Publications
The Analysis of Fire Test for the High Pressure Composite Cylinder
Sep 2011
Publication
A large number of natural gas vehicles (NGV) with composite cylinders run in the world. In order to store hydrogen using the composite cylinder has also reached commercialization for the hydrogen fuel cell vehicle (FCV) which is been developing on ECO Energy. Under these increasing circumstances the most important issue is that makes sure of safety of the hydrogen composite cylinder. In case of the composite cylinder a standards to verify the safety of cylinders obey several country's standards. For NGV ISO 11439 has adopted as international standards but for FCV it has been still developing and there is only ISO/TS 15869 as international technical standards. In contents of international standards the fire test is the weakest part. The fire test is that the pressure relief valves (PRD) normally operate or not in order to prevent cylinders bursting when a vehicle is covered by fire. However with present standards there is no method to check the problem from vehicles in local flame. This study includes fire test results that have been performed to establish the fire-test standards.
Hydrogen Fueling Standardization: Enabling ZEVs with "Same as Today" Fueling and FCEV Range and Safety
Oct 2015
Publication
Zero Emission Vehicles (ZEVs) are necessary to help reduce the emissions in the transportation sector which is responsible for 40% of overall greenhouse gas emissions. There are two types of ZEVs Battery Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCEVs) Commercial Success of BEVs has been challenging thus far also due to limited range and very long charging duration. FCEVs using H2 infrastructure with SAE J2601 and J2799 standards can be consistently fuelled in a safe manner fast and resulting in a range similar to conventional vehicles. Specifically fuelling with SAE J2601 with the SAE J2799 enables FCEVs to fill with hydrogen in 3-5 minutes and to achieve a high State of Charge (SOC) resulting in 300+ mile range without exceeding the safety storage limits. Standardized H2 therefore gives an advantage to the customer over electric charging. SAE created this H2 fuelling protocol based on modelling laboratory and field tests. These SAE standards enable the first generation of commercial FCEVs and H2 stations to achieve a customer acceptable fueling similar to today's experience. This report details the advantages of hydrogen and the validation of H2 fuelling for the SAE standards.
Numerical Investigation on the Self-ignition Behavior of High Pressure Hydrogen Released from the Tube
Sep 2017
Publication
This paper shows the numerical investigation on the self-ignition behavior of high pressure hydrogen released from the tube. The present study aims to clarify the effect of parameters on the behavior and duration of self-ignition outside the tube using two-dimensional axisymmetric numerical simulation with detailed chemistry. The parameters in this study are release pressure tube diameter and tube length. The strength of the spherical shock wave to keep chemical reaction and expansion are important factors for self ignited hydrogen jet to be sustained outside the tube. The trend of strength of spherical shock wave is enhanced by higher release pressure and larger tube diameter. The chemical reaction weakens due to expansion and the degree of expansion becomes larger as the spherical shock wave propagates. The characteristic time for the chemical reaction becomes shorter in higher release pressure larger tube diameter and longer tube diameter cases from the induction time under constant volume assumption. The self ignited hydrogen jet released from the tube is sustained up to the distance where the characteristic time for chemical reaction is shorter than the characteristic time for the flow to expand and higher release pressure larger tube diameter and longer tube length expand the distance where the tip flame can propagate downstream. For the seed flame which is the key for jet fire the larger amount of the ignited volume when the shock wave reaches the tube exit contributes to the formation and stability of the seed flame. The amount of the ignited volume tends to be larger in the longer tube length higher release pressure and larger tube diameter cases.
Delayed Explosion of Hydrogen High Pressure Jets in a Highly Obstructed Geometry
Sep 2017
Publication
Delayed explosions of accidental high pressure hydrogen releases are an important risk scenario in safety studies of production plants transportation pipelines and fuel cell vehicles charging stations. Such explosions were widely explored in multiple experimental and numerical investigations. Explosion of high pressure releases in highly obstructed geometries with high blockage ratio is a much more complicated phenomenon. This paper is dedicated to the experimental investigation of the influence of obstacles on a delayed deflagration of hydrogen jets. The computational fluid dynamics (CFD) code FLACS is used to reproduce experimental data. In the current study the computed overpressure signals are compared to the experimentally measured ones at different monitoring points. Simulations are in close agreement with experimental results and can be used to predict overpressure where experimental pressure detectors were saturated. For homogenous stationary clouds a new approach of equivalent mixture of H2/air (~16.5%) to stoichiometric mixture of CH4/air is suggested. This approach is validated versus experimental data from the literature in terms of overpressure maxima. A parametric study is performed using FLACS for various concentrations in the same geometry in order to identify a possible transition from deflagration to detonation.
Decarbonizing Russia: Leapfrogging from Fossil Fuel to Hydrogen
Jan 2022
Publication
We examine a different approach to complete the decarbonization of the Russian economy in a world where climate policy increasingly requires the radical reduction of emissions wherever possible. We propose an energy system that can supply solar and wind-generated electricity to fulfill demand and which accounts for intermittency problems. This is instead of the common approach of planning for expensive carbon capture and storage and a massive increase in energy efficiency and therefore a drastic reduction in energy use per unit of Gross Domestic Product (GDP). Coupled with this massive increase in alternative energy we also propose using excess electricity to generate green hydrogen. Hydrogen technology can function as storage for future electricity needs or for potential fuel use. Importantly green hydrogen can potentially be used as a replacement export for Russia’s current fossil fuel exports. The analysis was carried out using the highly detailed modeling framework the High-Resolution Renewable Energy System for Russia (HIRES-RUS) representative energy system. The modeling showed that there are a number of feasible combinations of wind and solar power generation coupled with green hydrogen production to achieve 100% decarbonization of the Russian economy.
Flammability Limits and Laminar Flame Speed of Hydrogen–air Mixtures at Sub-atmospheric Pressures
Sep 2011
Publication
Hydrogen behavior at elevated pressures and temperatures was intensively studied by numerous investigators. Nevertheless there is a lack of experimental data on hydrogen ignition and combustion at reduced sub-atmospheric pressures. Such conditions are related to the facilities operating under vacuum or sub-atmospheric conditions for instance like ITER vacuum vessel. Main goal of current work was an experimental evaluation of such fundamental properties of hydrogen–air mixtures as flammability limits and laminar flame speed at sub-atmospheric pressures. A spherical explosion chamber with a volume of 8.2 dm3 was used in the experiments. A pressure method and high-speed camera combined with schlieren system for flame visualization were used in this work. Upper and lower flammability limits and laminar flame velocity have been experimentally evaluated in the range of 4–80% hydrogen in air at initial pressures 25–1000 mbar. An extraction of basic flame properties as Markstein length overall reaction order and activation energy was done from experimental data on laminar burning velocity.
Evaluation of the Protection Effectiveness Against Overpressure From Hydrogen-air Explosion
Sep 2017
Publication
The aim of this study is to assess the probability of the damage to hydrogen fuelling station personnel exposed to the hydrogen explosion shock wave. A three-dimensional mathematical model of the explosion of hydrogen-air cloud formed after the destruction of the high-pressure storage cylinders is developed. A computer technology how to define the personnel damage probability field on the basis of probit analysis of the generated shock wave is developed. To automate the process of computing the "probit function-damage probability" tabular dependence is replaced by a piecewise cubic spline. The results of calculations of overpressure fields impulse loading and the probability of damage to fuelling station personnel exposed to the shock wave are obtained. The mathematical model takes into account the complex terrain and three-dimensional non-stationary nature of the shock wave propagation process. The model allows to obtain time-spatial distribution of damaging factors (overpressure in the shock wave front and the compression phase impulse) required to determine the three-dimensional non-stationary damage probability fields based on probit analysis. The developed computer technology allows to carry out an automated analysis of the safety situation at the fuelling station and to conduct a comparative analysis of the effectiveness of different types of protective facilities.
Development of NaBH4-Based Hydrogen Generator for Fuel Cell Unmanned Aerial Vehicles with Movable Fuel Cartridge
Mar 2019
Publication
NaBH4-based hydrogen generator for fuel cell Unmanned Aerial Vehicle (UAVs) with movable fuel cartridge was developed in the present study. The main fuel of hydrogen generator is Sodium borohydride (NaBH4) that is a kind of chemical hydride and has a high hydrogen storage density. In the previous studies hydrogen generators were developed in which hydrogen was directly generated from solid state NaBH4. However it was a prototype so inconvenient to replace the fuel after used up and lacked user convenience. Therefore the performance evaluation and the development procedure of NaBH4-based hydrogen generator that was designed taking user convenience in consideration for commercialization were described in this paper.
A Review on Underground Hydrogen Storage: Insight into Geological Sites, Influencing Factors and Future Outlook
Dec 2021
Publication
Without remorse fossil fuels have made a huge contribution to global development in all of its forms. However the recent scientific outlooks are currently shifting as more research is targeted towards promoting a carbon-free economy in addition to the use of electric power from renewable sources. While renewable energy sources may be a solution to the anthropogenic greenhouse gas (GHG) emissions from fossil fuel they are yet season-dependent faced with major atmospheric drawbacks which when combined with annually varying but steady energy demand results in renewable energy excesses or deficits. Therefore it is essential to devise a long-term storage medium to balance their intermittent demand and supply. Hydrogen (H2) as an energy vector has been suggested as a viable method of achieving the objectives of meeting the increasing global energy demand. However successful implementation of a full-scale H2 economy requires large-scale H2 storage (as H2 is highly compressible). As such storage of H2 in geological formations has been considered as a potential solution where it can be withdrawn again at the larger stage for utilization. Thus in this review we focus on the potential use of geological formations for large-scale underground hydrogen storage (UHS) where both conventional and non-conventional UHS options were examined in depth. Also insights into some of the probable sites and the related examined criteria for selection were highlighted. The hydrodynamics of UHS influencing factors (including solid fluid and solid–fluid interactions) are summarized exclusively. In addition the economics and reaction perspectives inherent to UHS have been examined. The findings of this study show that UHS like other storage systems is still in its infancy. Further research and development are needed to address the significant hurdles and research gaps found particularly in replaceable influencing parameters. As a result this study is a valuable resource for UHS researchers.
Micro-wrinkled Pd Surface for Hydrogen Sensing and Switched Detection of Lower Explosive Limit
Sep 2011
Publication
We report the development and testing of a novel hydrogen sensor that shows a very peculiar response to hydrogen exposure due to its micro-structured palladium surface. The fabrication of the wrinkled Pd surface is obtained using an innovative fast and cheap technique based on the deposition of a thin Pd film on to a thermo-retractable polystyrene sheet that shrinks to 40% of its original size when heated. The buckling of the Pd surface induced by shrinking of the substrate produces nano and micro-wrinkles on the sensor surface. The micro-structured sensor surface is very stable even after repeated hydrogen sorption/desorption cycles. The hydrogen sensing mechanism is based on the transitory absorption of hydrogen atoms into the Pd layer leading to the reversible change of its electrical resistance. Interestingly depending on hydrogen concentration the proposed sensor shows the concurrent effect of both the usually described behaviors of increase or decrease of resistance related to different phenomena occurring upon hydrogen exposure and formation of palladium hydride. The study reports and discusses evidences for an activation threshold of hydrogen concentration in air switching the behavior of sensor performances from e.g. poor negative to large positive sensitivity and from slow to fast detection.
Development of a Generalized Integral Jet Model
Sep 2017
Publication
Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis to describe the consequences of many different scenarios. Alternatively CFD codes are being applied but computational requirements still limit the number of scenarios that can be dealt with using CFD only. The integral models however are not suited to handle transient releases such as releases from pressurized equipment where the initially high release rate decreases rapidly with time. Further on gas ignition a second model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development and decay of a jet of flammable gas after a release from a pressure container. The intention is to transfer the stationary models to a fully transient model capable to predict the maximum extension of short-duration high pressure jets. The model development is supported by conducting a set of transient ignited and unignited spontaneous releases at initial pressures between 25bar and 400bar. These data forms the basis for the presented model development approach.
Security Risk Analysis of a Hydrogen Fueling Station with an On-site Hydrogen Production System Involving Methylcyclohexane
Sep 2017
Publication
Although many studies have looked at safety issues relating to hydrogen fuelling stations few studies have analyzed the security risks such as deliberate attack of the station by threats such as terrorists and disgruntled employees. The purpose of this study is to analyze security risks for a hydrogen fuelling station with an on-site production of hydrogen from methylcyclohexane. We qualitatively conducted a security risk analysis using American Petroleum Institute Standard 780 as a reference for the analysis. The analysis identified 93 scenarios including pool fires. We quantitatively simulated a pool fire scenario unique to the station to analyze attack consequences. Based on the analysis and the simulation we recommend countermeasures to prevent and mitigate deliberate attacks.
Effect of Expansion Ratio on Flame Acceleration During Hydrogen Fueled Gas Explosions
Sep 2019
Publication
A precise understanding of the flame turbulence induced by cellular instabilities is indispensable to perform an appropriate risk assessment of hydrogen fuelled gas explosion. In this research Darrieus Landau instability (DL instability) whose effect on gas explosion is remarkable was experimentally examined. The DL instability is essentially caused by a volumetric expansion of burned gas at flame front. Therefore in order to examine the effects of volumetric expansion ratio the experiments were conducted using H2-O2-N2-Ar gas mixtures of various volumetric expansion ratio conditions by changing N2-Ar ratio. When Ar content ratio is increased the flame temperature becomes higher and volumetric expansion ratio is increased owing to lower specific heat of Ar. The experiments were conducted in nearly unconfined conditions of laboratory-scale and large-scale. Gas mixtures were filled in a 10 cm diameter soap bubble for the laboratory-scale and in a plastic tent of thin vinyl sheet of 1m3 for the large-scale. The gas mixtures were ignited by an electric spark and blast wave and flame speed were measured simultaneously by using a pressure sensor and a high-speed video camera. The DL instability owing to volumetric expansion accelerates flame propagation. In addition the intensity of blast wave was greatly raised depending on flame acceleration which can be explained by an acoustic theory. The effects of expansion ratio and experimental scales on flame propagation and blast wave were analyzed in detail. These results are quite important to perform an appropriate consequence analysis of accidental explosion of hydrogen.
Operation of UK Gas Appliances with Hydrogen Blended Natural Gas
Sep 2019
Publication
The HyDeploy project has undertaken a programme of work to assess the effect of hydrogen addition on the safety and performance of gas appliances and installations. A representative set of eight appliances have been assessed in laboratory experiments with a range of test gases that explored high and low Wobbe Number and hydrogen concentrations up to 28.4 % mol/mol. Tests have demonstrated that the addition of hydrogen does not affect the key hazard areas of CO production light back flame out or the operation of flame failure devices. It was identified that for some designs of gas fire appliances the operation of the oxygen depletion sensors may be affected by the addition of hydrogen and further studies in this area are planned. A laboratory based study was supported by an onsite testing programme where 133 installations were assessed for gas tightness appliance combustion safety and operation against normal line natural gas G20 reference gas and two hydrogen blended gases. Where installations were gas tight for natural gas analysis showed that no additional leakage occurred with hydrogen blended gases. There were also no issues identified with the combustion performance of appliances and onsite results were in line with those obtained in the laboratory testing programme.
Numerical and Experimental Investigation of H2-air and H2-O2 Detonation Parameters in a 9 m Long Tube, Introduction of a New Detonation Model
Sep 2017
Publication
Experimental and numerical investigation of hydrogen-air and hydrogen-oxygen detonation parameters was performed. A new detonation model was introduced and validated against the experimental data. Experimental set-up consisted of 9 m long tube with 0.17 m in diameter where pressure was measured with piezoelectric transducers located along the channel. Numerical simulations were performed within OpenFoam code based on progress variable equation where the detonative source term accounts for autoignition effects. Autoignition delay times were computed at a simulation run-time with the use of a multivariate regression model where independent variables were: pressure temperature and fuel concentration. The dependent variable was the autoignition delay time. Range of the analyzed gaseous mixture composition varied between 20% and 50% of hydrogen-air and 50%–66% of hydrogen in oxygen. Simulations were performed using LES one-equation eddy viscosity turbulence model in 2D and 3D. Calculations were validated against experimental data.
Tokyo Gas’ Efforts Regarding Impact Assessment on Surroundings and Emergency Response Training
Sep 2017
Publication
In Japan 82 commercial Hydrogen Refuelling Stations (HRSs) were constructed as of March 1 2017 but few impact assessments have been reported on the surroundings at HRS. In addition as HRSs become more widespread the number of HRSs around narrow urban areas will also increase. Thus the necessity of impact assessments on the surroundings of HRSs is expected to increase. In order to confirm that the influence from our HRS is not problematic to the surrounding residences we conducted an impact assessment on the surroundings at HRS by using the actual HRS construction plan. Although safety is one of the objects of an impact assessment in Japan the safety of an HRS is guaranteed by observing the High Pressure Gas Safety Act its Technical Standards and other related regulations. On the other hand if an accident such as a hydrogen leak or hydrogen fire occurs at an HRS it becomes important to prevent secondary disasters and to minimize influence on the surroundings by means of an initial response by the operators of the HRS. Therefore we have conducted training to improve the emergency response capability of the HRS operators and to prevent secondary disasters. In this paper we describe the abovementioned information with regard to an impact assessment on the surroundings and for emergency response training.
Safety of Hydrogen Powered Industrial Trucks, Lessons Learned and Existing Codes and Standards Gaps
Sep 2011
Publication
This paper provides an introduction to the powered industrial truck application of fuel cell power systems the safety similarities with the automotive application and safety lessons learned. Fuel Cell niche markets have proven their value to many early adopters. How has the automotive market provided a springboard for these niche applications? How are niche markets revealing gaps in current safety approaches? What is different about the powered industrial truck application and what new codes and standards are needed to accommodate those differences?
Optimal Hydrogen Carrier: Holistic Evaluation of Hydrogen Storage and Transportation Concepts for Power Generation, Aviation, and Transportation
Oct 2022
Publication
The storage of excess electrical generation enabled through the electrolytic production of hydrogen from water would allow “load-shifting” of power generation. This paves the way for hydrogen as an energy carrier to be further used as a zero‑carbon fuel for land air and sea transportation. However challenges in hydrogen storage and transportation ultimately pose restrictions on its wider adaption along horizontal and vertical vectors. This paper investigates chemical energy carriers ranging from small molecules such as ammonia and methane to formic acid as well as other more complex hydrocarbons in response to this timely engineering problem. The hydrogenation and dehydrogenation of such carrier molecules require energy lowering the effective net heating value of hydrogen up to 32 %. Different carrier approaches are discussed in the light of availability energetics water requirements and suitability for applications in power generation shipping trucking and aviation supplemented by a comprehensive safety review making this study unique in its field. It is found that hydrogen delivered without a carrier is ideal for power generation applications due to the large quantities required. Aviation would benefit from either ammonia or hydrogen and is generally a field challenging to decarbonize. Ammonia appears also to be a good medium for shipping hydrogen between continents and to power container ships due to its high energy density and lower liquid temperature compared with hydrogen. At the same time ammonia can also be used to power the ship's engine. Long-haul trucking would benefit the most from cryogenic or compressed hydrogen due to the lower quantities required and purity requirements of the fuel cells.
Effects of Oxidants on Hydrogen Spontaneous Ignition: Experiments and Modelling
Sep 2017
Publication
Experiments were performed on the influence of oxidants (air pure oxygen O2 and pure nitrous oxide N2O at atmospheric pressure) in the straight expansion tube after the burst disk on the hydrogen spontaneous ignition. The lowest pressure at which the spontaneous ignition is observed has been researched for a 4 mm diameter tube with a length of 10 cm for the two oxidant gases. The ignition phenomenon is observed with a high speed camera and the external overpressures are measured. Numerical simulations have also been conducted with the high resolution CFD approach detailed chemistry formerly developed by Wen and co-workers. Comparison is made between the predictions and the experimental data.
Empirical Profiling of Cold Hydrogen Plumes Formed from Venting of LH2 Storage Vessels
Sep 2017
Publication
Liquid hydrogen (LH2) storage is viewed as a viable approach to assure sufficient hydrogen capacity at commercial fuelling stations. Presently LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e. LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery and site transfer process. The behaviour of cold hydrogen plumes has not been well characterized because of the sparsity of empirical field data which can lead to overly conservative safety requirements. Committee members of the National Fire Protection Association (NFPA) Standard 2 [1] formed the Hydrogen Storage Safety Task Group which consists of hydrogen producers safety experts and computational fluid dynamics modellers has identified the lack of understanding of hydrogen dispersion during LH2 venting of storage vessels as a critical gap for establishing safety distances at LH2 facilities especially commercial hydrogen fuelling stations. To address this need the National Renewable Energy Laboratory Sensor Laboratory in collaboration with the NFPA Hydrogen Storage Task Group developed a prototype Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. The prototype analyzer was field deployed during an actual LH2 venting process. Critical findings included
- Hydrogen above the lower flammable limit (LFL) was detected as much as 2 m lower than the release point which is not predicted by existing models.
- Personal monitors detected hydrogen at ground level although at levels below the LFL.
- A small but inconsistent correlation was found between oxygen depletion and the hydrogen concentration.
- A negligible to non-existent correlation was found between in-situ temperature measurements and the hydrogen concentration.
No more items...