Publications
A Game Theory Approach in Hydrogen Supply Chain Resilience: Focus on Pricing, Sourcing, and Transmission Security
Jun 2025
Publication
This study examines the pricing and assesses resilience methods in hydrogen supply chains by thoroughly analyzing two main disruption scenarios. The model examines a scenario in which a hydrogen production company depends on a Renewable Power plant (RP) for its electricity supply. Ensuring a steady and efficient hydrogen supply chain is crucial but outages at renewable power sources provide substantial obstacles to sustainability and operational continuity. Therefore in the event of disruptions at the RP the company has two options for maintaining resilience: either sourcing electricity from a Fossil fuel Power plant (FP) through a grid network to continue hydrogen production or purchasing hydrogen directly from another company and utilizing third-party transportation for delivery. Using a game theoretic approach we examine how different methods affect demand satisfaction cost implications and environmental sustainability. The study employs sensitivity analysis to evaluate the impact of different disruption probabilities on each scenario. In addition a unique sensitivity analysis is performed to examine the resilience of transmission security to withstand disruptions. This study evaluates how investments in security measures affect the strength and stability of the supply chain in various scenarios of disruption. Our research suggests that the first scenario offers greater reliability and cost-effectiveness along with a higher resilience rate compared to the second scenario. Furthermore the examination of the environmental impact shows that the first scenario has a smaller amount of CO2 emissions per kg of hydrogen. This study offers important insights for supply chain managers to optimize resilience measures hence improving reliability reducing costs and minimizing environmental effects.
Integrated Optimization of Energy Storage and Green Hydrogen Systems for Resilient and Sustainable Future Power Grids
Jul 2025
Publication
This study presents a novel multi-objective optimization framework supporting nations sustainability 2030–2040 visions by enhancing renewable energy integration green hydrogen production and emission reduction. The framework evaluates a range of energy storage technologies including battery pumped hydro compressed air energy storage and hybrid configurations under realistic system constraints using the IEEE 9-bus test system. Results show that without storage renewable penetration is limited to 28.65% with 1538 tCO2/day emissions whereas integrating pumped hydro with battery (PHB) enables 40% penetration cuts emissions by 40.5% and reduces total system cost to 570 k$/day (84% of the baseline cost). The framework’s scalability is confirmed via simulations on IEEE 30- 39- 57- and 118-bus systems with execution times ranging from 118.8 to 561.5 s using the HiGHS solver on a constrained Google Colab environment. These findings highlight PHB as the most cost-effective and sustainable storage solution for large-scale renewable integration.
Synergistic Coupling of Waste Heat and Power to Gas via PEM Electrolysis for District Heating Applications
Sep 2025
Publication
This work explores the integration of Proton Exchange Membrane (PEM) electrolysis waste heat with district heating networks (DHN) aiming to enhance the overall energy efficiency and economic viability of hydrogen production systems. PEM electrolysers generate substantial amounts of low-temperature waste heat during operation which is often dissipated and left unutilised. By recovering such thermal energy and selling it to district heating systems a synergistic energy pathway that supports both green hydrogen production and sustainable urban heating can be achieved. The study investigates how the electrolyser’s operating temperature ranging between 50 and 80 ◦C influences both hydrogen production and thermal energy availability exploring trade-offs between electrical efficiency and heat recovery potential. Furthermore the study evaluates the compatibility of the recovered heat with common heat emission systems such as radiators fan coils and radiant floors. Results indicate that valorising waste heat can enhance the overall system performance by reducing the electrolyser’s specific energy consumption and its levelized cost of hydrogen (LCOH) while supplying carbon-free thermal energy for the end users. This integrated approach contributes to the broader goal of sector coupling offering a pathway toward more resilient flexible and resource-efficient energy systems.
Working with Uncertainty in Life cycle Costing: New Approach Applied to the Case Study on Proton Exchange Membrane Water Electrolysis
Jul 2025
Publication
Hydrogen recognized as a critical energy source requires green production methods such as proton exchange membrane water electrolysis (PEMWE) powered by renewable energy. This is a key step toward sustainable development with economic analysis playing an essential role. Life cycle costing (LCC) is commonly used to evaluate economic feasibility but traditional LCC analyses often provide a single cost outcome which limits their applicability across diverse regional contexts. To address these challenges a Python-based tool is developed in this paper integrating a bottom-up approach with net present value (NPV) calculations and Monte Carlo simulations. The tool allows users to manage uncertainty by intervening in the input data producing a range of outcomes rather than a single deterministic result thus offering greater flexibility in decision-making. Applying the tool to a 5 MW PEMWE plant in Germany the total cost of ownership (TCO) is estimated to range between €52 million and €82.5 million with hydrogen production costs between 5.5 and 11.4 €/kg H2. There is a 95% probability that actual costs fall within this range. Sensitivity analysis reveals that energy prices are the key contributors to LCC accounting for 95% of the variance in LCC while iridium membrane materials and power electronics contribute to 75% of the variation in construction-phase costs. These findings underscore the importance of renewable energy integration and circular economy strategies in reducing LCC.
Hydrogen Leakage Localization Technology in Hydrogen Refueling Stations Combining RL and Hidden Markov Models
Jul 2025
Publication
With the global energy structure shifting towards clean and efficient hydrogen energy the safety management issues of hydrogen refueling stations are becoming increasingly prominent. To address these issues a hydrogen leak localization algorithm for hydrogen refueling stations based on a combination of reinforcement learning and hidden Markov models is proposed. This method combines hidden Markov model to construct a probability distribution model for hydrogen leakage and diffusion simulates the propagation probability of hydrogen in different grid cells and uses reinforcement learning to achieve fast and accurate localization of hydrogen leakage events. The outcomes denoted that the training accuracy reached 95.2% with an F1 value of 0.961 indicating its high accuracy in hydrogen leak localization. When the wind speed was 0.8 m/s the mean square error of the raised method was 0.03 and when the wind speed was 1.0 m/s the mean square error of the raised method was 0.04 proving its good robustness. After 50 localization experiments the proposed algorithm achieves a localization success rate of 93.7% and an average computation time of 42.8 s further demonstrating its high accuracy and computational efficiency. The proposed hydrogen leakage location algorithm has improved the accuracy and efficiency of hydrogen leakage location providing scientific basis and technical guarantee for the safe operation of future hydrogen refueling stations.
Experimental Study on the Operation of Pressure Safety Valve in the Liquid Hydrogen Environment
Sep 2025
Publication
In this study a liquid hydrogen (LH2) safety valve evaluation device was developed to enable safe and stable performance testing of pressure safety valves (PSVs) under realistic cryogenic and high-pressure conditions. The device was designed for flexible use by mounting all components on a mobile frame equipped with wheels and the pressurization rate inside the vessel was controlled through a boil-off gas (BOG) generator. Two experiments were conducted to investigate the effect of LH2 production rate on PSV operation. When the production of LH2 increased by about 2.4 times the number of PSV operations rose from 15 to 20 and the operating pressure range shifted slightly upward from 10.68~12.53 bar to 10.68~13.2 bar while remaining within the instrument’s error margin. These results indicate that repeated valve cycling and increased hydrogen production contribute to gradual changes in PSV operating characteristics. Additionally the minimum temperature experienced by the PSV decreased with repeated operations reaching approximately 77.9 K. The developed evaluation system provides an effective platform for analyzing PSV performance under realistic LH2 production and storage conditions.
Dimensions, Structure, and Morphology Variations of Carbon-based Materials for Hydrogen Storage: A Review
Jul 2025
Publication
The swift and far-reaching evolution of advanced nanostructures and nanotechnologies has accelerated the research rate and extent which has a huge prospect for the benefit of the practical demands of solid-state hydrogen storage implementation. Carbonaceous materials are of paramount importance capable of forming versatile structures and morphology. This review aims to highlight the influence of the carbon material structure dimension and morphology on the hydrogen storage ability. An extensive range of synthesis routes and methods produces diverse micro/nanostructured materials with superb hydrogen-storing properties. The structures of carbon materials used for hydrogen adsorption from 0 to 3D and fabrication methods and techniques are discussed. Besides highlighting the striking merits of nanostructured materials for hydrogen storage remaining challenges and new research avenues are also considered.
IEA TCP Task 43 - Recommendations for Safety Distances Methodology for Alkaline and PEM Electrolyzers
Sep 2025
Publication
Elena Vyazmina,
Richard Chang,
Benjamin Truchot,
Katrina M. Groth,
Samantha E. Wismer,
Sebastien Quesnel,
David Torrado,
Nicholas Hart,
Thomas Jordan,
Karen Ramsey-Idem,
Deborah Houssin-Agbomson,
Simon Jallais,
Christophe Bernard,
Lucie Bouchet,
Ricardo Ariel Perez,
Lee Phillips,
Marcus Runefors,
Jerome Hocquet and
Andrei V. Tchouvelev
Currently local regulations governing hydrogen installations vary by geographical region and by country leading to discrepancies in safety and separation distance requirements for similar hydrogen systems. This work carried out in the frame of IEA TCP H2 Task 43 (IEA TCP H2 2022) aims to provide an overview of various methodologies and recommendations established for risk management and consequence assessment in the event of accidental scenarios. It focuses on a case study involving industrial electrolyzers utilizing alkaline and PEM technologies. The research incorporates lessons learned from past incidents offers recommendations for mitigation measures reviews existing methodologies and highlights areas of divergence. Additionally it proposes strategies for harmonization. The study also emphasizes the most significant scenarios and the corresponding leakage sizes
Optimizing Storage Parameters for Underground Hydrogen Storage in Aquifers: Cushion Gas Selection, Well Pattern Design, and Purity Control
Oct 2025
Publication
Underground hydrogen storage in aquifers is a promising solution to address the imbalance between energy supply and demand yet its practical implementation requires optimized strategies to ensure high efficiency and economic viability. To improve the storage and production efficiency of hydrogen it is essential to select the appropriate cushion gas and to study the influence of reservoir and process parameters. Based on the conceptual model of aquifer with single-well injection and production three potential cushion gas (carbon dioxide nitrogen and methane) were studied and the changes in hydrogen recovery for each cushion gas were compared. The effects of temperature initial pressure porosity horizontal permeability vertical to horizontal permeability ratio permeability gradient hydrogen injection rate and hydrogen production rate on the purity of recovered hydrogen were investigated. Additionally the impact of different well pattern on the purity of recovered hydrogen was studied. The results indicate that methane is the most effective cushion gas for improving hydrogen recovery in UHS. Different well patterns have significant impacts on the purity of recovered hydrogen. The mole fractions of methane in the produced gas for the single-well line-drive pattern and five-spot pattern were 16.8% 5% and 3.05% respectively. Considering the economic constraints the five-spot well pattern is most suitable for hydrogen storage in aquifers. Reverse rhythm reservoirs with smaller permeability differences should be chosen to achieve relatively high hydrogen recovery and purity of recovered hydrogen. An increase in hydrogen production rate leads to a significant decrease in the purity of the recovered hydrogen. In contrast hydrogen injection rate has only a minor effect. These findings provide actionable guidance for the selection of cushion gas site selection and operational design of aquifer-based hydrogen storage systems contributing to the large-scale seasonal storage of hydrogen and the balance of energy supply and demand.
Environmental and Economic Assessment of Large-scale Hydrogen Supply Chains across Europe: LOHC vs Other Hydrogen Technologies
Oct 2025
Publication
The transition to decarbonized energy systems positions hydrogen as a critical vector for achieving climate neutrality yet its large-scale transportation and storage remain key challenges. This study presents a comprehensive life cycle assessment (LCA) and economic analysis of large-scale H2 supply chains evaluating the liquid organic hydrogen carrier (LOHC) system based on benzyltoluene/perhydro-benzyltoluene (H0-BT/H12-BT) against conventional technologies: compressed gaseous hydrogen (CGH2) liquid hydrogen (LH2) and liquid ammonia (LNH3). The analysis includes multiple H2 transportation scenarios across Europe considering the steps: conditioning sea transportation post-processing and land distribution by truck or pipeline. Environmentally LOHC currently faces higher environmental impacts than CGH2 driven by energy-intensive dehydrogenation process. Truck-based distribution further amplifies impacts particularly over long distances while pipeline-based distribution significantly reduces the environmental burdens where infrastructure exists. Sensitivity analysis reveals that using H2 for dehydrogenation heat lowers process-level impacts but increases overall supply chain impacts questioning its net environmental benefit. Economically LOHC remains competitive despite high dehydrogenation costs benefiting from low sea transportation expenses compatibility with existing fossil fuel infrastructure and potential for future CAPEX and OPEX improvements. While CGH2 outperforms LH2 and LNH3 avoiding energy-intensive liquefaction and cracking its storage requirements add considerable costs. For land distribution LOHC trucks are optimal at lower capacities whereas repurposed natural gas pipelines favour CGH2 at higher scale reducing costs by up to 84 %. Despite current trade-offs the scalability flexibility and synergies with existing infrastructure position LOHC as a promising solution for long-distance H2 transport contingent on technological maturation to mitigate dehydrogenation impacts.
Innovative Aircraft Heat Exchanger Integration for Hydrogen-electric Propulsion
Sep 2025
Publication
Propulsion systems in aircraft using reciprocating engines often face the challenge of managing thermal loads effectively. This problem is similar to the utilisation of polymer electrolyte membrane fuel cell systems which despite their high efficiency emit a high proportion of heat when converting chemical energy into electrical energy. Transfer of the rejected heat to the air is efficiently performed by heat exchangers. Since convective heat transfer is physically linked to fluid friction at the heat exchanger walls a pressure loss occurs. In a high-speed flow regime of the aircraft during cruise the integration of heat exchangers combined with a fan stage inside a nacelle (thus forming an impeller configuration) represents a promising approach for the dual benefit of dissipating excess heat and harnessing it for additional thrust generation through the ram jet effect. Striving for enhanced thrust performance of hydrogen electric commercial aircraft this paper presents the results of a parameter study based on a 1D-modelling approach. The focus is placed on the influence of design and operating parameters (ambient conditions fan pressure ratio diffusion ratio airside temperature difference) on performance and sizing of the proposed propulsion system. It is shown that the proposed system performs best at an altitude of 11 km and with increasing freestream Mach number. Furthermore the main challenges related to the combination of a thrust generation system with a heat exchanger in terms of sizing in particularly the required heat exchanger dimensions under different operating conditions are discussed.
Development of the Hydrogen Market and Local Green Hydrogen Offtake in Africa
Jun 2025
Publication
Creating a hydrogen market in Africa is a great opportunity to assist in the promotion of sustainable energy solutions and economic growth. This article addresses the legislation and regulations that need to be developed to facilitate growth in the hydrogen market and allow local green hydrogen offtake across the continent. By reviewing current policy and strategy within particular African countries and best practices globally from key hydrogen economies the review establishes compelling issues challenges and opportunities unique to Africa. The study identifies the immense potential in Africa for renewable energy and in particular for solar and wind as the foundation for the production of green hydrogen. It examines how effective policy frameworks can establish a vibrant hydrogen economy by bridging infrastructural gaps cost hurdles and regulatory barriers. The paper also addresses how local offtake contracts for green hydrogen can be used to stimulate economic diversification energy security and sustainable development. Policy advice is provided to assist African authorities and stakeholders in the deployment of enabling regulatory frameworks and the mobilization of funds. The paper contributes to global hydrogen energy discussions by introducing Africa as an eligible stakeholder in the emerging hydrogen economy and outlining prospects for its inclusion into regional and global energy supply chains.
Opportunities and Challenges of Latent Thermal Energy Usage in the Hydrogen Economy
Aug 2025
Publication
Hydrogen plays a key role in decarbonising hard-to-abate sectors like aviation steel and shipping. However producing pure hydrogen requires significant energy to break chemical bonds from its sources such as gas and water. Ideally the energy used for this process should match the energy output from hydrogen but in reality energy losses occur at various stages of the hydrogen economy—production packaging delivery and use. This results in needing more energy to operate the hydrogen economy than it can ultimately provide. To address this passive power sources like latent thermal energy storage systems can help reduce costs and improve efficiency. These systems can enable passive cooling or electricity generation from waste heat cutting down on the extra energy needed for compression liquefaction and distribution. This study explores integrating latent thermal energy storage into all stages of the hydrogen economy offering a cost and sizing approach for such systems. The integration could reduce costs close the waste-heat recycling loop and support green hydrogen production for achieving NetZero by 2050.
Numerical Simulation Study on Hydrogen Leakage and Explosion of Hydrogen Fuel Cell Buses
Aug 2025
Publication
This study explores the safety problems of hydrogen leakage and explosion in hydrogen fuel cell buses through Computational Fluid Dynamics simulations. The research investigates the diffusion behavior of hydrogen in the passenger cabin depending on the leakage position and flow rates identifying a stratified constant-concentration layer formed at the top of the cabin. Leakage near the rear wall of the vehicle provided the highest hydrogen concentration while at higher flow rates the diffusive process accelerated the spreading of flammable hydrogen concentrations. Hydrogen ignition simulations showed a fast internal pressure increase and secondary explosions outside the vehicle. Thermal hazards in the cases were higher than overpressure. The research’s additional analysis of ignition timing and source location shows that overpressure peaked initially with delayed ignition but declined afterward while rear-ignited flames exhibited the farthest high-temperature hazard range at 10.88 m. These findings are fundamental for giving insight into hydrogen behavior in confined spaces and thus guiding risk assessment and emergency response planning for the development of safety protocols in hydrogen fuel cell buses contributing to the safer implementation of hydrogen energy in public transportation.
Fractal Fuzzy‑Based Multi‑criteria Assessment of Sustainability in Rare Earth Use for Hydrogen Storage
Aug 2025
Publication
The use of rare earth elements in hydrogen storage processes offers significant advantages in terms of increasing technological efficiency and ensuring system security. However this process also creates some serious problems in terms of environmental and economic sustainability. It is necessary to determine the most critical indicators affecting the sustainable use of these elements. Studies on this subject in the literature are quite limited and this may lead to wrong investment decisions. The main purpose of this study is to determine the most important indicators to increase the sustainable use of rare earth elements in hydrogen storage processes. An original decision-making model in which Siamese network logarithmic percentage-change driven objective weighting (LOPCOW) fractal fuzzy numbers and weighted influence super matrix with precedence (WISP) approaches are integrated in the study. This study provides an original contribution to the literature by identifying the most critical indicators affecting the sustainable use of rare earths in hydrogen storage processes by presenting an innovative model. Fractal structures such as Koch Snowflake Cantor Dust and Sierpinski Triangle can model complex uncertainties more successfully. Fractal structures are particularly effective in modeling linguistic fuzziness because their recursive nature closely mirrors the layered and imprecise way humans often express subjective judgments. Unlike linear fuzzy sets fractals can capture the patterns of ambiguity found in expert evaluations. Hydrogen storage capacity and government supports are determined as the most vital criteria affecting sustainability in rare earth use.
Interactions Between Gas Hydrate and Hydrogen in Nature: Laboratory Evidence of Hydrogen Incorporation
Oct 2025
Publication
Natural hydrogen is generated via serpentinization radiolysis and organic metagenesis in geological settings. After expulsion from the source and along its upward migration path the free gas may encounter hydratebearing sediments. To simulate this natural scenario CH4 hydrate and CH4 + C3H8 hydrate were synthesized at 5.0 MPa and exposed to a hydrogen-containing gas mixture. In-situ Raman spectroscopic measurements demonstrated the incorporation of H2 molecules into the hydrate phase even at a partial pressure of 0.5 MPa. Exsitu Raman spectroscopic characterization of hydrates formed from a CH4 + H2 gas mixture at 5.0 MPa confirmed the H2 inclusion within the large cavities of structure I. The results show that the interactions between H2 and the natural gas hydrate phase range from the incorporation of H2 molecules into the hydrate phase to the rapid dissociation of the gas hydrate depending on thermodynamic conditions and H2 concentration in the coexisting gas phase.
Hydrogen Production from Pyrolysis of Biomass Components
Sep 2025
Publication
Hydrogen energy is key for the global green energy transition and biomass thermochemical has become an important option for green hydrogen production due to its carbon neutrality advantage. Pyrolysis is the initial step of thermochemical technologies. A systematic analysis of the mechanism of H2 production from biomass pyrolysis is significant for the subsequent optimal design of efficient biomass thermochemical H2 production technologies. Biomass is mainly composed of cellulose hemicellulose and lignin and differences in their physicochemical properties and structures directly affect the pyrolysis hydrogen production process. In this study thermogravimetry-mass spectrometry-Fourier transform infrared spectroscopy (TG-MS-FTIR) was employed and fixed-bed pyrolysis experiments were conducted to systematically investigate the pyrolysis of biomass component with focusing on hydrogen production. According to the results of TG-MS-FTIR experiments hemicellulose produced hydrogen through the breaking of C-H bonds in short chains and acetyl groups as well as secondary cracking of volatiles and condensation of aromatic rings at high temperatures. Cellulose produced hydrogen through the breaking of C-H bonds in volatiles generated from sugar ring cleavage along with char gasification and condensation of aromatic rings at high temperatures. Lignin produced hydrogen through ether bond cleavage breaking of methoxy groups as well as cleavage of phenylpropane side chains and condensation of aromatic rings at high temperatures. Results from fixed-bed pyrolysis experiments further showed that hemicellulose exhibited the strongest hydrogen production capacity with the maximum H2 production efficiency of 6.09 mmol/g the maximum H2 selectivity of 17.79% and the maximum H2 effectiveness of 59% at 800°C.
Narratives and Counter-narratives in Sustainability Transitions: A Study on the Port of Rotterdam from a Multi-level Perspectives
Sep 2025
Publication
Infrastructure projects can act as niches for innovation development contribute to strategic goals of network owners and drive broader systemic transitions. However limited research has examined how sustainability transitions are shaped through narratives and counternarratives around infrastructure projects. Using a case study of the port of Rotterdam we analyze how three embedded projects - Maasvlakte 2 RDM Campus and the Hydrogen Pipeline - reflected and shaped evolving narratives and counter-narratives over a 20-year sustainability transition. Grounded in the Multi-Level Perspective (MLP) the study demonstrates how an infrastructure owner like the Port of Rotterdam Authority (PoRA) strategically mobilized narrative framing to reshape existing regimes over time. The study contributes to the debate on project management and transition studies by highlighting how infrastructure project owners respond to transition-related tensions by shaping defending and adapting project narratives over time thereby influencing sustainability trajectories.
Comparative Review of Natural Gas Vehicles During the Energy Transition
Jul 2025
Publication
The global climate crisis necessitates the urgent implementation of sustainable practices and carbon emission reduction strategies across all sectors. Transport as a major contributor to greenhouse gas emissions requires transitional technologies to bridge the gap between fossil fuel dependency and renewable energy systems. Natural gas recognised as the cleanest fossil-derived fuel with approximately half the CO2 emissions of coal and 75% of oil presents a potential transitional solution through Natural Gas Vehicles (NGVs). This manuscript presents several distinctive contributions that advance the understanding of Natural Gas Vehicles within the contemporary energy transition landscape while synthesising updated emission performance data. Specifically the feasibility and sustainability of NGVs are investigated within the energy transition framework by systematically incorporating recent technological developments and environmental economic and infrastructure considerations in comparison to conventional vehicles (diesel and petrol) and unconventional alternatives (electric and hydrogen-fuelled). The analysis reveals that NGVs can reduce CO2 emissions by approximately 25% compared to petrol vehicles on a well-to-wheel basis with significant reductions in NOx and particulate matter. However these environmental benefits depend heavily on the source and type of natural gas used (CNG or LNG) while economic viability hinges largely on governmental policies and infrastructure development. The findings suggest that NGVs can serve as an effective transitional technology in the transport sector’s sustainability pathway particularly in regions with established natural gas infrastructure but require supportive policy frameworks to overcome implementation barriers.
Analysis of Specific Failure Conditions in Electrified Propulsion Systems using Cryogenic Hydrogen as a Primary Energy Carrier
Aug 2025
Publication
In order to minimize emissions of the aerospace sector and thus its impact on the climate several novel concepts of propulsion systems for aircraft are being developed. Many of these concepts do not use an energy source based on the combustion of hydrocarbons but other means of energy generation and storage like hydrogen fuel cells and corresponding hydrogen storage systems. The use of hydrogen as a primary energy carrier in aircraft poses novel and different hazards when compared to conventional propulsion and fuel storage systems. The study described in the present paper identifies analyzes and evaluates failure conditions and corresponding hazards that are associated with the electrified propulsion systems. Mitigation strategies to prevent failures to occur or decrease their severity are recommended. The effects of the assessed failures on aircraft crew and occupants are classified as catastrophic hazardous or major as defined in the according Certification Specifications. Failure Conditions occurring at the aircraft system and subsystem levels are considered and their effect on the aircraft and propulsion system is assessed. The hazards identified mostly emerge due to the properties of the gaseous or liquid hydrogen. They include the flammability of gaseous hydrogen and the very low temperatures of cryogenic liquid hydrogen as well as the installation of high voltage power infrastructure and high capacity heat exchangers.
No more items...