Publications
Measurement of Fatigue Crack Growth Rates for Steels in Hydrogen Containment Components
Sep 2009
Publication
The objective of this work was to enable the safe design of hydrogen pressure vessels by measuring the fatigue crack growth rates of ASME code-qualified steels in high-pressure hydrogen gas. While a design framework has recently been established for high-pressure hydrogen vessels a material property database does not exist to support the design calculations. This study addresses such voids in the database by measuring the fatigue crack growth rates of three different heats of ASME SA-372 Grade J steel in 100 MPa hydrogen gas. Results showed that the fatigue crack growth rates were similar for all three steel heats although the highest-strength steel appeared to exhibit the highest growth rates. Hydrogen accelerated the fatigue crack growth rates of the steels by as much as two orders of magnitude relative to anticipated crack growth rates in inert environments. Despite such dramatic effects of hydrogen on the fatigue crack growth rates measurement of these properties enables reliable definition of the design life of steel hydrogen containment vessels.
Using Hydrogen Safety Best Practices and Learning From Safety Events
Sep 2009
Publication
A best practice is a technique or methodology that has reliably led to a desired result. A wealth of experience regarding the safe use and handling of hydrogen exists as a result of an extensive history in a wide variety of industrial and aerospace settings. Hydrogen Safety Best Practices (www.h2bestpractices.org) captures this vast knowledge base and makes it publicly available to those working with hydrogen and related systems including those just starting to work with hydrogen. This online manual is organized under a number of hierarchical technical content categories. References including publications and other online links that deal with the safety aspects of hydrogen are compiled for easy access. This paper discusses the development of Hydrogen Safety Best Practices as a safety knowledge tool the nature of its technical content and the steps taken to enhance its value and usefulness. Specific safety event examples are provided to illustrate the link between technical content in the online best practices manual and a companion safety knowledge tool Hydrogen Incident Reporting and Lessons Learned (www.h2incidents.org) which encourages the sharing of lessons learned and other safety event information.
Gas Build-up in a Domestic Property Following Releases of Methane/Hydrogen Mixtures
Sep 2007
Publication
The EC funded Naturalhy project is investigating the possibility of promoting the swift introduction of hydrogen as a fuel by mixing hydrogen with natural gas and transporting this mixture by means of the existing natural gas pipeline system to end-users. Hydrogen may then be extracted for use in hydrogen fuel cell applications or the mixture may be used directly in conventional gas-fired equipment. This means that domestic customers would receive a natural gas (methane)/hydrogen mixture delivered to the home. As the characteristics of hydrogen are different from natural gas there may be an increased risk to end-users in the event of an accidental release of gas from internal pipe work or appliances. Consequently part of the Naturalhy project is aimed at assessing the potential implications on the safety of the public which includes end-users in their homes. In order to understand the nature of any gas accumulation which may form and identify the controlling parameters a series of large scale experiments have been performed to study gas accumulations within a 3 m by 3 m by 2.3 m ventilated enclosure representing a domestic room. Gas was released vertically upwards at a pressure typical of that experienced in a domestic environment from hole sizes representative of leaks and breaks in pipe work. The released gas composition was varied and included methane and a range of methane/hydrogen mixtures containing up to 50% hydrogen. During the experiments gas concentrations throughout the enclosure and the external wind conditions were monitored with time. The experimental data is presented. Analysis of the data and predictions using a model developed to interpret the experimental data show that both buoyancy and wind driven ventilation are important.
Hydrogen Related Risks Within a Private Garage: Concentration Measurements in a Realistic Full Scale Experimental Facility
Sep 2007
Publication
Next generation of hydrogen energy based vehicles is expected to come into widespread use in the near future. Various topics related to hydrogen including production storage and application of hydrogen as an energy carrier have become subjects of discussion in the framework of various European and International projects. Safety information is vital to support the successful introduction into mainstream and public acceptance of hydrogen as an energy carrier. One of such issues which is seeking major attention is related to hydrogen powered vehicles parked inside a confined area (such as in a private garage). It is of utmost importance to predict if uncontrolled release of hydrogen from a vehicle parked inside a confined area can create an explosive atmosphere. Subsequently how the preventive measures can be implied to control these explosive atmospheres if present inside a confined area? There is a little guidance currently developed for confined areas accommodating hydrogen fuelled vehicles. It is essential that mitigation measures for such conditions become established.<br/>Characterization of different scenarios those may arise in a real situation from hydrogen fuelled vehicle parked inside a garage and furthermore the investigation of an optimal ventilation rate for hydrogen risk mitigation are some of the main objectives described in the framework of the present study. This work is an effort to provide detail experimental information’s in view of establishing guidelines for hydrogen powered vehicles parked inside a private garage. The present work is developed in the framework of a European Network of Excellence HySafe and French project DRIVE. Present paper describes a purpose built realistic Garage test facility at CEA to study the dispersion of hydrogen leakage. The studied test cases evaluate the influence of injected volumes of hydrogen and the initial conditions at the leakage source on the dispersion and mixing characteristics inside the free volume of the unventilated garage. The mixing process and build-up of hydrogen concentration is measured for the duration of 24 hours. Due to safety reasons helium gas is used to simulate the hydrogen dispersion characteristics.
Hydrogen–methane Mixtures: Dispersion and Stratification Studies
Sep 2011
Publication
The study of hydrogen as an alternative fuel clean and “environment friendly” has been in the last years and continues to be object of many studies international projects and standard development. Hydrogen is a fundamental energy carrier to be developed together with other renewable resources for the transition to a sustainable energy system.<br/>But experience has shown how often the introduction and establishment of a new technology does not necessarily pass through radical changes but can be stimulated by slight modifications to the “present situation”.<br/>So the worldwide experience with natural gas as industrial automotive and domestic fuel has been the incentive to the present interest towards hydrogen–methane mixtures. The possible use of existing pipeline networks for mixtures of natural gas and hydrogen offers a unique and cost-effective opportunity to initiate the progressive introduction of hydrogen as part of the development of a full hydrogen system.<br/>The aim of the work presented in this paper is the investigation of the dispersion and stratification properties of hydrogen and methane mixtures. Experimental activities have been carried out in a large scale closed apparatus characterized by a volume of about 25 m3 both with and without natural ventilation. Mixtures of 10%vol. hydrogen – 90%vol. methane and 30%vol. hydrogen – 70%vol. methane have been studied with the help of oxygen sensors and gas chromatography.
Experimental Releases of Liquid Hydrogen
Sep 2011
Publication
If the hydrogen economy is to progress more hydrogen refuelling stations are required. In the short term in the absence of a hydrogen distribution network the most likely means of supplying the refuelling stations will be by liquid hydrogen road tanker. This development will clearly increase the number of tanker offloading operations significantly and these may need to be performed in more challenging environments with close proximity to the general public. The work described in this paper was commissioned in order to determine the hazards associated with liquid hydrogen spills onto the ground at rates typical for a tanker hose failure during offloading.
Experiments have been performed to investigate spills of liquid hydrogen at a rate of 60 litres per minute. Measurements were made on both unignited and ignited releases.
These include:
Experiments have been performed to investigate spills of liquid hydrogen at a rate of 60 litres per minute. Measurements were made on both unignited and ignited releases.
These include:
- Concentration of hydrogen in air thermal gradient in the concrete substrate liquid pool formation and temperatures within the pool
- Flame velocity within the cloud thermal radiation IR and visible spectrum video records.
- Sound pressure measurements
- An estimation of the extent of the flammable cloud was made from visual observation video IR camera footage and use of a variable position ignition source.
Hydrogen and Fuel Cell Stationary Applications: Key Findings of Modelling and Experimental Work in the Hyper Project
Sep 2009
Publication
Síle Brennan,
A. Bengaouer,
Marco Carcassi,
Gennaro M. Cerchiara,
Andreas Friedrich,
O. Gentilhomme,
William G. Houf,
N. Kotchourko,
Alexei Kotchourko,
Sergey Kudriakov,
Dmitry Makarov,
Vladimir V. Molkov,
Efthymia A. Papanikolaou,
C. Pitre,
Mark Royle,
R. W. Schefer,
G. Stern,
Alexandros G. Venetsanos,
Anke Veser,
Deborah Willoughby,
Jorge Yanez and
Greg H. Evans
"This paper summarises the modelling and experimental programme in the EC FP6 project HYPER. A number of key results are presented and the relevance of these findings to installation permitting guidelines (IPG) for small stationary hydrogen and fuel cell systems is discussed. A key aim of the activities was to generate new scientific data and knowledge in the field of hydrogen safety and where possible use this data as a basis to support the recommendations in the IPG. The structure of the paper mirrors that of the work programme within HYPER in that the work is described in terms of a number of relevant scenarios as follows: 1. high pressure releases 2. small foreseeable releases 3. catastrophic releases and 4. the effects of walls and barriers. Within each scenario the key objectives activities and results are discussed.<br/>The work on high pressure releases sought to provide information for informing safety distances for high-pressure components and associated fuel storage activities on both ignited and unignited jets are reported. A study on small foreseeable releases which could potentially be controlled through forced or natural ventilation is described. The aim of the study was to determine the ventilation requirements in enclosures containing fuel cells such that in the event of a foreseeable leak the concentration of hydrogen in air for zone 2 ATEX is not exceeded. The hazard potential of a possibly catastrophic hydrogen leakage inside a fuel cell cabinet was investigated using a generic fuel cell enclosure model. The rupture of the hydrogen feed line inside the enclosure was considered and both dispersion and combustion of the resulting hydrogen air mixture were examined for a range of leak rates and blockage ratios. Key findings of this study are presented. Finally the scenario on walls and barriers is discussed; a mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. Conclusions of experimental and modelling work which aim to provide guidance on configuration and placement of these walls to minimise overall hazards is presented. "
Reversible Thermochemical Routes for Carbon Neutrality: A Review of CO2 Methanation and Steam Methane Reforming
Jul 2025
Publication
This review explores CO2 methanation and steam methane reforming (SMR) as two key thermochemical processes governed by reversible reactions each offering distinct contributions to carbon-neutral energy systems. The objective is to provide a comparative assessment of both processes highlighting how reaction reversibility can be strategically leveraged for decarbonization. The study addresses methane production via CO2 methanation and hydrogen production via SMR focusing on their thermodynamic behaviors catalytic systems environmental impacts and economic viability. CO2 methanation when powered by renewable hydrogen can result in emissions ranging from −471 to 1076 kg CO2-equivalent per MWh of methane produced while hydrogen produced from SMR ranges from 90.9 to 750.75 kg CO2-equivalent per MWh. Despite SMR’s lower production costs (USD 21–69/MWh) its environmental footprint is considerably higher. In contrast methanation offers environmental benefits but remains economically uncompetitive (EUR 93.53–204.62/MWh). Both processes rely primarily on Ni-based catalysts though recent developments in Ru-based and bimetallic systems have demonstrated improved performance. The review also examines operational challenges such as carbon deposition and catalyst deactivation. By framing these technologies through the shared lens of reversibility this work outlines pathways toward integrated efficient and circular energy systems aligned with long-term sustainability and climate neutrality goals.
Numerical Studies of Dispersion and Flammable Volume of Hydrogen in Enclosures
Sep 2007
Publication
Hydrogen dispersion in an enclosure is numerically studied using simple analytical solutions and a large-eddy-simulation based CFD code. In simple calculations the interface height and temperature rise of the upper layer are obtained based on mass and energy conservation and the centreline hydrogen volume fraction is derived from similarity solutions of buoyant jets. The calculated centreline hydrogen volume fraction using the two methods agree with each other; however discrepancies are found for the calculated total flammable volume as a result of the inability of simple calculations in taking into account local mixing and diffusion. The CFD model in contrast is found to be capable of correctly reproducing the diffusion and stratification phenomena during the mixing stage.
Hydrogen Safety- New Challenges Based on BMW Hydrogen 7
Sep 2007
Publication
The BMW Hydrogen 7 is the world’s first premium sedan with a bi-fuelled internal combustion engine concept that has undergone the series development process. This car also displays the BMW typical driving pleasure. During development the features of the hydrogen energy source were emphasized. Engine tank system and vehicle electronics were especially developed as integral parts of the vehicle for use with hydrogen. The safety-oriented development process established additional strict hydrogen-specific standards for the Hydrogen 7. The fulfilment of these standards were demonstrated in a comprehensive experimentation and testing program which included all required tests and a large number of additional hydrogen-specific crash tests such as side impacts to the tank coupling system or rear impacts. Furthermore the behaviour of the hydrogen tank was tested under extreme conditions for instance in flames and after strong degradation of the insulation. Testing included over 1.7 million km of driving; and all tests were passed successfully proving the intrinsic safety of the vehicle and also confirming the success of the safety-oriented development process which is to be continued during future vehicle development. A safety concept for future hydrogen vehicles poses new challenges for vehicles and infrastructure. One goal is to develop a car fuelled by hydrogen only while simultaneously optimizing the safety concept. Another important goal is removal of (self-imposed) restrictions for parking in enclosed spaces such as garages. We present a vision of safety standards requirements and a program for fulfilling them.
Study of Hydrogen Diffusion and Deflagration in a Closed System
Sep 2007
Publication
A total of 12 ventilation experiments with various combinations of hydrogen release rates and ventilation speeds were performed in order to study how ventilation speed and release rate effect the hydrogen concentration in a closed system. The experiential facility was constructed out of steel plates and beams in the shape of a rectangular enclosure. The volume of the test facility was about 60m3. The front face of the enclosure was covered by a plastic film in order to allow visible and infrared cameras to capture images of the flame. The inlet and outlet vents were located on the lower front face and the upper backside panel respectively. Hydrogen gas was released toward the ceiling from the center of the floor. The hydrogen gas was released at constant rate in each test. The hydrogen release rate ranged from 0.002 m3/s to 0.02 m3/s. Ventilation speeds were 0.1 0.2 and 0.4 m3/s respectively. Ignition was attempted at the end of the hydrogen release by using multiple continuous spark ignition modules on the ceiling and next to the release point. Time evolution of hydrogen concentration was measured using evacuated sample bottles. Overpressure and impulse inside and outside the facility were also measured. The mixture was ignited by a spark ignition module mounted on the ceiling in eight of eleven tests. In the other three tests the mixture was ignited by spark ignition modules mounted next to the nozzle. Overpressures generated by the hydrogen deflagration in most of these tests were low and represented a small risk to people or property. The primary risk associated with the hydrogen deflagrations studied in these tests was from the fire. The maximum concentration is proportional to the ratio of the hydrogen release rate to the ventilation speed within the range of parameters tested. Therefore a required ventilation speed can be estimated from the assumed hydrogen leak rate within the experimental conditions described in this paper.
Large-scale Hydrogen Release in an Isothermal Confined Area
Sep 2007
Publication
INERIS has set up large-scale fully instrumented experiments to study the formation of flammable clouds resulting from a finite duration spillage of hydrogen in a quiescent room (80 m3 chamber). Concentration temperature and mass flow measurements were monitored during the release period and several hours after. Experiments were carried out for mass flow rates ranging from 02 g/s to 1 g/s. The instrumentation allowed the observation and quantification of rich hydrogen layers stratification effects. This paper presents both the experimental facility and the test results. These experimental results can be used to assess and benchmark CFD tools capabilities.
Quantification of the Uncertainty of the Peak Pressure Value in the Vented Deflagrations of Air-Hydrogen Mixtures
Sep 2007
Publication
In the problem of the protection by the consequences of an explosion is actual for many industrial application involving storage of gas like methane or hydrogen refuelling stations and so on. A simple and economic way to reduce the peak pressure associated to a deflagration is to supply to the confined environment an opportune surface substantially less resistant then the protected structure typically in stoichiometric conditions the peak pressure reduction is around the 8 bars for a generic hydrocarbon combustion in an adiabatic system lacking of whichever mitigation system. In general the problem is the forecast of the peak pressure value (PMAX) of the explosion. This problem is faced using CFD codes modelling the structure in which the explosion is located and setting the main parameters like concentration of the gas in the mixture the volume available the size of vent area and obstacles (if included) and so on. In this work the idea is to start from empirical data to train a Neural Network (NN) in order to find the correlation among the parameters regulating the phenomenon. Associated to this prediction a fuzzy model will provide to quantify the uncertainty of the predicted value.
Effects of Purity and Pressure on the Hydrogen Embrittlement of Steels and Other Metallic Materials
Sep 2009
Publication
A study of open literature was performed to determine the effects of high hydrogen purity and gas pressure (in the range of 700-1000 bar) on the hydrogen embrittlement of several metallic materials. A particular focus was given to carbon low-alloy and stainless steels but information on embrittlement of aluminum and copper was included in the study. Additionally the most common test methods were studied and results from similar tests are presented in a manner so as to simplify comparisons of materials. Finally suggestions are provided for future testing necessary to ensure the safety of hydrogen storage at 700 bar.
Safety of Laboratories for New Hydrogen Techniques
Sep 2007
Publication
In this paper a case of hydrogen release in a typical research laboratory for the characterisation of hydrogen solid-state storage materials has been considered. The laboratory is equipped with various testing equipments for the assessment of hydrogen capacity in materials typically in the 1 to 200 bar pressure range and temperatures up to 500°C. Hydrogen is delivered at 200 bar by a 50 l gas bottle and a compressor located outside the laboratory. The safety measures directly related to hydrogen hazard consist in a distributed ventilation of the laboratory and air extraction fume hoods located on top of each instrument. Goal of this work is the modelling of hydrogen accidental release in a real laboratory case in order to provide a more fundamental basis for the laboratory safety design and assist the decision on the number and position of the safety sensors. The computational fluid dynamics code (CFD) ANSYS-CFX has been selected in order to perform the numerical investigations. Two basic accidental release scenarios have been assumed both at 200 bar: a major leak corresponding to a guillotine breaking of the hydrogen distribution line and a smaller leak typical for a not properly tight junction.
The Interaction of Hydrogen Jet Releases With Walls and Barriers
Sep 2009
Publication
It has been suggested that separation or safety distances for pressurised hydrogen storage can be reduced by the inclusion of walls or barriers between the hydrogen storage and vulnerable plant or other items. Various NFPA codes (1) suggest the use of 60° inclined fire barriers for protection against jet flames in preference to vertical ones.<br/>This paper describes a series of experiments performed in order to compare the performance of 60° barriers with that of 90° barriers. Their relative efficiency at protecting from thermal radiation and blast overpressure was measured together with the propensity for the thermal radiation and blast overpressure to be reflected back to the source of the leak. The work was primarily focused on compressed H2 storage for stationary fuel cell systems which may be physically separated from a fuel cell system or could be on board such a system. Different orifice sizes were used to simulate different size leaks and all releases were made were from storage at 200 bar.<br/>Overall conclusions on barrier performance were made based on the recorded measurements.
Materials Considerations in Hydrogen Production
Sep 2007
Publication
Correct selection and application of materials is essential to ensure safety and economy in production transportation and storage of hydrogen. There are several sources of materials challenges related to hydrogen. Established component producers may have limited experience in this specific field. Process developments may involve new process conditions with new demands on the materials. Further new materials will be added to the engineering toolbox to be used. The behaviour of these materials for hydrogen service may need additional documentation. Finally focus on hydrogen susceptibility and hydrogen damages alone may take away awareness of other subjects as trace elements by-products and change in raw materials which may be of as high importance for safety and quality. This overview of challenges and recommendations is made with emphasis on water electrolysis.
World Energy Issues Monitor 2019 Managing the Grand Energy Transition
Oct 2019
Publication
This is the tenth consecutive year of the World Energy Council’s (the Council) annual survey of key challenges and opportunities facing energy leaders in managing and shaping Energy Transitions. This year’s Issues Monitor report provides seven global maps six regional maps and fifty national maps.
These maps have been developed by analysing the responses of nearly 2300 energy leaders drawn from across the Council’s diverse and truly global energy community.
The Council’s Issues Monitor identifies the strategic energy landscape of specific countries and regions in the world through an analysis of 42 energy issues and 4 digitalisation-specific issues affecting the energy system. It provides a unique reality check and horizon scanning of persistent and emerging concerns involved in whole energy systems transition. This year’s report welcomes a significant increase in both the participation of global leaders (up over 75% from 1300 to nearly 2300) as well as the participation of 86 countries.
Each Issue Map provides a visual snapshot of the uncertainties and action priorities that energy policymakers CEOs and leading experts strive to address to shape and manage successful Energy
Transitions. Maps can be used in the following ways:
These maps have been developed by analysing the responses of nearly 2300 energy leaders drawn from across the Council’s diverse and truly global energy community.
The Council’s Issues Monitor identifies the strategic energy landscape of specific countries and regions in the world through an analysis of 42 energy issues and 4 digitalisation-specific issues affecting the energy system. It provides a unique reality check and horizon scanning of persistent and emerging concerns involved in whole energy systems transition. This year’s report welcomes a significant increase in both the participation of global leaders (up over 75% from 1300 to nearly 2300) as well as the participation of 86 countries.
Each Issue Map provides a visual snapshot of the uncertainties and action priorities that energy policymakers CEOs and leading experts strive to address to shape and manage successful Energy
Transitions. Maps can be used in the following ways:
- To promote a shared understanding of successful Energy Transitions
- To appreciate and contrast regional variations to better understand differing priorities and areas of concern
- To follow the evolution of specific technology trends related to the energy sector
Heat Radiation of Burning Hydrogen Air Mixtures Impurified by Organic Vapour and Particles
Sep 2007
Publication
Experiments were performed to investigate the radiative heat emission of small scale hydrogen/air explosions also impurified by minor amounts of inert particles and organic fuels. A volume of 1.5 dm3 hydrogen was injected into ambient air as free-jet and ignited. In further experiments simultaneously inert Aerosil and combustible fuels were injected into the blasting hydrogen/air gas cloud. Fuels were a spray of a solvent (Dipropyleneglycol-methylether) and dispersed particles (milk powder). The combustion was observed with a DV camcorder an IR camera and two different fast scanning spectrometers in NIR and IR range using a sampling rate of 100 spectra/s. The intensity calibrated spectra were analyzed using ICT-BaM code to evaluate emission temperature and intensity of H2O CO2 CO NO and soot emission. Using the same code combined with the experimental results total heat emission of such explosions was estimated.
Predictions of Solid-State Hydrogen Storage System Contamination Processes
Sep 2009
Publication
Solid state materials such as metal and chemical hydrides have been proposed and developed for high energy density automotive hydrogen storage applications. As these materials are implemented into hydrogen storage systems developers must understand their behavior during accident scenarios or contaminated refueling events. An ability to predict thermal and chemical processes during contamination allows for the design of safe and effective hydrogen storage systems along with the development of appropriate codes and standards. A model for the transport of gases within an arbitrary-geometry reactive metal hydride bed (alane -AlH3) is presented in this paper. We have coupled appropriate Knudsen-regime permeability models for flow through packed beds with the fundamental heat transfer and chemical kinetic processes occurring at the particle level. Using experimental measurement to determine and validate model parameters we have developed a robust numerical model that can be utilized to predict processes in arbitrary scaled-up geometries during scenarios such as breach-in-tank or contaminated refueling. Results are presented that indicate the progression of a reaction front through a compacted alane bed as a result of a leaky fitting. The rate of this progression can be limited by; 1) restricting the flow of reactants into the bed through densification and 2) maximizing the rate of heat removal from the bed.
No more items...