Publications
CFD Analysis of Delayed Ignition Hydrogen Releases from a Train Inside a Tunnel
Sep 2023
Publication
In the present work we present the results of numerical simulations involving the dispersion and combustion of a hydrogen cloud released in an empty tunnel. The simulations were conducted with the use of ADREA-HF CFD code and the results are compared with measurements from experiments conducted by HSE in a tunnel with the exact same geometry. The length of the tunnel is equal to 70 m and the maximum height from the floor is equal to 3.25 m. Hydrogen release is considered to occur from a train containing pressurized hydrogen stored at 580 bars. The release diameter is equal to 4.7 mm and the release direction is upwards. Initially dispersion simulation was performed in order to define the initial conditions for the deflagration simulations. The effect of the initial wind speed and the effect of the ignition delay time were investigated. An extensive grid sensitivity study was conducted in order to achieve grid independent results. The CFD model takes into account the flame instabilities that are developed as the flame propagates inside the tunnel and turbulence that exists in front of the flame front. Pressure predictions are compared against experimental measurements revealing a very good performance of the CFD model.
Comparative Analysis of Marine Alternative Fuels for Offshore Supply Vessels
Nov 2024
Publication
This paper provides an in-depth analysis of alternative fuels including liquefied natural gas (LNG) hydrogen ammonia and biofuels assessing their feasibility based on operational requirements availability safety concerns and the infrastructure needed for large-scale adoption. Moreover it examines hybrid and fully electric propulsion systems considering advancements in battery technology and the integration of renewable energy sources such as wind and solar power to further reduce SOV emissions. Key findings from this research indicate that LNG serves as a viable short- to medium-term solution for reducing GHG emissions in the SOV sector due to its relatively lower carbon content compared to MDO and HFO. This paper finally insists that while LNG presents an immediate opportunity for emission reduction in the SOV sector a combination of hydrogen ammonia and hybrid propulsion systems will be necessary to meet long-term decarbonisation goals. The findings underscore the importance of coordinated industry efforts technological innovation and supportive regulatory frameworks to overcome the technical economic and infrastructural challenges associated with decarbonising the maritime industry.
Batteries or Hydrogen or Both for Grid Electricity Storage Upon Full Electrification of 145 Countries with Wind-Water-Solar?
Jan 2024
Publication
Grids require electricity storage. Two emerging storage technologies are battery storage (BS) and green hydrogen storage (GHS) (hydrogen produced and compressed with clean-renewable electricity stored then returned to electricity with a fuel cell). An important question is whether GHS alone decreases system cost versus BS alone or BS+GHS. Here energy costs are modeled in 145 countries grouped into 24 regions. Existing conventional hydropower (CH) storage is used along with new BS and/or GHS. A method is developed to treat CH for both baseload and peaking power. In four regions only CH is needed. In five CH+BS is lowest cost. Otherwise CH+BS+GHS is lowest cost. CH+GHS is never lowest cost. A metric helps estimate whether combining GHS with BS reduces cost. In most regions merging (versus separating) grid and non-grid hydrogen infrastructure reduces cost. In sum worldwide grid stability may be possible with CH+BS or CH+BS+GHS. Results are subject to uncertainties.
Literature Review on Life Cycle Assessment of Transportation Alternative Fuels
Aug 2023
Publication
Environmental concerns such as global warming and human health damage are intensifying and the transportation sector significantly contributes to carbon and harmful emissions. This review examines the life cycle assessment (LCA) of alternative fuels (AF) evaluating current research on fuel types LCA framework development life cycle inventory (LCI) and impact selection. The objectives of this paper are: (1) to compare various AF LCA frameworks and develop a comprehensive framework for the transportation sector; (2) to identify emission hotspots of different AFs through simulations and real-world cases; (3) to review AF LCA research; (4) to extract valuable information for potential future research directions. The analysis reveals that all stages except for hydrogen use have an environmental impact. LCA boundaries and LCIs vary considerably depending on the raw materials production processes and products involved leading to different emission hotspots. Due to knowledge or data limitations some stages remain uncalculated in the current study emphasizing the need for further refinement of the AF LCI. Future research should also explore the various impacts of widespread adoption of alternative fuels in transportation encompassing social economic and environmental aspects. Lastly the review provides structured recommendations for future research directions.
Sustainable Green Energy Transition in Saudia Arabia: Characterizing Policy Framework, Interrelations and Future Research Directions
Jun 2024
Publication
By 2060 the Kingdom of Saudi Arabia (KSA) aims to achieve net zero greenhouse gas (GHG) emissions targeting 50% renewable energy and reducing 278 million tonnes of CO2 equivalent annually by 2030 under Vision 2030. This ambitious roadmap focuses on economic diversification global engagement and enhanced quality of life. The electricity sector with a 90 GW installed capacity as of 2020 is central to decarbonization aiming for a 55% reduction in emissions by 2030. Saudi Energy Efficiency Centre’s Energy Efficiency Action Plan aims to reduce power intensity by 30% by 2030 while the NEOM project showcases a 4 GW green hydrogen facility reflecting the country’s commitments to sustainability and technological innovation. Despite being the largest oil producer and user Saudi Arabia must align with international CO2 emission reduction targets. Currently there is no state-of-the-art energy policy framework to guide a sustainable energy transition. In the academic literature there is also lack of effort in developing comprehensive energy policy framework. This study provides a thorough and comprehensive analysis of the entire energy industry spanning from the stage of production to consumption incorporating sustainability factors into the wider discussion on energy policy. It establishes a conceptual framework for the energy policy of Saudi Arabia that corresponds with Vision 2030. A total of hundred documents (e.g. 25 original articles and 75 industry reports) were retrieved from Google Scholar Web of Science Core Collection Database and Google Search and then analyzed. Results showed that for advancing the green energy transition areas such as strategies for regional and cross-sectoral collaboration adoption of international models human capital development and public engagement technological innovation and research; and resource conservation environmental protection and climate change should move forward exclusively from an energy policy perspective. This article's main contribution is developing a comprehensive and conceptual policy framework for Saudi Arabia's sustainable green energy transition aligned with Vision 2030. The framework integrates social economic and environmental criteria and provides critical policy implications and research directions for advancing energy policy and sustainable practices in the country.
Comparative Study of Electric and Hydrogen Mobility Infrastructures for Sustainable Public Transport: A PyPSA Optimization for a Remote Island Context
Jul 2024
Publication
Decarbonizing road transportation is vital for addressing climate change given that the sector currently contributes to 16% of global GHG emissions. This paper presents a comparative analysis of electric and hydrogen mobility infrastructures in a remote context i.e. an off-grid island. The assessment includes resource assessment and sizing of renewable energy power plants to facilitate on-site self-production. We introduce a comprehensive methodology for sizing the overall infrastructure and carry out a set of techno-economic simulations to optimize both energy performance and cost-effectiveness. The levelized cost of driving at the hydrogen refueling station is 0.40 e/km i.e. 20% lower than the electric charging station. However when considering the total annualized cost the battery-electric scenario (110 ke/year) is more favorable compared to the hydrogen scenario (170 ke/year). To facilitate informed decision-making we employ a multi-criteria decision-making analysis to navigate through the techno-economic findings. When considering a combination of economic and environmental criteria the hydrogen mobility infrastructure emerges as the preferred solution. However when energy efficiency is taken into account electric mobility proves to be more advantageous.
Comparative Life cycle Greenhouse Gas Emission and Cost Assessment of Hydrogen Fuel and Power for Singapore
Feb 2025
Publication
To identify lower-carbon and cost-effective hydrogen supplies for fuel and power generation in Singapore we assessed the cradle-to-gate greenhouse gas (GHG) emissions and the landed costs of over fifty supply chains from Malaysia and Australia with current and emerging blue turquoise and green hydrogen production and carrier technologies. We found that with current technologies the total life cycle global warming potential of local H2 production using steam methane reforming with carbon capture (4.47 kg CO2e/kg H2) is lower than importing solar-generated green H2 from Australia transported as NH3 (6.48 kg CO2e/kg H2) due to large emissions from conversion and transportation processes in the latter supply chain. When also considering emerging technologies turquoise H2 produced with the thermal decomposition of methane locally or in Malaysia is the most economical solution while wind-generated H2 from Australia transported as liquefied H2 or NH3 produce the least GHG emissions. In addition we projected the impacts of the Singapore carbon tax methane abatement in NG production and reduction of renewable energy embodied emissions and costs on the supply chains in the year 2030. We estimated that with the expected renewable energy improvements the emissions and costs of power generated from imported solar-powered H2 could drop by as much as 74% and 70% respectively.
Linking Cost Decline and Demand Surge in the Hydrogen Market: A Case Study in China
Jun 2023
Publication
Hydrogen is crucial in achieving global energy transition and carbon neutrality goals. Existing market estimates typically presume linear or exponential growth but fail to consider how market demand responds to the declining cost of underlying technologies. To address this this study utilizes a learning curve model to project the cost of electrolyzers and its subsequent impact on hydrogen market aligning with a premise that the market demand is proportional to the cost of hydrogen. In a case study of China’s hydrogen market projecting from 2020 to 2060 we observed substantial differences in market evolution compared to exponential growth scenarios. Contrary to exponential growth scenarios China’s hydrogen market experiences faster growth during the 2020–2040 period rather than later. Such differences underscore the necessity for proactive strategic planning in emerging technology markets particularly for those experiencing rapid cost decline such as hydrogen. The framework can also be extended to other markets by using local data providing valuable insights to investors policymakers and developers engaged in the hydrogen market.
Toward Green Steel: Modelling and Environmental Economic Analysis of Iron Direct Reduction with Different Reducing Gases
Sep 2023
Publication
The objective of the paper is to simulate the whole steelmaking process cycle based on Direct Reduced Iron and Electric Arc Furnace technologies by modeling for the first time the reduction furnace based on kinetic approach to be used as a basis for the environmental and techno-economic plant analysis by adopting different reducing gases. In addition the impact of carbon capture section is discussed. A complete profitability analysis has been conducted for the first time adopting a Monte Carlo simulation approach.<br/>In detail the use of syngas from methane reforming syngas and hydrogen from gasification of municipal solid waste and green hydrogen from water electrolysis are analyzed. The results show that the Direct Reduced Iron process with methane can reduce CO2 emissions by more than half compared to the blast furnace based-cycle and with the adoption of carbon capture greenhouse gas emissions can be reduced by an additional 40%. The use of carbon capture by amine scrubbing has a limited economic disadvantage compared to the scenario without it becoming profitable once carbon tax is included in the analysis. However it is with the use of green hydrogen from electrolyzer that greenhouse gas emissions can be cut down almost completely. To have an environmental benefit compared with the methane-based Direct Reduced Iron process the green hydrogen plant must operate for at least 5136 h per year (64.2% of the plant's annual operating hours) on renewable energy.<br/>In addition the use of syngas and separated hydrogen from municipal solid waste gasification is evaluated demonstrating its possible use with no negative effects on the quality of produced steel. The results show that hydrogen use from waste gasification is more economic with respect to green hydrogen from electrolysis but from the environmental viewpoint the latter results the best alternative. Comparing the use of hydrogen and syngas from waste gasification it can be stated that the use of the former reducing gas results preferable from both the economic and environmental viewpoint.
Thermal Sprayed Protective Coatings for Bipolar Plates of Hydrogen Fuel Cells and Water Electrolysis Cells
Mar 2024
Publication
As one core component in hydrogen fuel cells and water electrolysis cells bipolar plates (BPs) perform multiple important functions such as separating the fuel and oxidant flow providing mechanical support conducting electricity and heat connecting the cell units into a stack etc. On the path toward commercialization the manufacturing costs of bipolar plates have to be substantially reduced by adopting low-cost and easy-to-process metallic materials (e.g. stainless steel aluminum or copper). However these materials are susceptible to electrochemical corrosion under harsh operating conditions resulting in long-term performance degradation. By means of advanced thermal spraying technologies protective coatings can be prepared on bipolar plates so as to inhibit oxidation and corrosion. This paper reviews several typical thermal spraying technologies including atmospheric plasma spraying (APS) vacuum plasma spraying (VPS) and high-velocity oxygen fuel (HVOF) spraying for preparing coatings of bipolar plates particularly emphasizing the effect of spraying processes on coating effectiveness. The performance of coatings relies not only on the materials as selected or designed but also on the composition and microstructure practically obtained in the spraying process. The temperature and velocity of in-flight particles have a significant impact on coating quality; therefore precise control over these factors is demanded.
Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan
Jul 2024
Publication
This paper investigated the opportunities and challenges of integrating ports into hydrogen (H2 ) supply chains in the context of Australia and Japan because they are leading countries in the field and are potential leaders in the upcoming large-scale H2 trade. Qualitative interviews were conducted in the two countries to identify opportunities for H2 ports necessary infrastructure and facilities key factors for operations and challenges associated with the ports’ development followed by an online survey investigating the readiness levels of H2 export and import ports. The findings reveal that there are significant opportunities for both countries’ H2 ports and their respective regions which encompass business transition processes and decarbonisation. However the ports face challenges in areas including infrastructure training standards and social licence and the sufficiency and readiness levels of port infrastructure and other critical factors are low. Recommendations were proposed to address the challenges and barriers encountered by H2 ports. To optimise logistics operations within H2 ports and facilitate effective integration of H2 applications this paper developed a user-oriented working process framework to provide guidance to ports seeking to engage in the H2 economy. Its findings and recommendations contribute to filling the existing knowledge gap pertaining to H2 ports.
Economic and Environmental Potential of Green Hydrogen Carriers (GHCs) Produced via Reduction of Amine-capture CO2
Jun 2023
Publication
Hydrogen is deemed as a crucial component in the transition to a carbon-free energy system and researchers are actively working to realize the hydrogen economy. While hydrogen derived from renewable energy sources is a promising means of providing clean energy to households and industries its practical usage is currently hindered by difficulties in transportation and storage. Due to the extreme operating conditions required for liquefying hydrogen various hydrogen carriers are being considered which can be transported and stored at mild operating conditions and provide hydrogen at the site of usage. Among various candidates green hydrogen carriers obtained via carbon dioxide utilization have been proposed as an economically and environmentally feasible option. Herein the potential of using methanol and formic acid as green hydrogen carriers are evaluated regarding various production and dehydrogenation pathways within a hydrogen distribution system including the recycle of carbon dioxide. Recent progress in carbon dioxide utilization processes especially conversion of carbon dioxide captured in amine solutions have demonstrated promising results for methanol and formic acid production. This study analyzes seven scenarios that consider carbon dioxide utilization-based thermocatalytic and electrochemical methanol and formic acid production as well as different dehydrogenation pathways and compares them to the scenario of delivering liquefied hydrogen. The scenarios are thoroughly analyzed via techno-economic analysis and life cycle assessment methods. The results of the study indicate that methanol-based options are economically viable reducing the cost up to 43% compared to liquefied hydrogen delivery. As for formic acid only the electrochemical production method is profitable retaining 10% less cost compared to liquefied hydrogen delivery. In terms of environmental impact all of the scenarios show higher global warming impact values than liquefied hydrogen distribution. However results show that in an optimistic case where wind electricity is widely used electrochemical formic acid production is competitive with liquefied hydrogen distribution retaining 39% less global warming impact values. This is because high conversion can be achieved at mild operating conditions for the production and dehydrogenation reactions of formic acid reducing the input of utilities other than electricity. This study suggests that while methanol can be a shortterm solution for hydrogen distribution electrochemical formic acid production may be a viable long-term option.
Mapping the Future of Green Hydrogen: Integrated Analysis of Poland and the EU’s Development Pathways to 2050
Aug 2023
Publication
This article presents the results of a comparative scenario analysis of the “green hydrogen” development pathways in Poland and the EU in the 2050 perspective. We prepared the scenarios by linking three models: two sectoral models for the power and transport sectors and a Computable General Equilibrium model (d-Place). The basic precondition for the large-scale use of hydrogen in both Poland and in European Union countries is the pursuit of ambitious greenhouse gas reduction targets. The EU plans indicate that the main source of hydrogen will be renewable energy (RES). “Green hydrogen” is seen as one of the main methods with which to balance energy supply from intermittent RES such as solar and wind. The questions that arise concern the amount of hydrogen required to meet the energy needs in Poland and Europe in decarbonized sectors of the economy and to what extent can demand be covered by internal production. In the article we estimated the potential of the production of “green hydrogen” derived from electrolysis for different scenarios of the development of the electricity sector in Poland and the EU. For 2050 it ranges from 76 to 206 PJ/y (Poland) and from 4449 to 5985 PJ/y (EU+). The role of hydrogen as an energy storage was also emphasized highlighting its use in the process of stabilizing the electric power system. Hydrogen usage in the energy sector is projected to range from 67 to 76 PJ/y for Poland and from 1066 to 1601 PJ/y for EU+ by 2050. Depending on the scenario this implies that between 25% and 35% of green hydrogen will be used in the power sector as a long-term energy storage.
Recent Research Progresses and Challenges for Practical Application of Large-Scale Solar Hydrogen Production
Dec 2024
Publication
Solar hydrogen production is a promising pathway for sustainable CO2 -free hydrogen production. It is mainly classified into three systems: photovoltaic electrolysis (PV-EC) photoelectrochemical (PEC) system and particulate photocatalytic (PC) system. However it still has trouble in commercialization due to the limitation of performance and economic feasibility in the large-scale system. In this review the challenges of each large-scale system are respectively summarized. Based on this summary recent approaches to solving these challenges are introduced focusing on core components fabrication processes and systematic designs. In addition several demonstrations of large-scale systems under outdoor conditions and performances of upscaled systems are introduced to understand the current technical level of solar-driven hydrogen production systems for commercialization. Finally the future outlooks and perspectives on the practical application of large-scale solar-driven hydrogen production are discussed.
The Impact of Country-specific Investment Risks on the Levelised Costs of Green Hydrogen Production
Jun 2024
Publication
Green hydrogen is central to the global energy transition. This paper introduces a renewable hydrogen production system model that optimizes hydrogen production on a worldwide 50 km × 50 km grid considering country-specific investment risks. Besides the renewable energy’s impact on the hydrogen production system (HPS) design we analyze the effect of country-specific interest rates on the levelized cost of hydrogen (LCOH) production. Over one-third (40.0%) of all cells have an installed solar PV capacity share between 50% and 70% 76.4% have a hybrid (onshore wind and solar PV) configuration. Hydrogen storage is deployed rather than battery storage to balance hydrogen production via electrolysis and hydrogen demand. Hybrid HPSs can significantly reduce the LCOH production compared to non-hybrid designs whereas country-specific interest rates can lead to significant increases diminishing the relative competitiveness of countries with abundant renewable energy resources compared to countries with fewer resources but fewer investment risks.
Operational Implications of Transporting Hydrogen via a High Pressure Gas Network
Feb 2025
Publication
Transporting hydrogen gas has long been identified as one of the key issues to scaling up the hydrogen economy. Among various means of transportation many countries are considering using the existing natural gas pipeline networks for hydrogen transmission. This paper examines the implications of transporting hydrogen on the operational metrics of the high-pressure natural gas networks. A model of the GB high-pressure gas network was developed which has a high granularity with 294 nodes 356 pipes and 24 compressor stations. The model was developed using Synergi Gas a hydraulic pipeline network simulation software. By performing unsteady-state analysis pressure levels linepack levels and compressor energy consumption were simulated with 10-minute time steps. Additionally component tracing analysis was utilised to examine the variations in gas composition when hydrogen is injected into the gas network. Five scenarios were developed: one benchmark scenario representing the network transporting natural gas in 2018; one scenario where demand and supply levels are projected for 2035 but no hydrogen was transported by the network; two hydrogen injection scenarios in 2035 considering different geographical locations for hydrogen injection into the gas network; and lastly one pure hydrogen transmission scenario for 2050. The studies found that the GB’s high-pressure gas network could accept 20% volumetric hydrogen injection without significantly impacting network operation. Pressure levels and compressor energy consumption remain within the operational range. The geographical distribution of hydrogen injection points would highly affect the percentage of hydrogen across the network. Pure hydrogen transportation will cause significant variations in network linepack and increase compressor energy consumption significantly compared to other case studies. The findings signal that operating a network with pure hydrogen is possible only when it is prepared for these changes.
Explainable Prognostics-optimization of Hydrogen Carrier Biogas Engines in an Integrated Energy System using a Hybrid Game-theoretic Approach with XGBoost and Statistical Methods
Jul 2025
Publication
Biogas is a renewable fuel source that helps the circular economy by turning organic waste into energy. This study tackles existing research gaps by exploring the use of biogas as a hydrogen carrier in dual-fuel engine systems. It additionally employs explainable machine learning techniques for predictive modelling and interpretive analysis. The dual-fuel engine was powered with biogas as main fuel while biodiesel-diesel blend was used as pilot fuel. The engine was tested at different Compression Ratios (CR) and Brake Powers (BP). The generated data from testing was used to develop the mathematical models and parametric optimization of engine performance and emissions using Response Surface Methodology (RSM). Desirability-based optimization identified optimal results: a Peak Cylinder Pressure (Pmax) of 54.97 bar and a brake thermal efficiency (BTE) of 24.35 % achieved at a CR of 18.3 and a BP of 3.3 kW. The predictive machine learning approach Extreme Gradient Boosting (XGBoost) was employed to develop predictive models. XGBoost precisely forecasted engine performance and emissions with Coefficient of Determination (R2 ) values (up to 0.9960) and minimal Mean Absolute Percentage Error (MAPE) values (1.47–4.89 %) for all parameters. SHapley Additive exPlanations (SHAP) based analysis identified BP as the predominant feature with a normalized importance score reaching up to 0.9 surpassing that of CR. These findings underscore the potential of biogas as a viable sustainable fuel and highlight the role of explainable prediction–optimization frameworks can play in achieving optimal engine performance and emission control.
Thermal Design of a System for Mobile Powersupply
Sep 2023
Publication
Ever more stringent emission regulations for vehicles encourage increasing numbers of battery electric vehicles on the roads. A drawback of storing electric energy in a battery is the comparable low energy density low driving range and the higher propensity to deplete the energy storage before reaching the destination especially at low ambient temperatures. When the battery is depleted stranded vehicles can either be towed or recharged with a mobile recharging station. Several technologies of mobile recharging stations already exist however most of them use fossil fuels to recharge battery electric vehicles. The proposed novel zero emission solution for mobile charging is a combined high voltage battery and hydrogen fuel cell charging station. Due to the thermal characteristics of the fuel cell and high voltage battery (which allow only comparable low coolant temperatures) the thermal design for this specific application (available heat exchanger area zero vehicle speed air flow direction) becomes challenging and is addressed in this work. Experimental methods were used to obtain reliable thermal and electric power measurement data of a 30 kW fuel cell system which is used in the Mobile Hydrogen Powersupply. Subsequently simulation methods were applied for the thermal design and optimisation of the coolant circuits and heat exchangers. It is shown that an battery electric vehicle charging power of 22 kW requires a heat exchanger area of 1 m2 of which 60 % is used by the fuel cell heat exchanger and the remainder by the battery heat exchanger to achieve steady state operation at the highest possible ambient temperature of 436 °C. Furthermore the simulation showed that when the charging power of 22 kW is solely provided by the high voltage battery the highest possible ambient temperature is 42 °C. When the charging power is decreased operation up to the maximum ambient temperatures of 45 °C can be achieved. The results of maximum charging power and limiting ambient temperature give insights for further system improvements which are: sizing of fuel cell or battery trailer design and heat exchanger area operation strategy of the system (power split between high voltage battery and fuel cell) as well as possible dynamic operation scenarios.
Instances of Safety-Related Advances in Hydrogen as Regards Its Gaseous Transport and Buffer Storage and Its Solid-State Storage
Jul 2024
Publication
As part of the ongoing transition from fossil fuels to renewable energies advances are particularly expected in terms of safe and cost-effective solutions. Publicising instances of such advances and emphasising global safety considerations constitute the rationale for this communication. Knowing that high-strength steels can prove economically relevant in the foreseeable future for transporting hydrogen in pipelines by limiting the pipe wall thickness required to withstand high pressure one advance relates to a bench designed to assess the safe transport or renewableenergy-related buffer storage of hydrogen gas. That bench has been implemented at the technology readiness level TRL 6 to test initially intact damaged or pre-notched 500 mm-long pipe sections with nominal diameters ranging from 300 to 900 mm in order to appropriately validate or question the use of reputedly satisfactory predictive models in terms of hydrogen embrittlement and potential corollary failure. The other advance discussed herein relates to the reactivation of a previously fruitful applied research into safe mass solid-state hydrogen storage by magnesium hydride through a new public–private partnership. This latest development comes at a time when markets have started driving the hydrogen economy bearing in mind that phase-change materials make it possible to level out heat transfers during the absorption/melting and solidification/desorption cycles and to attain an overall energy efficiency of up to 80% for MgH2 -based compacts doped with expanded natural graphite.
Internal Combustion Engines and Carbon-Neutral Fuels: A Perspective on Emission Neutrality in the European Union
Mar 2024
Publication
Nowadays there is an intense debate in the European Union (EU) regarding the limits to achieve the European Green Deal to make Europe the first climate-neutral continent in the world. In this context there are also different opinions about the role that thermal engines should play. Furhermore there is no clear proposal regarding the possibilities of the use of green hydrogen in the transport decarbonization process even though it should be a key element. Thus there are still no precise guidelines regarding the role of green hydrogen with it being exclusively used as a raw material to produce E-fuels. This review aims to evaluate the possibilities of applying the different alternative technologies available to successfully complete the process already underway to achieve Climate Neutrality by about 2050 depending on the maturity of the technologies currently available and those anticipated to be available in the coming decades.
No more items...