.
Underground Hydrogen Storage in Engineered Lenses
Aug 2025
Publication
Hydrogen can play a significant role in Australian economy and Australia has set an ambitious goal to become a global leader in hydrogen industry as outlined in the National Hydrogen Strategy 2024. Hydrogen is an efficient energy carrier that can be used for both transporting and storing energy. Underground hydrogen storage (UHS) in aquifers depleted gas and oil reservoirs and salt caverns have been considered as a low-cost option for largescale storage of hydrogen. In this study a method for hydrogen storage in engineered (shallow) lenses is proposed where a lens is created in a very low permeability layered formation such as shales via opening the layers by a pressurised fluid. A preliminary overview of the Australian basins is presented focussing on the most suitable/obvious units for the purpose of creating engineered lenses for storage of hydrogen. Major engineering aspects of lenses such as size volume storage capacity storage time and hydrogen loss are reviewed followed by a Techno-Economic Analysis for the proposed hydrogen storage method. Initial modelling shows that up to 250 tonnes of hydrogen can be stored in shallow engineered lenses incurring a capital cost of 35.7 US$/kg and total annual operational cost of 7 US$/kg making the proposed storage method a competitive option against salt and lined rock caverns. Finally Monitoring and Verification (M&V) as part of storage assurance practice has been discussed and successful examples are presented.
Conceptual Design of a Metal Hydride System for the Recovery of Gaseous Hydrogen Boil-Off Losses from Liquid Hydrogen Tanks
Mar 2025
Publication
Liquid hydrogen (LH2) is a promising energy carrier to decrease the climate impact of aviation. However the inevitable formation of hydrogen boil-off gas (BOG) is a main drawback of LH2. As the venting of BOG reduces the overall efficiency and implies a safety risk at the airport means for capturing and re-using should be implemented. Metal hydrides (MHs) offer promising approaches for BOG recovery as they can directly absorb the BOG at ambient pressures and temperatures. Hence this study elaborates a design concept for such an MH-based BOG recovery system at hydrogen-ready airports. The conceptual design involves the following process steps: identify the requirements establish a functional structure determine working principles and combine the working principles to generate a promising solution.
Enhancing Hydrogen Gas Production in Electrolysis Cells with Ammonium Chloride and Solar PV Integration
Feb 2025
Publication
In this study the electrolysis of water by using ammonium chloride (NH4Cl) as an electrolyte was investigated for the production of hydrogen gas. The assembled electrochemical cell consists mainly of twenty-one stainless-steel electrodes and a direct current from a battery ammonium chloride solution. In the electrolysis process hydrogen and oxygen are developed at the same time and collected as a mixture to be used as a fuel. This study explores a technic regarding the matching of oxyhydrogen (HHO) electrolyzers with photovoltaic (PV) systems to make HHO gas. The primary objective of the present research is to enable the electrolyzer to operate independently of other energy origins functioning as a complete unit powered solely by PV. Moreover the impact of using PWM on cell operation was investigated. The experimental data was collected at various time intervals NH4Cl concentrations. Additionally the hydrogen unit consists of two cells with a shared positive pole fixed between them. Some undesirable anodic reaction affects the efficiency of hydrogen gas production because of the corrosion of anode to ferrous hydroxide (Fe(OH)2). Polyphosphate Inhibitor was used to minimize the corrosion reaction of anode and keep the efficiency of hydrogen gas flow. The optimal concentration of 3M for ammonium chloride was identified balancing a gas flow rate of 772 ml/min with minimal anode corrosion. Without PWM conversion efficiency ranges between 93% and 96%. Therefore PWM increased conversion efficiency by approximately 5% leading to a corresponding increase in hydrogen gas production.
The Development Trend of and Suggestions for China's Hydrogen Energy Industry
Jul 2021
Publication
Driven by the current round of technological revolution and industrial transformation and based on a consensus among countries around the world the world’s energy landscape is undergoing profound adjustments to promote a transition to clean low-carbon energy in order to cope with global climate change. As a clean and carbon-free secondary energy source hydrogen energy is an important component of the energy strategy in various countries. Fuel cell technology is also of great importance in directing the current global energy technology revolution. China has clarified its sustainable energy goals: to peak its carbon dioxide emissions [1] and achieve carbon neutrality [2]. With thorough development of technology and the industry hydrogen energy will play a significant role in achieving these goals.
Fast Enough? The Consequences of Delayed Renewable Energy Expansion on European Hydrogen Import Needs
Aug 2025
Publication
This study investigates the impact of delayed and accelerated expansion of the volatile renewable energy sources (vRES) onshore wind offshore wind and photovoltaics on Europe’s (EU27 United Kingdom Norway and Switzerland) demand for hydrogen imports and its derivatives to meet demand from final energy consumption sectors and to comply with European greenhouse gas (GHG) emission targets. Using the multi-energy system model ISAaR we analyze fourteen scenarios with different levels of vRES expansion including an evaluation of the resulting hydrogen prices. The load-weighted average European hydrogen price in the BASE scenario decreases from 4.1 €/kg in 2030 to 3.3 €/kg by 2050. Results show that delaying the expansion of vRES significantly increases the demand for imports of hydrogen and its derivatives and thus increases the risk of not meeting GHG emission targets for two reasons: (1) higher import volumes to meet GHG emission targets increase dependence on third parties and lead to higher risk in terms of security of supply; (2) at the same time lower vRES expansion in combination with higher import volumes leads to higher resulting hydrogen prices which in turn affects the economic viability of the energy transition. In contrast an accelerated expansion of vRES reduces dependency on imports and stabilizes hydrogen prices below 3 €/kg in 2050 which increases planning security for hydrogen off-takers. The study underlines the importance of timely and strategic progress in the expansion of vRES and investment in hydrogen production storage and transport networks to minimize dependence on imports and effectively meet the European climate targets.
Hydrogen Safety for Systems at Ambient and Cryogenic Temperature: A Comparative Study of Hazards and Consequence Modelling
Feb 2025
Publication
Transport and storage of hydrogen as a liquid (LH2) is being widely investigated as a solution for scaling up the supply infrastructure and addressing the growth of hydrogen demand worldwide. While there is a relatively wellestablished knowledge and understanding of hazards and associated risks for gaseous hydrogen at ambient temperature several knowledge gaps are yet open regarding the behaviour in incident scenarios of cryogenic hydrogen including LH2. This paper aims at presenting the models and tools that can be used to close relevant knowledge gaps for hydrogen safety engineering of LH2 systems and infrastructure. Analytical studies and computational fluid dynamics (CFD) modelling are used complementarily to assess relevant incident scenarios and compare the consequences and hazard distances for hydrogen systems at ambient and cryogenic temperature. The research encompasses the main phenomena characterising an incident scenario: release and dispersion ignition and combustion. Experimental tests on cryogenic hydrogen systems are used for the validation of correlations and numerical models. It is observed that engineering tools originally developed for hydrogen at ambient temperature are yet applicable to the cryogenic temperature field. For a same storage pressure and nozzle diameter the decrease of hydrogen temperature from ambient to cryogenic 80 K may lead to longer hazard distances associated to unignited and ignited hydrogen releases. The potential for ignition by spark discharge or spontaneous ignition mechanism is seen to decrease with the decrease of hydrogen temperature. CFD modelling is used to give insights into the pressure dynamics created by LH2 vessels rupture in a fire using experimental data from literature.
The UAE Net-Zero Strategy—Aspirations, Achievements and Lessons for the MENA Region
Aug 2025
Publication
The Middle East and North Africa region has not played a major role in climate action so far and several countries depend economically on fossil fuel exports. However this is a region with vast solar energy resources which can be exploited affordably for power generation and hydrogen production at scale to eventually reach carbon neutrality. In this paper we elaborate on the case of the United Arab Emirates and explore the aspirations and feasibility of its net-zero by 2050 target. While we affirm the concept per se we also highlight the technological complexity and economic dimensions that accompany such transformation. We expect the UAE’s electricity demand to triple between today and 2050 and the annual green hydrogen production is expected to reach 3.5 Mt accounting for over 40% of the electricity consumption. Green hydrogen will provide power-to-fuel solutions for aviation maritime transport and hard-to-abate industries. At the same time electrification will intensify—most importantly in road transport and low-temperature heat demands. The UAE can meet its future electricity demands primarily with solar power followed by natural gas power plants with carbon capture utilization and storage while the role of nuclear power in the long term is unclear at this stage.
Port Energy Models Alignment with Real Port Activities, their Coverage of Hydrogen Technologies, and as Tools for Decarbonisation
Aug 2025
Publication
Ports have significant emissions from using carbon-based electricity and fuels. This paper presents a scoping literature review of port energy models providing interpretations of the models capabilities and limitations in representing activities coverages of hydrogen technologies use as decarbonisation prediction tools and to highlight research directions. Three model categories were assessed. The Conceptual-Driven use a top-down analytical structure for objectives optimisation. Recent publications have increasing coverages of port activities by electrical with hydrogen technologies but limited representation of diesel equipment. The Data-Driven represent entire ports as top-down or focus on electrical mobile equipment in bottom-up data-only abstract structures for algorithm analysis. Both model types omit coverage of hydrogen powered mobile equipment at temporal resolutions representing typical duties and measured emissions for weighting predictions. A HybridDriven model is proposed as a decarbonisation assessment tool for improved representation of diesel mobile equipment duty-profiles referenceable baselines and matching with hydrogen technologies characteristics.
Life Cycle Assessments in Hydrogen-based Energy Storage Systems
Aug 2025
Publication
Hydrogen is increasingly recognized as an element in the effort to decarbonize the energy sector. Within the development of large-scale supply chain the storage phase emerges as a significant challenge. This study reviews Life Cycle Assessment (LCA) literature focused exclusively on hydrogen as an energy vector aiming to identify areas for improvement highlight effective solutions and point out research gaps. The goal is to provide a comprehensive overview of hydrogen storage technologies from an environmental perspective. A systematic search was conducted in the SCOPUS database using a specific set of keywords resulting in the identification of 30 relevant studies. These works explore hydrogen storage across different scales and applications which were classified into five categories based on the type of storage application most of them related to stationary use. The majority of the selected studies focus on storing hydrogen in compressed gas tanks. Notably 33 % of the analyzed articles assess only greenhouse gas (GHG) emissions and 10 % evaluate only two environmental impact categories including GHGs. This reflects a limited understanding of broader environmental impacts with a predominant focus on CO₂eq emissions. When comparing different case studies storage methods associated with the lowest emissions include metal hydrides and underground hydrogen storage. Another important observation is the trend of decreasing CO₂eq emissions as the storage system scale increases. Future studies should adopt more comprehensive approaches by analyzing a wider range of hydrogen storage technologies and considering multiple environmental impact categories in LCA. Moreover it is crucial to integrate environmental economic and social dimensions of sustainability as multidimensional assessments are essential to support well-informed balanced decisions that align with the sustainable development of hydrogen storage systems.
Comparative Techno-environmental Analysis of Grey, Blue, Green/Yellow and Pale-blue Hydrogen Production
Mar 2025
Publication
Hydrogen holds immense potential to assist in the transition from fossil fuels to sustainable energy sources but its environmental impact depends on how it is produced. This study introduces the pale-blue hydrogen production method which is a hybrid approach utilizing both carbon capture and bioenergy inputs. Comparative life cycle analysis is shown for grey blue green and pale-blue hydrogen using cumulative energy demand carbon footprint (CF) and water footprint. Additionally the integration of solar-powered production methods (ground-based photovoltaic and floating photovoltaic (FPV) systems) is examined. The results showed blue hydrogen [steam methane reforming (SMR) + 56% carbon capture storage (CCS)] was 72% less green hydrogen gas membrane (GM) 75% less blue hydrogen [SMR+90%CCS] 88% less and green hydrogen FPV have 90% less CF compared to grey hydrogen. Pale-blue hydrogen [50%B-50%G] blue hydrogen (GM + plasma reactor(PR)) PV and blue hydrogen (GM + PR) FPV offset 26 48 and 52 times the emissions of grey hydrogen.
No more items...