Publications
Hydrogen Pipelines vs. HVDC Lines: Should We Transfer Green Molecules or Electrons?
Nov 2023
Publication
As the world races to decarbonize its energy systems the choice between transmitting green energy as electrons through high-voltage direct current (HVDC) lines or as molecules via hydrogen pipelines emerges as a critical decision. This paper considers this pivotal choice and compares the technoeconomic characteristics of these two transmission technologies. Hydrogen pipelines offer the advantage of transporting larger energy volumes but existing projects are dwarfed by the vast networks of HVDC transmission lines. Advocates for hydrogen pipelines see potential in expanding these networks capitalizing on hydrogen’s physical similarities to natural gas and the potential for cost savings. However hydrogen’s unique characteristics such as its small molecular size and compression requirements present construction challenges. On the other hand HVDC lines while less voluminous excel in efficiently transmitting green electrons over long distances. They already form an extensive global network and their efficiency makes them suitable for various applications. Yet intermittent renewable energy sources pose challenges for both hydrogen and electricity systems necessitating solutions like storage and blending. Considering these technologies as standalone competitors belies their complementary nature. In the emerging energy landscape they will be integral components of a complex system. Decisions on which technology to prioritize depend on factors such as existing infrastructure adaptability risk assessment and social acceptance. Furthermore while both HVDC lines and hydrogen pipelines are expected to proliferate other factors such as market maturity of the relevant energy vector government policies and regulatory frameworks around grid development and utilization are also expected to play a crucial role. Energy transition is a multifaceted challenge and accommodating both green molecules and electrons in our energy infrastructure may be the key to a sustainable future. This paper’s insights underline the importance of adopting a holistic perspective and recognising the unique strengths of each technology in shaping a resilient and sustainable energy ecosystem.
Case Study: Quantitative Risk Assessment of Hydrogen Blended Natural Gas for an Existing Distribution Network and End-use Equipment in Fort Saskatchewan, Alberta
Sep 2023
Publication
In a first-of-its-kind project for Alberta ATCO Gas and Pipelines Ltd. (ATCO) began delivering a 5% blend of hydrogen (H2) in natural gas into a subsection of the existing Fort Saskatchewan natural gas distribution system (approximately 2100 customers). The project was commissioned in October 2022 with the intention of increasing the blend to 20% H₂ in 2023. As part of project due diligence ATCO in partnership with DNV undertook Quantitative Risk Assessments (QRAs) to understand any risks associated with the introduction of blended gas into its existing distribution system and to its customers. This paper describes key findings from the QRAs through the comparison of risks associated with H2 blended natural gas at concentrations of 5% and 20% H₂ and the current natural gas configuration. The impact of operating pressure and hydrogen blend composition formed a sensitivity study completed as part of this work. To provide context and to help interpret the results an individual risk (IR) level of 1 × 10-6 per year was utilised as a reference threshold for the limit of the ‘broadly acceptable’ risk level and juxtaposed against comparable risk scenarios. Although adding hydrogen increases the IR of ignited releases from mains services meters regulators and end user appliances the ignited release IR was always well below the broadly acceptable reference criterion for all operating pressures and blend cases considered as part of the project. The IR associated with carbon monoxide poisoning dominates the overall IR and the results demonstrate that the reduction in carbon monoxide poisoning associated with the introduction of H₂ blended natural gas negates any incremental risk associated with ignited releases due to H₂ blended gas. The paper also explains how the results of the QRA were incorporated into Engineering Assessments as per the requirements of CSA Z662:19 [1] to justify the conversion of existing natural gas infrastructure to H₂ blended gas infrastructure.
Roles of Bioenergy and Green Hydrogen in Large Scale Energy Storage for Carbon Neutrality
Aug 2023
Publication
A new technical route to incorporate excess electricity (via green hydrogen generation by electrolysis) into a biorefinery to produce modern bioenergy (advanced biofuels) is proposed as a promising alternative. This new route involves storing hydrogen for mobile and stationary applications and can be a three-bird-one-stone solution for the storage of excess electrical energy storage of green hydrogen and high-value utilization of biomass.
Energy Efficiency Analysis of a Fuel Cell Bus Model Using Real Scenarios Generated by Data Collection
Feb 2024
Publication
Modernizing public transportation is crucial given the ongoing call for sustainable mobility. Growing concerns about climate change and the increasingly stringent emissions standards have compelled public transport operators to embrace alternative propulsion vehicles on a broader scale. For the past years the Battery Electric Buses (BEBs) have been the vehicle of choice for public transportation. However an emerging contender in this sector is the Fuel Cell Electric Bus (FCEB). This paper aims to evaluate the way one such vehicle would perform in terms of energy efficiency while being exploited in an urban scenario generated from collected data.
Numerical Simulation of Liquid Hydrogen Evaporation in the Pressurized Tank During Venting
Sep 2023
Publication
CFD modelling of liquified hydrogen boiling and evaporation during the pressurised tank venting is presented. The model is based on the volume-of-fluid method for tracking liquid and gas phases and Lee’s model for phase change. The simulation results are compared against the liquid hydrogen evaporation experiment performed by Tani et al. (2021) in a large-scale pressurised storage tank using experimental pressure dynamics and temperatures measured in gas and liquid phases. The study focuses on tank pressure decrease and recovery phenomena during the first 15 s of the venting process. The model sensitivity have been studied applying different Lee’s model evaporisation-condensation coefficients. The CFD model provided reasonable agreement with the observed pressure and gas phase temperature dynamics during the liquid hydrogen storage depressurisation using Lee’s model coefficient =0.05 s-1. Experimentalists’ hypothesis about particularly intensive boiling in the proximity of thermocouples was supported by close agreement between simulated and experimental saturation temperatures obtained from pressure dynamics.
Comparative Analysis of Solar Cells and Hydrogen Fuels: A Mini Review
Jul 2024
Publication
The aim of this mini-review is to compare the effectiveness and potential of solar cells and hydrogen fuel technologies in clean energy generation. Key aspects such as efficiency scalability environmental footprint and technological maturity are examined. Solar cells are analyzed for their ability to convert sunlight into electricity efficiently and their potential for widespread deployment with minimal environmental impact. Hydrogen fuel technologies are assessed based on their efficiency in hydrogen production scalability and overall environmental footprint from production to end use. The review identifies significant challenges including high costs infrastructure needs and policy requirements as well as opportunities for innovation and market growth. The findings provide insights to guide decision-making towards a sustainable energy future.
Impact of International Transportation Chains on Cost of Green E-hydrogen: Global Cost of Hydrogen and Consequences for Germany and Finland
Jun 2023
Publication
Widely available and low-cost solar photovoltaics and wind power can enable production of renewable electricity-based hydrogen at many locations throughout the world. Hydrogen is expected to emerge as an important energy carrier constituting some of the final energy demand; however its most important role will be as feedstock for further processing to e-fuels e-chemicals and e-steel. Apart from meeting their own hydrogen demand countries may have opportunities to export hydrogen to countries with area limitations or higher production costs. This paper assesses the feasibility of e-hydrogen imports to Germany and Finland from two case regions with a high availability of low-cost renewable electricity Chile and Morocco in comparison to domestic supply. Special attention is paid to the transport infrastructure which has a crucial impact on the economic viability of imports via two routes shipping and pipelines. This study has found that despite lower e-hydrogen production costs in Morocco and Chile compared to Germany and Finland additional transportation costs make imports of e-hydrogen economically unattractive. In early 2020s imported fuel costs are 39–79% and 34–100% higher than e-hydrogen produced in Germany and Finland respectively. In 2050 imported e-hydrogen is projected to be 39–70% more expensive than locally produced e-hydrogen in Germany and 43–54% in the case of Finland. e-Hydrogen may become a fuel that is mostly produced domestically and may be feasible for imports only in specific locations. Local e-hydrogen production may also lower dependence on imports enhance energy security and add jobs.
Comprehensive Techno-economic Assessment of Power Technologies and Synthetic Fuels under Discussion for Ship Applications
Jun 2023
Publication
The decarbonization of the global ship traffic is one of the industry’s greatest challenges for the next decades and will likely only be achieved with the introduction of synthetic fuels. Until now however not one single best technology solution emerged to ideally fit this task. Instead different energy carriers including hydrogen ammonia methanol methane and synthetic diesel are subject of discussion for usage in either internal combustion engines or fuel cells. In order to drive the selection procedure a case study for the year 2030 with all eligible combinations of power technologies and fuels is conducted. The assessment quantifies the technologies’ economic performances for cost-optimized system designs and in dependence of a ship’s mission characteristics. Thereby the influence of trends for electrofuel prices and shipboard volume opportunity costs are examined. Even if gaseous hydrogen is often considered not suitable for large ship applications due to its low volumetric energy density both the comparatively small fuel price and the high efficiency of fuel cells lead to the overall smallest system costs for passages up to 21 days depending on assumed cost parameters. Only for missions longer than seven days fuel cells operating on methanol or ammonia can compete with gaseous hydrogen economically.
Developing a Generalized Framework for Assessing Safety of Hydrogen Vehicles in Tunnels
Sep 2023
Publication
For widespread adoption of hydrogen fuel cell powered vehicles such vehicles need to be able to provide similar transportation capabilities as their gasoline/diesel powered counterparts. Meeting this requirement in many regions will necessitate access to tunnels. Previous work completed at Sandia National Laboratories provided high-fidelity consequence modeling of hydrogen vehicle tunnel crashes for a specific fire scenario in selected Massachusetts tunnels. To consider additional tunnels a generalized tunnel safety analysis framework is being developed. This framework aims to be broader than specific fire scenarios in specific tunnels allowing it to be applied to a range of tunnel geometries vehicle types and crash scenarios. Initial steps in the development of the generalized framework are reported within this work. Representative tunnel characteristics are derived based on data for tunnels in the U.S. Tunnel dimensions shapes and traffic levels are among the many characteristics reported within the data that can be used to inform crash scenario specification. Various crash scenario parameters are varied using lower-fidelity consequence modeling to quantify the impact on resulting safety hazards for time-dependent releases. These lower-fidelity models consider the unignited dispersion of hydrogen gas the thermal effects of jet fires and potential impacts of overpressures. Different sizes/classes of vehicles are considered as the total amount of hydrogen onboard may greatly affect scenario-specific consequences. The generalized framework will allow safety assessments to be both more agile and consistent when applied to different types of tunnels.
Review of the US 2050 Long Term Strategy to Reach Net Zero Carbon Emissions
Jul 2024
Publication
In 2015 during the lead up to the Paris Climate Agreement the United States set forth a Nationally Determined Contribution that outlines national goals for greenhouse gas emission reductions. It was not until 2021 that the US put forth a long-term strategy that lays out the pathway to reach these goals. The US long-term strategy lays the framework for research needs to meet the greenhouse gas emission reduction goals and incentivizes industry to meet the goals using a variety of policies. The five US long term strategy core elements are to decarbonize electricity electrify end uses and switch to clean fuels cut energy waste reduce methane and other non-carbon dioxide greenhouse gas emissions and to scale up carbon dioxide removal. Implementation of the long term strategy has generally been funded by tax incentives and government grants that were approved as part of the Inflation Reduction Act. Political headwinds societal Not in My Backyard resistance long-term economic funding cumbersome permitting requirements and incentives vs. taxation debate are significant policy/nontechnical hurdles. Technical challenges remain regarding effective energy efficiency implementation the use of hydrogen as a fuel cost effective carbon emission treatment nuclear energy expansion renewables expansion and grid integration biofuel integration efficient and safe energy storage and electrical grid adequacy/expansion. This review article condenses the multitude of technical and policy issues facing the US long-term strategy providing readers with an overview of the extent and magnitude of the challenges while outlining possible solutions.
Distributionally Robust Optimal Scheduling of Integrated Energy Systems Including Hydrogen Fuel Cells Considering Uncertainties
Aug 2023
Publication
The economic operation of the integrated energy system faces the problems of coupling between energy production and conversion equipment in the system and the imbalance of various energy demands. Therefore taking system safety as the constraint and minimum economic cost as the objective function including fuel cost operation and maintenance cost this paper proposes the operation dispatching model of the integrated energy system based on hydrogen fuel cell (HFC) including HFC photovoltaic wind turbine electric boiler electric chiller absorption chiller electric energy storage and thermal energy storage equipment. On this basis a distributionally robust optimization (DRO) model is introduced to deal with the uncertainty of wind power and photovoltaic output. In the distributionally robust optimization model Kullback–Leibler (KL) divergence is used to construct an ambiguity set which is mainly used to describe the prediction errors of renewable energy output. Finally the DRO economic dispatching model of the HFC integrated energy system (HFCIES) is established. Besides based on the same load scenario the economic benefits of hybrid energy storage equipment are discussed. The dispatching results show that compared with the scenario of only electric energy storage and only thermal energy storage the economic cost of the scenario of hybrid electric and thermal storage can be reduced by 3.92% and 7.55% respectively and the use of energy supply equipment can be reduced and the stability of the energy storage equipment can be improved.
Explosion Replication Test of FCEV Hydrogen Tank
Sep 2023
Publication
Due to the increased interest in alternative energy sources hydrogen device safety has become paramount. In this study we induced the explosion of a hydrogen tank from a fuel cell electric vehicle (FCEV) by igniting a fire beneath it and disabling the built-in temperature pressure relief device. Three Type 4 tanks were injected gaseous hydrogen at pressures of 700 350 and 10 bar respectively. The incident pressure generated by the tank explosion was measured by pressure transducers positioned at various points around the tank. A protective barrier was installed to examine its effect on the resulting damage and the reflected pressure was measured along the barrier. The internal pressure and external temperature of the tanks were measured in multiple locations. The 700- and 350-bar hydrogen tanks exploded approximately 10 and 16 min after burner ignition respectively. The 10-bar hydrogen tank did not explode but ruptured approximately 29 min after burner ignition The explosions generated blast waves fireballs and fragments. The impact on the surrounding area was evaluated and we verified that the blast pressure fireballs and fragments were almost completely blocked by the protective barrier. The results of this study are expected to improve safety on an FCEV accident scene.
A Review of Current Advances in Ammonia Combustion from the Fundamentals to Applications in Internal Combustion Engines
Aug 2023
Publication
The energy transition from hydrocarbon-based energy sources to renewable and carbon-free energy sources such as wind solar and hydrogen is facing increasing demands. The decarbonization of global transportation could come true via applying carbon-free fuel such as ammonia especially for internal combustion engines (ICEs). Although ammonia has advantages of high hydrogen content high octane number and safety in storage it is uninflammable with low laminar burning velocity thus limiting its direct usage in ICEs. The purpose of this review paper is to provide previous studies and current research on the current technical advances emerging in assisted combustion of ammonia. The limitation of ammonia utilization in ICEs such as large minimum ignition energy lower flame speed and more NOx emission with unburned NH3 could be solved by oxygen-enriched combustion ammonia–hydrogen mixed combustion and plasma-assisted combustion (PAC). In dual-fuel or oxygen-enriched NH3 combustion accelerated flame propagation speeds are driven by abundant radicals such as H and OH; however NOx emission should be paid special attention. Furthermore dissociating NH3 in situ hydrogen by non-noble metal catalysts or plasma has the potential to replace dual-fuel systems. PAC is able to change classical ignition and extinction S-curves to monotonic stretching which makes low-temperature ignition possible while leading moderate NOx emissions. In this review the underlying fundamental mechanism under these technologies are introduced in detail providing new insight into overcoming the bottleneck of applying ammonia in ICEs. Finally the feasibility of ammonia processing as an ICE power source for transport and usage highlights it as an appealing choice for the link between carbon-free energy and power demand.
Phasing Out Steam Methane Reformers with Water Electrolysis in Producing Renewable Hydrogen and Ammonia: A Case Study Based on the Spanish Energy Markets
Jul 2023
Publication
Deploying renewable hydrogen presents a significant challenge in accessing off-takers who are willing to make long-term investments. To address this challenge current projects focus on large-scale deployment to replace the demand for non-renewable hydrogen particularly in ammonia synthesis for fertiliser production plants. The traditional process involving Steam Methane Reformers (SMR) connected to Haber-Bosch synthesis could potentially transition towards decarbonisation by gradually integrating water electrolysis. However the coexistence of these processes poses limitations in accommodating the integration of renewable hydrogen thereby creating operational challenges for industrial hubs. To tackle this issue this paper proposes an optimal dispatch model for producing green hydrogen and ammonia while considering the coexistence of different processes. Furthermore the objective is to analyse external factors that could determine the appropriate regulatory and pricing framework to facilitate the phase-out of SMR in favour of renewable hydrogen production. The paper presents a case study based in Spain utilising data from 2018 2022 and 2030 perspectives on the country's renewable resources gas and electricity wholesale markets pricing ranges and regulatory constraints to validate the model. The findings indicate that carbon emissions taxation and the availability and pricing of Power Purchase Agreements (PPAs) will play crucial roles in this transition - the carbon emission price required for total phasing out SMR with water electrolysis would be around 550 EUR/ton CO2.
Challenges and Solutions of Hydrogen Fuel Cells in Transportation Systems: A Review and Prospects
Jun 2023
Publication
Conventional transportation systems are facing many challenges related to reducing fuel consumption noise and pollutants to satisfy rising environmental and economic criteria. These requirements have prompted many researchers and manufacturers in the transportation sector to look for cleaner more efficient and more sustainable alternatives. Powertrains based on fuel cell systems could partially or completely replace their conventional counterparts used in all modes of transport starting from small ones such as scooters to large mechanisms such as commercial airplanes. Since hydrogen fuel cells (HFCs) emit only water and heat as byproducts and have higher energy conversion efficiency in comparison with other conventional systems it has become tempting for many scholars to explore their potential for resolving the environmental and economic concerns associated with the transportation sector. This paper thoroughly reviews the principles and applications of fuel cell systems for the main transportation schemes including scooters bicycles motorcycles cars buses trains and aerial vehicles. The review showed that fuel cells would soon become the powertrain of choice for most modes of transportation. For commercial long-rage airplanes however employing fuel cells will be limited due to the replacement of the axillary power unit (APU) in the foreseeable future. Using fuel cells to propel such large airplanes would necessitate redesigning the airplane structure to accommodate the required hydrogen tanks which could take a bit more time.
Assessment of a Coupled Electricity and Hydrogen Sector in the Texas Energy System in 2050
Oct 2024
Publication
Due to its ability to reduce emissions in the hard-to-abate sectors hydrogen is expected to play a significant role in future energy systems. This study modifies a sector-coupled dynamic modeling framework for electricity and hydrogen by including policy constraints carbon prices and possible hydrogen pathways and applies it to Texas in 2050. The impact of financial policies including the US clean hydrogen production tax credit on required infrastructure and costs are explored. Due to low natural gas prices financial levers are necessary to promote low-carbon hydrogen production as the optimized solution. The Levelized Costs of Hydrogen are found to be $1.50/kg in the base case (primarily via steam methane reformation production) and lie between $2.10 - 3.10/kg when production is via renewable electrolysis. The supporting infrastructure required to supply those volumes of renewable hydrogen is immense. The hydrogen tax credit was found to be enough to drive production via electrolysis.
Modelling and Operation Strategy Approaches for On-site Hydrogen Refuelling Stations
Aug 2023
Publication
The number of Fuel Cell Electric Vehicles (FCEVs) in circulation has undergone a significant increase in recent years. This trend is foreseen to be stronger in the near future. In correlation with the FCEVs market increase the hydrogen delivery infrastructure must be developed. With this aim many countries have announced ambitious projects. For example Spain has the objective of increasing the number of Hydrogen Refuelling Stations (HRS) with public access from three units in operation currently to about 150 by 2030. HRSs are complex systems with high variability in terms of layout design size of components operational strategy hydrogen generation method or hydrogen generation location. This paper is focused on on-site HRS with electrolysis-based hydrogen production which provides interesting advantages when renewable energy is utilized compared to off-site hydrogen production despite their complexity. To optimize HRS design and operation a simulation model must be implemented. This paper describes a generic on-site HRS with electrolysis-based hydrogen production a cascaded multi-tank storage system with multiple compressors renewable energy sources and multiple types of dispensing formats. A modelling approach of the layout is presented and tested with real-based parameters of an HRS currently under development which is capable of producing 11.34 kg/h of green H2 with irradiation at 1000 W/m2. For the operation an operational strategy is proposed. The modelled system is tested through several simulations. A sensitivity analysis of the effects of hydrogen demand and day-ahead hydrogen production objective on emissions demand satisfaction and variable costs is performed. Simulation results show how the operational strategy has achieved service up to 310 FCEVs refuelling events of heavy duty and light duty FCEVs bringing the total H2 sold up to almost 7200 H2kg in one month of winter. Additionally considering variable costs of the energy from the utility grid the model shows a profit in the range of 21–50 k€ for a daily demand of 60 H2kg/day and 100 H2kg/day respectively. In terms of emissions a year simulation with 60 H2kg/day of demand shows specific emissions in the production of H2 in Spain of 6.26 kgCO2eq/H2kg which represents a greenhouse gas emission intensity of 52.26 kgCO2eq/H2MJ.
Performance Evaluation of a Fuel Cell mCHP System under Different Configurations of Hydrogen Origin and Heat Recovery
Sep 2023
Publication
Motivated by the growing importance of fuel cell systems as the basis for distributed energy generation systems this work considers a micro-combined heat and power (mCHP) generation system based on a fuel cell integrated to satisfy the (power and thermal) energy demands of a residential application. The main objective of this work is to compare the performance of several CHP configurations with a conventional alternative in terms of primary energy consumption greenhouse gas (GHG) emissions and economic viability. For that a simulation tool has been developed to easily estimate the electrical and thermal energy generated by a hydrogen fuel cell and all associated results related to the hydrogen production alternatives: excess or shortfall of electrical and thermal energy CO2 emission factor overall performance operating costs payback period etc. A feasibility study of different configuration possibilities of the micro-CHP generation system has been carried out considering different heat-to-power ratios (HPRs) in the possible demands and analyzing primary energy savings CO2 emissions savings and operating costs. An extensive parametric study has been performed to analyze the effect of the fuel cell’s electric power and number of annual operation hours as parameters. Finally a study of the influence of the configuration parameters on the final results has been carried out. Results show that in general configurations using hydrogen produced from natural gas save more primary energy than configurations with hydrogen production from electricity. Furthermore it is concluded that the best operating points are those in which the generation system and the demand have similar HPR. It has also been estimated that a reduction in renewable hydrogen price is necessary to make these systems profitable. Finally it has been determined that the most influential parameters on the results are the fuel cell electrical efficiencies hydrogen production efficiency and hydrogen cost.
Socio-technical Imaginaries of Climate-neutral Aviation
May 2024
Publication
Limiting global warming to 1.5 ◦C is crucial to prevent the worst effects of climate change. This entails also the decarbonization of the aviation sector which is considered to be a “hard-to-abate” sector and thus requires special attention regarding its sustainability transition. However transition pathways to a potentially climateneutral aviation sector are unclear with different stakeholders having diverse imaginations of the sector's future. This paper aims to analyze socio-technical imaginaries of climate-neutral aviation as different perceptions of various stakeholders on this issue have not been sufficiently explored so far. In that sense this work contributes to the current scientific debate on socio-technical imaginaries of energy transitions for the first time studying the case of the aviation sector. Drawing on six decarbonization reports composed by different interest groups (e.g. industry academia and environmental associations) three imaginaries were explored following the process of a thematic analysis: rethinking travel and behavioral change (travel innovation) radical modernization and technological progress (fleet innovation) and transition to alternative fuels and renewable energy sources (fuel innovation). The results reveal how different and partly conflicting socio-technical imaginaries are co-produced and how the emergence and enforceability of these imaginaries is influenced by the situatedness of their creators indicating that the sustainability transition of aviation also raises political issues. Essentially as socio-technical imaginaries act as a driver for change policymakers should acknowledge the existence of alternative and counter-hegemonic visions created by actors from civil society settings to take an inclusive and equitable approach to implementing pathways towards climate-neutral aviation.
Capacity Expansion Planning of Hydrogen-Enabled Industrial Energy Systems for Carbon Dioxide Peaking
Jul 2024
Publication
As the main contributor of carbon emissions the low-carbon transition of the industrial sector is important for achieving the goal of carbon dioxide peaking. Hydrogen-enabled industrial energy systems (HIESs) are a promising way to achieve the low-carbon transition of industrial energy systems since the hydrogen can be well coordinated with renewable energy sources and satisfy the high and continuous industrial energy demand. In this paper the long-term capacity expansion planning problem of the HIES is formulated from the perspective of industrial parks and the targets of carbon dioxide peaking and the gradual decommissioning of existing equipment are considered as constraints. The results show that the targets of carbon dioxide peaking before different years or with different emission reduction targets can be achieved through the developed method while the economic performance is ensured to some extent. Meanwhile the overall cost of the strategy based on purchasing emission allowance is three times more than the cost of the strategy obtained by the developed method while the emissions of the two strategies are same. In addition long-term carbon reduction policies and optimistic expectations for new energy technologies will help industrial parks build more new energy equipment for clean transformation.
No more items...