Publications
Modeling of Sudden Hydrogen Expansion from Cryogenic Pressure Vessel Failure
Sep 2011
Publication
We have modelled sudden hydrogen expansion from a cryogenic pressure vessel. This model considers real gas equations of state single and two-phase flow and the specific “vessel within vessel” geometry of cryogenic vessels. The model can solve sudden hydrogen expansion for initial pressures up to 1210 bar and for initial temperatures ranging from 27 to 400 K. For practical reasons our study focuses on hydrogen release from 345 bar with temperatures between 62 K and 300 K. The pressure vessel internal volume is 151 L. The results indicate that cryogenic pressure vessels may offer a safety advantage with respect to compressed hydrogen vessels because i) the vacuum jacket protects the pressure vessel from environmental damage ii) hydrogen when released discharges first into an intermediate chamber before reaching the outside environment and iii) working temperature is typically much lower and thus the hydrogen has less energy. Results indicate that key expansion parameters such as pressure rate of energy release and thrust are all considerably lower for a cryogenic vessel within vessel geometry as compared to ambient temperature compressed gas vessels. Future work will focus on taking advantage of these favourable conditions to attempt fail-safe cryogenic vessel designs that do not harm people or property even after catastrophic failure of the inner pressure vessel.
Roadmap to Hydrogen in the NTS - National Grid Gas Transmission
Jan 2020
Publication
DNV GL believes that the National Transmission System (NTS) will be central to the future of decarbonised energy in the UK. The future NTS could transmit natural gas hydrogen blends of the two and carbon dioxide. New pipelines will be built however a large cost-saving is available if the existing NTS assets can also be re-purposed. To move towards this future National Grid Gas Transmission wants to develop a project to trial injection hydrogen into the NTS. This is an opportunity to show that National Grid is part of the solution to achieving Net Zero. The trial will demonstrate to the Government and public that re-purposing the NTS is cost-effective safe and involves minimal disruption.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Addressing H-Material Interaction in Fast Diffusion Materials—A Feasibility Study on a Complex Phase Steel
Oct 2020
Publication
Hydrogen embrittlement (HE) is one of the main limitations in the use of advanced high-strength steels in the automotive industry. To have a better understanding of the interaction between hydrogen (H) and a complex phase steel an in-situ method with plasma charging was applied in order to provide continuous H supply during mechanical testing in order to avoid H outgassing. For such fast-H diffusion materials only direct observation during in-situ charging allows for addressing H effects on materials. Different plasma charging conditions were analysed yet there was not a pronounced effect on the mechanical properties. The H concentration was calculated while using a simple analytical model as well as a simulation approach resulting in consistent low H values below the critical concentration to produce embrittlement. However the dimple size decreased in the presence of H and with increasing charging time the crack propagation rate increased. The rate dependence of flow properties of the material was also investigated proving that the material has no strain rate sensitivity which confirmed that the crack propagation rate increased due to H effects. Even though the H concentration was low in the experiments that are presented here different technological alternatives can be implemented in order to increase the maximum solute concentration.
Developing a Hydrogen Fuel Cell Vehicle (HFCV) Energy Consumption Model for Transportation Applications
Jan 2022
Publication
This paper presents a simple hydrogen fuel cell vehicle (HFCV) energy consumption model. Simple fuel/energy consumption models have been developed and employed to estimate the energy and environmental impacts of various transportation projects for internal combustion engine vehicles (ICEVs) battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs). However there are few published results on HFCV energy models that can be simply implemented in transportation applications. The proposed HFCV energy model computes instantaneous energy consumption utilizing instantaneous vehicle speed acceleration and roadway grade as input variables. The mode accurately estimates energy consumption generating errors of 0.86% and 2.17% relative to laboratory data for the fuel cell estimation and the total energy estimation respectively. Furthermore this work validated the proposed model against independent data and found that the new model accurately estimated the energy consumption producing an error of 1.9% and 1.0% relative to empirical data for the fuel cell and the total energy estimation respectively. The results demonstrate that transportation engineers policy makers automakers and environmental engineers can use the proposed model to evaluate the energy consumption effects of transportation projects and connected and automated vehicle (CAV) transportation applications within microscopic traffic simulation models.
Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile
Dec 2021
Publication
The paper presents a complete value chain for the use of green hydrogen in a port facility. The main objective was to propose the sizing of the main components that make up green hydrogen to ensure the supply of 1 MWe in replacing the diesel generator. The energy demand required for the port was determined by establishing the leading small and large-scale conventional energyconsuming equipment. Hence 60 kgH2 was required to ensure the power supply. The total electrical energy to produce all the hydrogen was generated from photovoltaic solar energy considering threegeneration scenarios (minimum maximum and the annual average). In all cases the energy supply in the electrolyzer was 3.08 MWe. In addition the effect of generating in the port facility using a diesel generator and a fuel cell was compared. The cost of 1 kgH2 could be 4.09 times higher than the cost of 1 L of diesel meaning that the output kWh of each system is economically similar. In addition the value of electrical energy through a Power Purchase Agreement (PPA) was a maximum of 79.79 times the value of a liter of diesel. Finally the Levelized Cost of Energy (LCOE) was calculated for two conditions in which the MWe was obtained from the fuel cell without and with the photovoltaic solar plant.
Hydrogen Release from a High-Pressure Gh2 Reservoir in Case of a Small Leak
Sep 2009
Publication
High-pressure GH2 systems are of interest for storage and distribution of hydrogen. The dynamic blow-down process of a high-pressure GH2 reservoir in case of a small leak is a complex process involving a chain of distinct flow regimes and gas states which needs to be understood for safety investigations.<br/>This paper presents models to predict the hydrogen concentration and velocity field in the vicinity of a postulated small leak. An isentropic expansion model with a real gas equation of state for normal hydrogen is used to calculate the time dependent gas state in the reservoir and at the leak position. The subsequent gas expansion to 0.1 MPa is predicted with a zero-dimensional model. The gas conditions after expansion serve as input to a newly developed integral model for a round free turbulent H2-jet into ambient air. The model chain was evaluated by jet experiments with sonic hydrogen releases from different reservoir pressures and temperatures.<br/>Predictions are made for the blow-down of hydrogen reservoirs with 10 30 and 100 MPa initial pressure. The evolution of the pressure in the reservoir and of the H2 mass flux at the orifice are presented in dimensionless form which allows scaling to other system dimensions and initial gas conditions. Computed hydrogen concentrations and masses in the jet are given for the 100 MPa case. A normalized hydrogen concentration field in the free jet is presented which allows for a given leak scenario the prediction of the axial and radial range of burnable H2-air mixtures.
Hydrogen Safety Aspects Related to High Pressure - PEM Water Electrolysis
Sep 2007
Publication
Polymer electrolyte membrane (PEM) water electrolysis has demonstrated its potentialities in terms of cell efficiency (energy consumption ≈ 4.0-4.2 kW/Nm3 H2) and gas purity (> 99.99% H2). Current research activities are aimed at increasing operating pressure up to several hundred bars for direct storage of hydrogen in pressurized vessels. Compared to atmospheric pressure electrolysis high-pressure operation yields additional problems especially with regard to safety considerations. In particular the rate of gases (H2 and O2) cross-permeation across the membrane and their water solubility both increase with pressure. As a result gas purity is affected in both anodic and cathodic circuits and this can lead to the formation of explosive gas mixtures. To prevent such risks two different solutions reported in this communication have been investigated. First the chemical modification of the solid polymer electrolyte in order to reduce cross-permeation phenomena. Second the use of catalytic H2/O2 recombiners to maintain H2 levels in O2 and O2 levels in H2 at values compatible with safety requirements.
A Study of Barrier Walls for Mitigation of Unintended Releases of Hydrogen
Sep 2009
Publication
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. An experimental and modeling program has been performed at Sandia National Laboratories to better characterize the effectiveness of barrier walls to reduce hazards. This paper describes the experimental and modeling program and presents results obtained for various barrier configurations. The experimental measurements include flame deflection using standard and infrared video and high-speed movies (500 fps) to study initial flame propagation from the ignition source. Measurements of the ignition overpressure wall deflection radiative heat flux and wall and gas temperature were also made at strategic locations. The modeling effort includes three-dimensional calculations of jet flame deflection by the barriers computations of the thermal radiation field around barriers predicted overpressure from ignition and the computation of the concentration field from deflected unignited hydrogen releases. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting jet flames in a desired direction and can help attenuate the effects of ignition overpressure and flame radiative heat flux.
Estimation of an Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Hydrogen Storage Systems In Typical Garages- Part 3
Sep 2009
Publication
The formation of a flammable hydrogen-air mixture is a major safety concern especially for closed space. This hazardous situation can arise when considering permeation from a car equipped with a composite compressed hydrogen tank with a non-metallic liner in a closed garage. In the following paper a scenario is developed and analysed with a simplified approach and a numerical simulation in order to estimate the evolution of hydrogen concentration. The system is composed of typical size garage and hydrogen car’s tank. Some parameters increasing permeation rate (i.e. tank’s material thickness and pressure) have been chosen to have a conservative approach. A close look on the top of tank surface showed that the concentration grows as square root of time and does not exceed 8.2×10-3 % by volume. Also a simplified comparative analysis estimated that the buoyancy of hydrogen-air mixture prevails on the diffusion 35 seconds after permeation starts in good agreement with simulation where time is at about 80 seconds. Finally the numerical simulations demonstrated that across the garage height the hydrogen is nearly distributed linearly and the difference in hydrogen concentration at the ceiling and floor is negligible (i.e. 3×10-3 %).
Government Strategy on Hydrogen - The Netherlands
Apr 2020
Publication
Low-carbon gases are indispensable to any energy system that is reliable clean affordable safe and is suited to spatial integration and zero-carbon hydrogen is a crucial link in that chain1. The most common element in the universe seems to have a highly bonding effect in the Netherlands – particularly as a result of the unique starting position of our country. This is made clear in the agreements of the National Climate Agreement which includes an ambitious target for hydrogen supported by a large and broad group of stakeholders. Industrial clusters and ports regard hydrogen as an indispensable part of their future and sustainability strategy. For the transport sector hydrogen (in combination with fuel cells) is crucial to achieving zero emissions transport. The agricultural sector has identified opportunities for the production of hydrogen and for its use. Cities regions and provinces are keen to get started on implementing hydrogen.<br/>The government embraces these targets and recognises the power of the framework for action demonstrated by so many parties. The focus on clean hydrogen in the Netherlands will lead to the creation of new jobs improvements to air quality and moreover is crucial to the energy transition.
For a Successful Arrival of the Hydrogen Economy Improve Now the Confidence Level of Risk Assessments
Sep 2009
Publication
For large-scale distribution and use of energy carriers classified as hazardous material in many countries as a method to assist land use planning to grant licenses to design a safe installation and to operate it safely some form of risk analysis and assessment is applied. Despite many years of experience the methods have still their weaknesses even the most elaborated ones as e.g. shown by the large spread in results when different teams perform an analysis on a same plant as was done in EU projects. Because a fuel as hydrogen with its different properties will come new in the daily use of many people incidents may happen and risks will be discussed. HySafe and other groups take good preparatory action in this respect and work in the right direction as appears from various documents produced. However already a superficial examination of the results so far tells that further cooperative work is indispensable. To avoid criticism skepticism and frustration not only the positive findings should be described and general features of the methods but the community has also to give strong guidance with regard to the uncertainties. Scenario development appears to be very dependent on insight and experience of an individual analyst leak and ignition probability may vary over a wide range of values Computational Fluid Dynamics or CFD models may lead to very different result. The Standard Benchmark Exercise Problems SBEPs are a good start but shall produce guidelines or recommendations for CFD use or even perhaps certification of models. Where feasible narrowing of possible details of scenarios to the more probable ones taking into account historical incident data and schematizing in bowties more explicit use of confidence intervals on e.g. failure rates and ignition probability estimates will help. Further knowledge gaps should be defined.
Simulation of Detonation after an Accidental Hydrogen Release in Enclosed Environments
Sep 2007
Publication
An accidental hydrogen release in equipment enclosures may result in the presence of a detonable mixture in a confined environment. Numerical simulation is potentially a useful tool for damage assessment in these situations. To assess the value of CFD techniques numerical simulation of detonation was performed for two realistic scenarios. The first scenario starts with a pipe failure in an electrolyzer resulting in a leak of 42 g of hydrogen. The second scenario deals with a failure in a reformer where 84 g of hydrogen is released. In both cases dispersion patterns were first obtained from separate numerical simulation and were then used as initial condition in a detonation simulation based upon the reactive Euler's equations. Energy was artificially added in a narrow region to simulate detonative ignition. In the electrolyzer ignition was assumed to occur 500 ms after beginning of the release. Results show a detonation failing on the top and bottom side but propagating left and right before eventually failing also. Average impulse was 500 Ns/m². For the reformer three cases were simulated with ignition 1.0 1.4 and 2.0 seconds after the beginning of the release. In two cases the detonation wave failed everywhere except in the direction of the release in which it continued propagating until reaching the side wall. In the third the detonation failed everywhere at first but later a deflagration to detonation transition occurred resulting in a strong wave that propagated rapidly toward the side wall. In all three cases the consequences are more serious than in the electrolyzer.
Numerical Simulation of The Laminar Hydrogen Flame In The Presence of a Quenching Mesh
Sep 2009
Publication
Recent studies of J.H. Song et al. and S.Y. Yang et al. have been concentrated on mitigation measures against hydrogen risk. The authors have proposed installation of quenching meshes between compartments or around the essential equipment in order to contain hydrogen flames. Preliminary tests were conducted which demonstrated the possibility of flame extinction using metallic meshes of specific size.<br/>Considerable amount of numerical and theoretical work on flame quenching phenomenon has been performed in the second half of the last century and several techniques and models have been proposed to predict the quenching phenomenon of the laminar flame system. Most of these models appreciated the importance of heat loss to the surroundings as a primary cause of extinguishment in particular the heat transfer by conduction to the containing wall. The supporting simulations predict flame-quenching structure either between parallel plates (quenching distance) or inside a tube of a certain diameter (quenching diameter).<br/>In the present study the flame quenching is investigated assuming the laminar hydrogen flame propagating towards a quenching mesh using two-dimensional configuration and the earlier developed models. It is shown that due to a heat loss to a metallic grid the flame can be quenched numerically.
Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Storage Systems In Garages- Part 1- Introduction, Scenarios, and Estimation of an Allowable Permeation Rate
Sep 2009
Publication
The paper presents an overview of the main results of the EC NOE HySafe activity to estimate an allowable hydrogen permeation rate for automotive legal requirements and standards. The work was undertaken as part of the HySafe internal project InsHyde.<br/>A slow long term hydrogen release such as that due to permeation from a vehicle into an inadequately ventilated enclosed structure is a potential risk associated with the use of hydrogen in automotive applications. Due to its small molecular size hydrogen permeates through the containment materials found in compressed gaseous hydrogen storage systems and is an issue that requires consideration for containers with non-metallic (polymer) liners. Permeation from compressed gaseous hydrogen storage systems is a current hydrogen safety topic relevant to regulatory and standardisation activities at both global and regional levels.<br/>Various rates have been proposed in different draft legal requirements and standards based on different scenarios and the assumption that hydrogen dispenses homogeneously. This paper focuses on the development of a methodology by HySafe Partners (CEA NCSRD. University of Ulster and Volvo Technology) to estimate an allowable upper limit for hydrogen permeation in automotive applications by investigating the behaviour of hydrogen when released at small rates with a focus on European scenario. The background to the activity is explained. reasonable scenarios are identified a methodology proposed and a maximum hydrogen permeation rate from road vehicles into enclosed structures is estimated The work is based on conclusions from the experimental and numerical investigations described by CEA NCSRD and the University of Ulster in related papers.
The Role of Trust and Familiarity in Risk Communication
Sep 2009
Publication
In socio-economics it is well known that the success of an innovation process not only depends upon the technological innovation itself or the improvement of economic and institutional system boundaries but also on the public acceptance of the innovation. The public acceptance can as seen with genetic engineering for agriculture be an obstacle for the development and introduction of a new and innovative idea. In respect to hydrogen technologies this means that the investigation compilation and communication of scientific risk assessments are not sufficient to enhance or generate public acceptance. Moreover psychological social and cultural aspects of risk perception have to be considered when introducing new technologies. Especially trust and familiarity play an important role for risk perception and thus public acceptance of new technologies.
Safety Considerations for Hydrogen Test Cells
Sep 2009
Publication
The properties of hydrogen compared to conventional fuels such as gasoline and diesel are substantially different requiring adaptations to the design and layout of test cells for hydrogen fuelled engines and vehicles. A comparison of hydrogen fuel properties versus conventional fuels in this paper provides identification of requirements that need to be adapted to design a safe test cell. Design examples of actual test cells are provided to showcase the differences in overall layout and ventilation safety features fuel supply and metering and emissions measurements. Details include requirements for ventilation patterns the necessity for engine fume hoods as well as hydrogen specific intake and exhaust design. The unique properties of hydrogen in particular the wide flammability limits and nonvisible flames also require additional safety features such as hydrogen sensors and flame cameras. A properly designed and implemented fuel supply system adds to the safety of the test cell by minimizing the amount of hydrogen that can be released. Apart from this the properties of hydrogen also require different fuel consumption measurement systems pressure levels of the fuel supply system additional ventilation lines strategically placed safety solenoids combined with appropriate operational procedures. The emissions measurement for hydrogen application has to be expanded to include the amount of unburned hydrogen in the exhaust as a measurement of completeness of combustion. This measurement can also be used as a safety feature to avoid creation of ignitable hydrogen-air mixtures in the engine exhaust. The considerations provided in this paper lead to the conclusion that hydrogen IC engines can be safely tested however properly designed test cell and safety features have to be included to mitigate the additional hazards related to the change in fuel characteristics.
Enhancing the Efficiency of Power- and Biomass-to-liquid Fuel Processes Using Fuel-assisted Solid Oxide Electrolysis Cells
Apr 2022
Publication
Power- and biomass-to-liquid fuel processes (PBtL) can utilize renewable energy and residual forestry waste to produce liquid synthetic fuels which have the potential to mitigate the climate impacts of the current transportation infrastructure including the long-haul aviation sector. In a previous study we demonstrated that implementing a solid oxide electrolysis cell (SOEC) in the PBtL process can significantly increase the energy efficiency of fuel production by supplying the produced hydrogen to a reverse water gas shift (RWGS) reactor to generate syngas which is then fed downstream to a Fischer–Tropsch (FT) reactor. The tail gas emitted from the FT reactor consists primarily of a mixture of hydrogen carbon monoxide and methane and is often recycled to the entrained flow gasifier located at the beginning of the process. In this analysis we investigate the efficiency gains of the PBtL process as a result of redirecting the tail gas of the FT reactor to the anode of an SOEC to serve as fuel. Supplying fuel to an SOEC can lower the electrical work input required to facilitate steam electrolysis when reacting electrochemically with oxide ions in the anode which in turn can reduce oxygen partial pressures and thus alleviate material degradation. Accordingly we develop a thermodynamic framework to reveal the performance limits of fuel-assisted SOECs (FASOECs) and provide strategies to minimize oxygen partial pressures in the SOEC anode. Additionally we elucidate how much fuel is required to match the heating demands of a cell when steam is supplied to the cathode over a broad range of inlet temperatures and demonstrate the influence of a set of reaction pathways of the supplied fuel on the operating potential of an FASOEC and the corresponding efficiency gain of the PBtL process. Based on preliminary calculations we estimate that implementing an FASOEC in the PBtL process can increase the energy efficiency of fuel production to more than 90% depending on the amount of FT tail gas available to the system.
Ignition Limits For Combustion of Unintended Hydrogen Releases- Experimental and Theoretical Results
Sep 2009
Publication
The ignition limits of hydrogen/air mixtures in turbulent jets are necessary to establish safety distances based on ignitable hydrogen location for safety codes and standards development. Studies in turbulent natural gas jets have shown that the mean fuel concentration is insufficient to determine the flammable boundaries of the jet. Instead integration of probability density functions (PDFs) of local fuel concentration within the quiescent flammability limits termed the flammability factor (FF) was shown to provide a better representation of ignition probability (PI). Recent studies in turbulent hydrogen jets showed that the envelope of ignitable gas composition (based on the mean hydrogen concentration) did not correspond to the known flammability limits for quiescent hydrogen/air mixtures. The objective of this investigation is to validate the FF approach to the prediction of ignition in hydrogen leak scenarios. The PI within a turbulent hydrogen jet was determined using a pulsed Nd:YAG laser as the ignition source. Laser Rayleigh scattering was used to characterize the fuel concentration throughout the jet. Measurements in methane and hydrogen jets exhibit similar trends in the ignition contour which broadens radially until an axial location is reached after which the contour moves inward to the centerline. Measurements of the mean and fluctuating hydrogen concentration are used to characterize the local composition statistics conditional on whether the laser spark results in a local ignition event or complete light-up of a stable jet flame. The FF is obtained through direct integration of local PDFs. A model was developed to predict the FF using a presumed PDF with parameters obtained from experimental data and computer simulations. Intermittency effects that are important in the shear layer are incorporated in a composite PDF. By comparing the computed FF with the measured PI we have validated the flammability factor approach for application to ignition of hydrogen jets.
Risk Modelling of a Hydrogen Refuelling Station Using a Bayesian Network
Sep 2009
Publication
Fault trees and event trees have for decades been the most commonly applied modelling tools in both risk analysis in general and the risk analysis of hydrogen applications including infrastructure in particular. It is sometimes found challenging to make traditional Quantitative Risk Analyses sufficiently transparent and it is frequently challenging for outsiders to verify the probabilistic modelling. Bayesian Networks (BN) are a graphical representation of uncertain quantities and decisions that explicitly reveal the probabilistic dependence between the variables and the related information flow. It has been suggested that BN represent a modelling tool that is superior to both fault trees and event trees with respect to the structuring and modelling of large complex systems. This paper gives an introduction to BN and utilises a case study as a basis for discussing and demonstrating the suitability of BN for modelling the risks associated with the introduction of hydrogen as an energy carrier. In this study we explore the benefits of modelling a hydrogen refuelling station using BN. The study takes its point of departure in input from a traditional detailed Quantitative Risk Analysis conducted by DNV during the HyApproval project. We compare and discuss the two analyses with respect to their advantages and disadvantages. We especially focus on a comparison of transparency and the results that may be extracted from the two alternative procedures.
An Overview of Hydrogen Safety Sensors and Requirements
Sep 2009
Publication
There exists an international commitment to increase the utilization of hydrogen as a clean and renewable alternative to carbon-based fuels. The availability of hydrogen safety sensors is critical to assure the safe deployment of hydrogen systems. Already the use of hydrogen safety sensors is required for the indoor fueling of fuel cell powered forklifts (e.g. NFPA 52 Vehicular Fuel Systems Code [1]). Additional Codes and Standards specific to hydrogen detectors are being developed [2 3] which when adopted will impose mandatory analytical performance metrics. There are a large number of commercially available hydrogen safety sensors. Because end-users have a broad range of sensor options for their specific applications the final selection of an appropriate sensor technology can be complicated. Facility engineers and other end-users are expected to select the optimal sensor technology choice. However some sensor technologies may not be a good fit for a given application. Informed decisions require an understanding of the general analytical performance specifications that can be expected by a given sensor technology. Although there are a large number of commercial sensors most can be classified into relatively few specific sensor types (e.g. electrochemical metal oxide catalytic bead and others). Performance metrics of commercial sensors produced on a specific platform may vary between manufacturers but to a significant degree a specific platform has characteristic analytical trends advantages and limitations. Knowledge of these trends facilitates the selection of the optimal technology for a specific application (i.e. indoor vs. outdoor environments). An understanding of the various sensor options and their general analytical performance specifications would be invaluable in guiding the selection of the most appropriate technology for the designated application.
No more items...