Publications
Advancements in Green Hydrogen Recovery from Industrial Wastewater: A Comprehensive Review
Dec 2024
Publication
Green hydrogen (GH2) a sustainable and clean energy carrier is increasingly regarded as a solution to energy challenges and environmental issues. Industrial wastewater possesses a significant potential for hydrogen generation using biological chemical and electrochemical methods. This review analysis evaluates progress in GH2 production from industrial wastewater highlighting its environmental and cost benefits. Process optimization technological improvements and enhancements in catalysts for chemical and electrochemical hydrogen generation are also provided. It also considers the integration of GH2 production methods with wastewater treatment procedures to achieve synergistic benefits including enhanced pollutant removal and energy recovery. Challenges associated with GH2 production include substrate variability economic viability reactor scalability and environmental sustainability are also discussed. Also this review provides a future outlook to promote sustainable energy solutions and tackle global environmental issues related to GH2 from industrial wastewater.
An Investigation into the Ability of a Solar Photovoltaic– Hydrogen System to Meet the Electrical Energy Demand of Houses in Different Cities in Türkiye
Mar 2025
Publication
In this study the annual electricity consumption of nine real houses from different cities in Türkiye was recorded on a monthly basis. The feasibility of meeting the electrical energy needs of houses with hydrogen and supplying the energy required for hydrogen production using solar panels is examined. The annual electricity consumption of the houses was normalized based on house size. The solar panel area for hydrogen production needed for these houses was defined. Additionally it was calculated that the average volumetric amount of hydrogen produced per hour during peak sun hours in the investigated cities was 1 m3/h. This approach reduced the solar panel area for hydrogen production by a factor of 1.7.
The Extractive Industry’s Decarbonization Potential Using Electrification and Hydrogen Technologies
Mar 2025
Publication
The challenge of achieving net-zero CO2 emissions will require a significant scaling up of the production of several raw materials that are critical for decarbonizing the global economy. In contrast metal extraction processes utilize carbon as a reducing agent which is oxidized to CO2 resulting in considerable emissions and having a negative impact on climate change. In order to abate their emissions extractive industries will have to go through a profound transformation including switching to alternative climateneutral energy and feedstock sources. This paper presents the authors’ perspectives for consideration in relation to the H2 potential for direct reduction of oxide and sulfide ores. For each case scenario the reduction of CO2 emissions is analyzed and a breakthrough route for H2S decomposition is presented which is a by-product of the direct reduction of sulfide ores with H2. Electrified indirect-fired metallurgical kiln advantages are also presented a solution that can substitute fossil fuel-based heating technologies which is one of the main backbones of industrial processes currently applied to the extractive industries.
A New Electro-Biomembrane Integrated Renewable-Based System to Produce Power, Fresh Water and Hydrogen for Sustainable Communities
Jan 2025
Publication
As the consequences of global warming become more severe it is more crucial than ever to capitalize on all locally accessible potential renewable energy sources and produce sufficient useable energy outputs to meet community demands while causing the least damage to the ecosystem. Therefore this paper focuses on a unique parabolic trough collector solar systempowered electro-biomembrane unit that combines a heat and power system with fresh water electricity and hydrogen (H2) production. The proposed integrated system contains the following subsystems: a combining parabolic trough collector solar system an organic Rankine cycle a steam Rankine cycle a multi-stage flash desalination system and an electro-biomembrane H2 and freshwater production system. A thorough analysis and parametric research are performed on the multigeneration system to determine how important characteristics affect system performance and evaluate the energy and exergy efficiency and exergy destruction levels for particular system elements. The study results show that solar irradiation is the most critical parameter for improving system performance. The highest freshwater production of 1303333.3 L/day is observed at the solar irradiation of 935768 kWh/day. Furthermore the combined output of three electricity production technologies exceeds 2000000 kWh/day highlighting the ability of the system to harness solar thermal energy effectively. The findings indicate that using solar power and biomass as renewable energy sources the proposed integrated system provided 328.56 kg of biohydrogen per day. Overall the energy and exergy efficiencies of the integrated system are obtained at 34.3 and 29.5 % respectively.
Comprehensive Study on Hydrogen Production for Sustainable Transportation Planning: Strategic, Techno-Economic, and Environmental Impacts
Apr 2025
Publication
Hydrogen energy is essential in the transition to sustainable transportation planning providing a clean and efficient alternative to traditional fossil fuels. As a versatile energy carrier hydrogen facilitates the decarbonization of diverse transportation modes including passenger vehicles heavy-duty trucks trains and maritime vessels. To justify and clarify the role of hydrogen energy in sustainable transportation planning this study conducts a comprehensive techno-economic and environmental assessment of hydrogen production in the USA Europe and China. Utilizing the Shlaer–Mellor method for policy modeling the analysis highlights regional differences and offers actionable insights to inform strategic decisions and policy frameworks for advancing hydrogen adoption. Hydrogen production potential was assessed from solar and biomass resources with results showing that solar-based hydrogen production is significantly more efficient producing 704 tons/yr/km2 compared to 5.7 tons/yr/km2 from biomass. A Monte Carlo simulation was conducted to project emissions and market share for hydrogen and gasoline vehicles from 2024 to 2050. The results indicate that hydrogen vehicles could achieve near-zero emissions and capture approximately 30% of the market by 2050 while gasoline vehicles will decline to a 60% market share with higher emissions. Furthermore hydrogen production using solar energy in the USA yields a per capita output of 330513 kg/yr compared to 6079 kg/yr from biomass. The study concludes that hydrogen particularly from renewable sources holds significant potential for reducing greenhouse gas emissions with policy frameworks in the USA Europe and China focused on addressing energy dependence air pollution and technological development in the transportation sector.
Development in Photoelectrochemical Water Splitting Using Carbon-Based Materials: A Path to Sustainable Hydrogen Production
Mar 2025
Publication
Hydrogen production via water splitting is a crucial strategy for addressing the global energy crisis and promoting sustainable energy solutions. This review systematically examines water-splitting mechanisms with a focus on photocatalytic and electrochemical methods. It provides in-depth discussions on charge transfer reaction kinetics and key processes such as the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Various electrode synthesis techniques including hydrothermal methods chemical vapor deposition (CVD) pulsed laser deposition (PLD) and radio frequency sputtering (RF) are reviewed for their advantages and limitations. The role of carbon-based materials such as graphene biochar and graphitic carbon nitride (g-C3N4) in photocatalytic and photoelectrochemical (PEC) water splitting is also highlighted. Their exceptional conductivity tunable band structures and surface functionalities contribute to efficient charge separation and enhanced light absorption. Further advancements in heterojunctions doped systems and hybrid composites are explored for their ability to improve photocatalytic and PEC performance by minimizing charge recombination optimizing electronic structures and increasing active sites for hydrogen and oxygen evolution reactions. Key challenges including material stability cost scalability and solar spectrum utilization are critically analyzed along with emerging strategies such as novel synthesis approaches and sustainable material development. By integrating water splitting mechanisms electrode synthesis techniques and advancements in carbon-based materials this review provides a comprehensive perspective on sustainable hydrogen production bridging previously isolated research domains.
Hydrogen Blending in Gas Pipelines: Fluid-dynamic Insights, Risks, and Recommendations
Mar 2025
Publication
Massive theoretical and applied research is underway worldwide to assess the viability of transporting natural gas-hydrogen blends in pipelines. For the first time this work derives simplified but closed-form equations that describe how changes in gas properties due to hydrogen blending at different volumes map to specific changes in pressure drop compressor power and linepack. These first-of-their-kind equations which are extensively validated against transient gas flow models enabled three unprecedented and unique findings. The first finding which quantifies how a change in demand maps to a change in delay and swing on the supply side reveals that pressure swings increase monotonically with an increase in hydrogen blending volume translating into an increase in pipeline fatigue and risk of failure. The second finding crucially shows that pressure drop does not monotonically increase with an increase in hydrogen blending volume; in fact it is highest at around 85 % hydrogen volume not at 100 %. The third finding shows that the decrease in linepack as a result of an increase in hydrogen volume is not only related to the gross calorific value of the gas mixture but also to the pressure-tocompressibility factor ratio suggesting that smaller parallel pipelines can offset this linepack reduction compared to a single larger pipeline.
Economic Sizing and Placement of Hydrogen Fueling and Electric Vehicles Charging Stations Powered by Renewable and Battery Systems in Smart Distribution Network
Aug 2025
Publication
This article discusses the planning sizing and placement of a vehicle refueling station supplied by renewable energy systems including photovoltaic wind biomass units and an integrated battery system within a smart distribution network. The proposed station comprises facilities for hydrogen fueling and electric vehicle charging stations structured as a bi-level optimization approach. The upper-level model focuses on the planning phase of the refueling station. Its objective is to minimize annual costs associated with construction maintenance and operation. Key constraints involve operational planning for renewable sources battery systems and vehicle refueling stations while accounting for reactive power management. In contrast the lower-level formulation deals with the eco-scheduling of smart distribution grid. Its goal is to minimize the sum of annual energy losses and operation costs within the grid governed by linearized optimal power flow model. To account for uncertainties in demand energy prices renewable generation output and refueling station performance a stochastic optimization framework is employed. The solution is derived using Benders decomposition algorithm to achieve optimal results. The primary innovation highlighted in this paper includes integrating renewable resources and battery systems to power the refueling station leveraging reactive power control for improved station performance and addressing both operational and economic objectives in the distribution system. Numerical results underscore the advantages of this strategy. Constructing a refueling station without battery and renewable units leads to significant drawbacks an increase in network operation cost by 144.6% and grid energy loss by 167.6%. Voltage levels drop below 0.9 per-unit and distribution lines experience severe loading of up to 34.7%. In contrast the proposed plan enhances network economics by 51.3%-74.5% and operational conditions by 17.7%-148.1% effectively showcasing the benefits of incorporating sustainable technologies and advanced planning methods into refueling station development.
A Multi-carrier Energy System for Electricity, Desalinated Water, and Hydrogen Production: Conceptual Design and Techno-economic Optimisation
Jan 2025
Publication
This study investigates the integration of multiple energy carriers within a unified multi-carrier energy system using an energy cascade approach. The system harnesses geothermal energy to power interconnected subsystems including an organic Rankine cycle (ORC) liquefied natural gas (LNG) and a solid oxide fuel cell (SOFC) stack. The dual ORC system and LNG stream are directly fed from the geothermal source while the SOFC stack uses methane produced during LNG regasification. Besides electricity the system generates hydrogen and desalinated water by incorporating a proton exchange membrane (PEM) electrolyzer and a reverse osmosis (RO) desalination plant. The electricity produced by the upper ORC powers the PEME for hydrogen production while freshwater production is supported by the combined output from the lower ORC LNG turbine and SOFC. A detailed thermo-economic analysis assesses the system’s efficiency and economic feasibility. Optimization efforts focus on three areas: electrical efficiency hydrogen and freshwater production using artificial neural networks (ANN) and genetic algorithms (GA). The optimization results reveal that Ammonia-propylene excels in electrical efficiency R1234ze(Z)-ethylene in net power output R1233zd(E)-propylene in cost-effectiveness R1234ze(Z)-propylene in hydrogen production and Ammonia-ethane in water production. The study offers valuable insights into enhancing the efficiency cost-effectiveness and sustainability of integrated energy systems.
Is One Year Enough? The Impact of Availability of Wind Data on Optimal Wind-to-hydrogen System Design
Mar 2025
Publication
Decreasing prices of renewable energy sources (RES) like wind and solar in recent years have led to numerous studies on the optimal design of RES for hydrogen production in an off-grid system. RES are intermittent and vary from year to year. Yet most of the studies still consider only a random single weather year for system design often ignoring the impact of input weather data on system design and its performance. This study evaluates for a gaseous hydrogen system the impact of input weather data on optimal system design system reliability and system costs. Random single-year averaged and multiple years of weather data from 1994 to 2021 are considered. Further multiple years of weather data are considered using a novel method of near-optimal solutions and a maximum of near-optimal solutions. The results show that using the maximum of near-optimal solutions method improves system reliability by as much as 96 % when used in other weather years. The system costs are reduced to 0.1 €/kgH2 in other weather years at the expense of an oversized system design. Meanwhile a wind-to-hydrogen system (WHS) designed using randomly selected single-year weather data results in a significantly undersized system with lower reliability (3.5 %) and higher cost variability (up to 4.7 €/kgH2) in other weather years. On the other hand averaging the weather data smoothens the weather fluctuations and always results in a WHS design with lower reliability and higher cost variability than a WHS designed using multi-year weather data values. The results reveal that the size of input weather dataset significantly impacts the system design and its performance. The maximum of near-optimal solutions method proposed in this study provided significantly lower computational time with improved system performance (reliability and cost variability) in comparison to solving the WHS using multiple years of weather data outright.
O&G, Geothermal Systems, and Natural Hydrogen Well Drilling: Market Analysis and Review
Mar 2025
Publication
Developing clean and renewable energy instead of the ones related to hydrocarbon resources has been known as one of the different ways to guarantee reduced greenhouse gas emissions. Geothermal systems and native hydrogen exploration could represent an opportunity to diversify the global energy matrix and lower carbon-related emissions. All of these natural energy sources require a well to be drilled for its access and/or extractions similar to the petroleum industry. The main focuses of this technical–scientific contribution and research are (i) to evaluate the global energy matrix; (ii) to show the context over the years and future perspectives on geothermal systems and natural hydrogen exploration; and (iii) to present and analyze the importance of developing technologies on drilling process optimization aiming at accessing these natural energy resources. In 2022 the global energy matrix was composed mainly of nonrenewable sources such as oil natural gas and coal where the combustion of fossil fuels produced approximately 37.15 billion tons of CO2 in the same year. In 2023 USD 1740 billion was invested globally in renewable energy to reduce CO2 emissions and combat greenhouse gas emissions. In this context currently about 353 geothermal power units are in operation worldwide with a capacity of 16335 MW. In addition globally there are 35 geothermal power units under pre-construction (project phase) 93 already being constructed and recently 45 announced. Concerning hydrogen the industry announced 680 large-scale project proposals valued at USD 240 billion in direct investment by 2030. In Brazil the energy company Petroleo Brasileiro SA (Petrobras Rio de Janeiro Brazil) will invest in the coming years nearly USD 4 million in research involving natural hydrogen generation and since the exploration and access to natural energy resources (oil and gas natural hydrogen and geothermal systems among others) are achieved through the drilling of wells this document presents a technical–scientific contextualization of social interest.
Hydrogen SWOT Analysis of Poland’s Energy Transition
Apr 2025
Publication
This paper presents a comprehensive SWOT (strengths weaknesses opportunities and threats) analysis of utilizing hydrogen as a renewable fuel of non-biological origin (RFNBO) in Poland’s energy transition. Given Poland’s reliance on fossil fuels its deep decarbonization poses socio-economic and infrastructural challenges. This study examines the strengths weaknesses opportunities and threats associated with integrating hydrogen as an RFNBO fuel into Poland’s energy mix focusing on economic regulatory technological and social factors. The strengths identified include potential energy independence from fossil fuels increased investment and hydrogen’s applicability in hard-to-abate sectors. Weaknesses involve a low share of renewable hydrogen in the energy mix and the need for infrastructure development. Opportunities arise from European Union policies technological advancements and global trends favoring renewable hydrogen adoption. Threats encompass high production costs regulatory uncertainties and competition from other energy carriers. The analysis concludes that while hydrogen as an RFNBO fuel offers potential for decarbonizing Poland’s energy mix realizing this potential requires large-scale investments a supportive regulatory framework and technological innovation.
Research Trends in Underground Hydrogen Storage: A Bibliometric Approach
Apr 2025
Publication
This article presents the findings of a bibliometric analysis of scientific publications in journals and materials indexed in the SCOPUS and Web of Science databases covering the broad topic of underground hydrogen storage (UHS). The use of VOSviewer software for keyword analysis enabled the identification of four key research areas related to UHS. These areas include hydrogen and hydrocarbon reservoir engineering; hydrogen economy and energy transformation; processes in hydrogen storage sites including lessons from CO2 sequestration; and the geology engineering and geomechanics of underground gas storage. The interdisciplinary nature of UHS research emphasises the synergy of research across diverse fields. A bibliographic analysis allowed for the identification of areas of intensive research and new directions of work related to UHS key research centres and the dynamics of the development of research topics related to UHS. This study revealed the chronological dispersion of the research results their geographical and institutional variability and the varying contributions of major publishing journals. The research methodology used can serve as an inspiration for the work of other researchers.
Keep it Local and Safe: Which System of Green Hydrogen in Germany is Accepted by Citizens?
Jan 2025
Publication
Transitioning from fossil fuels to renewable energies is imperative for Germany to reduce CO2 emissions and achieve greenhouse gas neutrality by 2045. Green hydrogen holds great potential to contribute to this energy transition by enabling the storage of surplus renewable energy. However Germany's green hydrogen production industry is still in its infancy with only a few green hydrogen plants existing. Studies examining the public's acceptance of green hydrogen production are scarce in this context. Still high societal acceptance can contribute to the future expansion of green hydrogen production in Germany in terms of speed and volume. Therefore our study aims to identify significant factors influencing the German population's acceptance of green hydrogen production within various acceptance groups with differing preferences for future green hydrogen production systems. We conducted an online survey (n=1203) in Germany in 2022/2023 incorporating a choice experiment. Through subsequent latent class analysis four acceptance groups with distinct preferences regarding local green hydrogen production were identified: Unconvinced citizens Security-conscious citizens Regional electricity consumers and Financial beneficiaries. A discriminant analysis identified 9 out of 11 factors as significant for distinguishing between these acceptance groups regarding their preferences for local green hydrogen production: trust in plant safety trust in project managers risk/benefit perception environmental self-identity negative attitude towards renewable energies positive attitude towards renewable energies emotions age and gender. However no significant effects were observed for experience with green hydrogen and distance to the place of residence. Based on our results it is recommended that required renewable energy for green hydrogen production should be produced as close to the green hydrogen plants as possible. It must be ensured and communicated to the public that the (planned) green hydrogen plants meet high safety standards and pose a very low risk of fire or explosion. The neighbouring population should also benefit through annual heating cost savings and financial participation. Implementing these measures can increase acceptance of local green hydrogen production facilitating the transition towards a more sustainable energy future in Germany and beyond.
Life Cycle Assessment of Different Powertrain Alternatives for a Clean Urban Bus Across Diverse Weather Conditions
Aug 2025
Publication
At present the decarbonization of the public transport sector plays a key role in international and regional policies. Among the various energy vectors being considered for future clean bus fleets green hydrogen and electricity are gaining significant attention thanks to their minimal carbon footprint. However a comprehensive Life Cycle Assessment (LCA) is essential to compare the most viable solutions for public mobility accounting for variations in weather conditions geographic locations and time horizons. Therefore the present work compares the life cycle environmental impact of different powertrain configurations for urban buses. In particular a series hybrid architecture featuring two possible hydrogenfueled Auxiliary Power Units (APUs) is considered: an H2-Internal Combustion Engine (ICE) and a Fuel Cell (FC). Furthermore a Battery Electric Vehicle (BEV) is considered for the same application. The global warming potential of these powertrains is assessed in comparison to both conventional and hybrid diesel over a typical urban mission profile and in a wide range of external ambient conditions. Given that cabin and battery conditioning significantly influence energy consumption their impact varies considerably between powertrain options. A sensitivity analysis of the BEV battery size is conducted considering the effect of battery preconditioning strategies as well. Furthermore to evaluate the potential of hydrogen and electricity in achieving cleaner public mobility throughout Europe this study examines the effect of different grid carbon intensities on overall emissions based also on a seasonal variability and future projections. Finally the present study demonstrates the strong dependence of the carbon footprint of various technologies on both current and future scenarios identifying a range of boundary conditions suitable for each analysed powertrain option.
Prediction and Optimization of the Long-Term Fatigue Life of a Composite Hydrogen Storage Vessel Under Random Vibration
Feb 2025
Publication
A composite hydrogen storage vessel (CHSV) is one key component of the hydrogen fuel cell vehicle which always suffers random vibration during transportation resulting in fatigue failure and a reduction in service life. In this paper firstly the free and constrained modes of CHSV are experimentally studied and numerically simulated. Subsequently the random vibration simulation of CHSV is carried out to predict the stress distribution while Steinberg’s method and Dirlik’s method are used to predict the fatigue life of CHSV based on the results of stress distribution. In the end the optimization of ply parameters of the composite winding layer was conducted to improve the stress distribution and fatigue life of CHSV. The results show that the vibration pattern and frequency of the free and constrained modes of CHSV obtained from the experiment tests and the numerical predictions show a good agreement. The maximum difference in the value of the vibration frequency of the free and constrained modes of CHSV from the FEA and experiment tests are respectively 8.9% and 8.0% verifying the accuracy of the finite element model of CHSV. There is no obvious difference between the fatigue life of the winding layer and the inner liner calculated by Steinberg’s method and Dirlik’s method indicating the accuracy of FEA of fatigue life in the software Fe-safe. Without the optimization the maximum stresses of the winding layer and the inner liner are found to be near the head section by 469.4 MPa and 173.0 MPa respectively and the numbers of life cycles of the winding layer and the inner liner obtained based on the Dirlik’s method are around 1.66 × 106 and 3.06 × 106 respectively. Through the optimization of ply parameters of the composite winding layer the maximum stresses of the winding layer and the inner liner are reduced by 66% and 85% respectively while the numbers of life cycles of the winding layer and the inner liner both are increased to 1 × 107 (high cycle fatigue life standard). The results of the study provide theoretical guidance for the design and optimization of CHSV under random vibration.
Photovoltaic Power System with Electrochemical and Hydrogen Storage for Energy Independence in Student Dormitories
Mar 2025
Publication
This article analyzes the path towards achieving electric energy independence for dormitories. It examines electricity consumption in dormitories to determine the necessary volume for daily electrochemical energy storage systems seasonal hydrogen storage system capacity and photovoltaic (PV) system power. Electricity consumption data from dormitories between 2021 and 2024 were analyzed showing hourly daily and monthly trends. The study developed a mathematical model of hourly electric energy usage and production in Matlab/Simulink to optimize the photovoltaic (PV) system increase self-consumption potential and enhance surplus energy storage. This enabled the selection of capacities for daily and seasonal storage along with PV system power to meet dormitory energy needs particularly in autumn and winter. The software accommodates monthly energy consumption profiles and PV system characteristics allowing for the estimation of electric energy surplus after usage by inhabitants for hydrogen production and storage. The study offers a comprehensive framework for sustainable electric energy management in student housing.
Remote Sensing Perspective on Monitoring and Predicting Underground Energy Sources Storage Environmental Impacts: Literature Review
Jul 2025
Publication
Geological storage is an integral element of the green energy transition. Geological formations such as aquifers depleted reservoirs and hard rock caverns are used mainly for the storage of hydrocarbons carbon dioxide and increasingly hydrogen. However potential adverse effects such as ground movements leakage seismic activity and environmental pollution are observed. Existing research focuses on monitoring subsurface elements of the storage while on the surface it is limited to ground movement observations. The review was carried out based on 191 research contributions related to geological storage. It emphasizes the importance of monitoring underground gas storage (UGS) sites and their surroundings to ensure sustainable and safe operation. It details surface monitoring methods distinguishing geodetic surveys and remote sensing techniques. Remote sensing including active methods such as InSAR and LiDAR and passive methods of multispectral and hyperspectral imaging provide valuable spatiotemporal information on UGS sites on a large scale. The review covers modelling and prediction methods used to analyze the environmental impacts of UGS with data-driven models employing geostatistical tools and machine learning algorithms. The limited number of contributions treating geological storage sites holistically opens perspectives for the development of complex approaches capable of monitoring and modelling its environmental impacts.
A Spatio-techno-economic Analysis for Wind-powered Hydrogen Production in Tunisia
Aug 2025
Publication
This study investigated the potential of large-scale wind-powered green hydrogen production in Tunisia through a combined spatio-techno-economic analysis. Using a geographic information system-based Multi-Criteria Decision-Making approach optimal locations for wind-hydrogen systems were identified based on criteria such as hydrogen potential slope land use and proximity to essential infrastructure (water resources grid network transportation and urban areas). The Best worst method (BMW) technique was employed to assign weights to the identified criteria. Subsequently a techno-economic assessment was conducted at six prospective onshore wind project sites to evaluate the economic feasibility of hydrogen production. Therefore the main contribution of this study lies in the synergistic combination of a wind-specific focus application of an efficient and consistent BWM methodology within a GIS framework and detailed site-specific techno-economic validation of the spatially identified optimal locations. The results of the spatial analysis indicated that 15.91 % (21185 km²) of Tunisia’s land was suitable for wind-based hydrogen production with 1110 km² exhibiting exceptional suitability primarily in the central-western southwestern southeastern and coastal regions. Among the five evaluated wind turbine models the E115-3000 proved to be the most efficient. Site S3 (Sidi Abdelrahman) demonstrated the highest annual energy output (117.7 GWh) and hydrogen production potential (1267–1482 t) while S5 (Souk El Ahed) yielded the lowest energy output (50.121 GWh). Economically S3 emerged as the most advantageous site with the lowest Levelized Cost of Electricity (0.0446 $/kWh) and Levelized Cost of Hydrogen (3.581 $/kg) followed by S4. S5 had the highest LCOE (0.0643 $/kWh) and LCOH (5.169 $/kg). These findings highlight Tunisia’s promising potential for cost-competitive green hydrogen production particularly in identified optimal locations thus contributing to renewable energy targets and sustainable development.
Economic Viability and Environmental Efficiency Analysis of Hydrogen Production Processes for the Decarbonization of Energy Systems
Aug 2019
Publication
The widespread penetration of hydrogen in mainstream energy systems requires hydrogen production processes to be economically competent and environmentally efficient. Hydrogen if produced efficiently can play a pivotal role in decarbonizing the global energy systems. Therefore this study develops a framework which evaluates hydrogen production processes and quantifies deficiencies for improvement. The framework integrates slack-based data envelopment analysis (DEA) with fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS). The proposed framework is applied to prioritize the most efficient and sustainable hydrogen production in Pakistan. Eleven hydrogen production alternatives were analyzed under five criteria including capital cost feedstock cost O&M cost hydrogen production and CO2 emission. FAHP obtained the initial weights of criteria while FTOPSIS determined the ultimate weights of criteria for each alternative. Finally slack-based DEA computed the efficiency of alternatives. Among the 11 three alternatives (wind electrolysis PV electrolysis and biomass gasification) were found to be fully efficient and therefore can be considered as sustainable options for hydrogen production in Pakistan. The rest of the eight alternatives achieved poor efficiency scores and thus are not recommended.
No more items...