Publications
Comprehensive Experimental Assessment of NOx Emissions in Swirling Diffusion Flames of Natural Gas-hydrogen Blends
Oct 2025
Publication
In the transformation process from fossil-fuel based to carbon-neutral combustion full or partial replacement of natural gas with hydrogen is considered in numerous industrial applications. As hydrogen flames yield significantly higher NOX emissions than natural gas flames understanding what factors influence these emissions in flames of natural gas/hydrogen blends is crucial for the retrofitting process. Our work is concerned with the simplest form of industrial retrofitting where hydrogen is injected into the natural gas line without any modifications to the burner construction while keeping the burner power constant. We provide quantifications of NOX emissions with respect to changes in hydrogen content (pure natural gas to 100% hydrogen) swirl number (S=0.6 to S=1.4) excess air ratio ( = 1 to =4.5) and air preheat (ambient air to 300 ◦C). The changes were determined in small steps and over a large range. The emission data is to be used in industrial CFD for both validation and tuning therefore Laser Doppler Velocimetry was used for precise determination of the burner inlet conditions. Key findings of the investigation include that for hydrogen flames the NOX emission index [mg/kWh] is 1.2 to 3 times larger than for pure natural gas flames at similar firing conditions. The steepest increase in NOX emissions occurs above 75% volume fraction of hydrogen in the fuel. For natural gas flames NOX emissions peak at 1.3 to 1.4 excess air while the maximum for hydrogen and natural gas/hydrogen blends lays at =1.6. NOX emissions decrease slightly as the swirl number increases but this effect is minor in comparison to the effects of hydrogen content excess air ratio and air temperature.
Innovative Sulfer-based Photocatalysts for Seawater Splitting: Synthesis Strategies, Engineering Advances, and Prospective Pathways for Sustainable Hydrogen Production
Oct 2025
Publication
While hydrogen production through pure water splitting remains a key focus in solar hydrogen research photocatalytic seawater splitting presents a more sustainable alternative better aligned with global development goals amid increasing freshwater scarcity. Nevertheless the deactivation of the photocatalyst by the corrosion of various ions present in seawater as well as the chloride ions’ redox side reaction limits the practical use of the photocatalytic seawater splitting process. In this context sulfur has emerged as a crucial component in photocatalytic composites for seawater splitting owing to its unique chemical properties. It acts as a chlorine-repulsive agent effectively suppressing chloride ion oxidation which mitigates corrosion enhances structural stability and significantly improves overall photocatalytic performance in saline environments. This review offers a thorough explanation of the basic ideas of solar-driven seawater splitting delves into various synthesis strategies and explores recent advancements in sulfur-based composites for efficient hydrogen generation using seawater. Optimizing synthesis techniques and incorporating strategies like doping cocatalyst and heterojunctions significantly enhance the performance of sulfur-based photocatalysts for seawater splitting. Future advances include integrating AI-guided material discovery sustainable use of industrial sulfur waste and precise control of sacrificial agents to ensure long-term efficiency and stability.
Effect of Hydrogen Injection Strategy on Combustion and Emissions of Ammonia-Hydrogen Sustainable Engines
Oct 2025
Publication
Driven by the global energy transition and the dual carbon goals developing low-carbon and zero-carbon alternative fuels has become a core issue for sustainable development in the internal combustion engine sector. Ammonia is a promising zero-carbon fuel with broad application prospects. However its inherent combustion characteristics including slow flame propagation high ignition energy and narrow flammable range limit its use in internal combustion engines necessitating the addition of auxiliary fuels. To address this issue this paper proposes a composite injection technology combining “ammonia duct injection + hydrogen cylinder direct injection.” This technology utilizes highly reactive hydrogen to promote ammonia combustion compensating for ammonia’s shortcomings and enabling efficient and smooth engine operation. This study based on bench testing investigated the effects of hydrogen direct injection timing (180 170 160 150 140◦ 130 120 ◦CA BTDC) hydrogen direct injection pressure (4 5 6 7 8 MPa) on the combustion and emissions of the ammonia–hydrogen engine. Under hydrogen direct injection timing and hydrogen direct injection pressure conditions the hydrogen mixture ratios are 10% 20% 30% 40% and 50% respectively. Test results indicate that hydrogen injection timing that is too early or too late prevents the formation of an optimal hydrogen layered state within the cylinder leading to prolonged flame development period and CA10-90. The peak HRR also exhibits a trend of first increasing and then decreasing as the hydrogen direct injection timing is delayed. Increasing the hydrogen direct injection pressure to 8 MPa enhances the initial kinetic energy of the hydrogen jet intensifies the gas flow within the cylinder and shortens the CA0-10 and CA10-90 respectively. Under five different hydrogen direct injection ratios the CA10- 90 is shortened by 9.71% 11.44% 13.29% 9.09% and 13.42% respectively improving the combustion stability of the ammonia–hydrogen engine.
Preliminary Feasibility Study of Using Hydrogen as a Fuel for an Aquaculture Vessel in Tasmania, Australia
Oct 2025
Publication
Decarbonising aquaculture support vessels is pivotal to reducing greenhouse gas (GHG) emissions across both the aquaculture and maritime sectors. This study evaluates the technical and economic feasibility of deploying hydrogen as a marine fuel for a 14.95 m net cleaning vessel (NCV) operating in Tasmania Australia. The analysis retains the vessel’s original layout and subdivision to enable a like-for-like comparison between conventional diesel and hydrogen-based systems. Two options are evaluated: (i) replacing both the main propulsion engines and auxiliary generator sets with hydrogen-based systems— either proton exchange membrane fuel cells (PEMFCs) or internal combustion engines (ICEs); and (ii) replacing only the diesel generator sets with hydrogen power systems. The assessment covers system sizing onboard hydrogen storage integration operational constraints lifecycle cost and GHG abatement. Option (i) is constrained by the sizes and weights of PEMFC systems and hydrogen-fuelled ICEs rendering full conversion unfeasible within current spatial and technological limits. Option (ii) is technically feasible: sixteen 700 bar cylinders (131.2 kg H2 total) meet one day of onboard power demand for net-cleaning operations with bunkering via swap-and-go skids at the berth. The annualised total cost of ownership for the PEMFC systems is 1.98 times that of diesel generator sets while enabling annual CO2 reductions of 433 t. The findings provide a practical decarbonisation pathway for small- to medium-sized service vessels in niche maritime sectors such as aquaculture while clarifying near-term trade-offs between cost and emissions.
Toward Sustainable Hydrogen Production from Renewable Energy Sources: A Review
Sep 2025
Publication
The escalating global pursuit of environmentally benign energy alternatives has spurred intensive investigations into sustainable hydrogen generation technologies. Although hydrogen energy can be produced via multiple approaches the integration of nanotechnology materials in its generation results in its production improvements and efficiency of the production methods. Nanotechnology with its astonishing ability to control materials at the atomic and molecular scale has emerged as a vital technology for improving the efficiency and affordability of hydrogen production from renewable energy sources. This technology provides a unique platform for creating materials with specific properties for energy conversion and storage. Nanotechnology is accelerating the transition to a hydrogen economy by boosting hydrogen production efficiency and storage. Its applications span from enhancing water-splitting catalysts to developing advanced membranes and photocatalysts. These nanomaterial-based innovations are crucial for producing clean hydrogen and its effective storage. Nevertheless nanotechnology highlights the significant role of nanomaterials in overcoming the kinetic challenges associated with hydrogen evolution reactions which can be attained through several features like increased surface area enhanced catalytic activity and improved charge transfer. Therefore this study explores the latest advancements in nanomaterials and their catalytic impact on hydrogen generation particularly in photocatalysis electrocatalysis and photoelectrochemical systems. The study has examined the nanomaterials’ production characterization and performance their integration into renewable energy systems and their potential for widespread commercial use.
Effect of Hydrogen-Containing Fuel on the Mechanical Properties of an Aluminum Alloy ICE Piston
Oct 2025
Publication
The transition to cleaner hydrogen-containing fuels is critical for reducing the environmental impact of marine infrastructure yet their potential effects on the durability and mechanical reliability of engine components remain a significant engineering challenge. Although aluminum alloys are generally regarded as less susceptible to hydrogeninduced degradation and are widely applied in internal combustion engine components experimental data obtained under real operating conditions with hydrogen-containing fuel mixtures remain insufficient to fully assess all potential risks. In the present study two identical low-power gasoline engine–generators were operated for 220 h on fuels with and without hydrogen. Post-test analysis included mechanical testing and microstructural characterization of aluminum alloy pistons for comparative assessment. The measured values of ultimate tensile strength elongation and deflection maximum bending force and effective stress concentration factor revealed pronounced property degradation in the piston operated on the gasoline–hydrogen mixture compared to both the new piston and the one run on pure gasoline. Microstructural analysis provided a plausible explanation for this degradation. The results of this preliminary study provide insights into the effects of hydrogen-containing fuel on the mechanical performance of engine component alloys contributing to the development of safer and more reliable marine energy systems.
Physics-Informed Co-Optimization of Fuel-Cell Flying Vehicle Propulsion and Control Systems with Onboard Catalysis
Oct 2025
Publication
Fuel-cell flying vehicles suffer from limited endurance while ammonia decomposed onboard to supply hydrogen offers a carbon-free high-density solution to extend flight missions. However the system’s performance is governed by a multi-scale coupling between propulsion and control systems. To this end this paper introduces a novel optimization paradigm termed physics-informed gradient-enhanced multi-objective optimization (PIGEMO) to simultaneously optimize the ammonia decomposition unit (ADU) catalyst composition powertrain sizing and flight control parameters. The PI-GEMO framework leverages a physics-informed neural network (PINN) as a differentiable surrogate model which is trained not only on sparse simulation data but also on the governing differential equations of the system. This enables the use of analytical gradient information extracted from the trained PINN via automatic differentiation to intelligently guide the evolutionary search process. A comprehensive case study on a flying vehicle demonstrates that the PIGEMO framework not only discovers a superior set of Pareto-optimal solutions compared to traditional methods but also critically ensures the physical plausibility of the results.
Experimental Thermal and Environmental Impact Performance Evaluations of Hydrogen-enriched Fuels for Power Generation
Oct 2025
Publication
The transition to a low-carbon energy future requires a multi-faceted approach including the enhancement of existing power generation technologies. This study provides a comprehensive experimental evaluation of hydrogen enrichment as a strategy to improve the performance and reduce the emissions of a power generator. A 3.65 kW power generator that is equipped with spark-ignition engine is systematically tested with five distinct base fuels: gasoline propane methane ethanol and methanol. Each fuel is volumetrically blended with pure hydrogen in ratios of 5 % 10 % 15 % and 20 % using a custom-developed dual-fuel carburetor. The key parameters including exhaust emissions (CO2 CO HC NOx) cylinder exit temperature electrical power output and thermodynamic efficiencies (energy and exergy) are meticulously measured and analyzed. The results reveal that hydrogen enrichment is a powerful tool for decarbonization consistently reducing carbon-based emissions across all fuels. At a 20 % hydrogen blend CO2 emissions are reduced by 22–31 % CO emissions by 39–60 % and HC emissions by 21–60 %. This environmental benefit however is accompanied by a critical trade-off: a severe increase in NOx emissions which rose by 200–420 % due to significantly elevated combustion temperatures. The power outputs are increased by 2–16 % with hydrogen addition enabling lower-energy–density fuels like methane and propane to achieve performance parity with gasoline. Thermodynamic analysis confirms these gains with energy efficiency showing marked improvement particularly for methane which has increased from 42.0 % to 49.9 %. While hydrogen enrichment presents a viable pathway for enhancing engine performance and reducing the carbon emissions of power generators the profound increase in NOx necessitates the integration of advanced control and after-treatment systems for its practical and environmentally responsible deployment.
Techno-Economic Assessment of Green Hydrogen Production in Australia Using Off-Grid Hybrid Resources of Solar and Wind
Jun 2025
Publication
This study presents a techno-economic framework for assessing the potential of utilizing hybrid renewable energy sources (wind and solar) to produce green hydrogen with a specific focus on Australia. The model’s objective is to equip decision-makers in the green hydrogen industry with a reliable methodology to assess the availability of renewable resources for cost-effective hydrogen production. To enhance the credibility of the analysis the model integrates 10 min on-ground solar and wind data uses a high-resolution power dispatch simulation and considers electrolyzer operational thresholds. This study concentrates on five locations in Australia and employs high-frequency resource data to quantify wind and solar availability. A precise simulation of power dispatch for a large off-grid plant has been developed to analyze the PV/wind ratio element capacities and cost variables. The results indicate that the locations where wind turbines can produce cost-effective hydrogen are limited due to the high capital investment which renders wind farms uneconomical for hydrogen production. Our findings show that only one location—Edithburgh South Australia—under a 50% solar–50% wind scenario achieves a hydrogen production cost of 10.3 ¢USD/Nm3 which is lower than the 100% solar scenario. In the other four locations the 100% solar scenario proves to be the most cost-effective for green hydrogen production. This study suggests that precise and comprehensive resource assessment is crucial for developing hydrogen production plants that generate low-cost green hydrogen.
Integrated Optimization of Hydrogen Production: Evaluating Scope 3 Emissions and Sustainable Pathways
Jul 2025
Publication
The U.S. produces 10 million metric tons (MMT) of hydrogen annually emitting about 41 MMT of carbon dioxide equivalents (CO2-eqs). With rising hydrogen demand and new emission regulations integrating conventional and novel hydrogen production systems is crucial. This study presents an integrated optimization framework to model diversified hydrogen economies as mixed integer linear programs (MILPs). Moreover the accounting of emissions extends to the system exterior (scope 3) thus providing a comprehensive sustainability assessment. The primary focus of the presented computational example is to analyze the impact of scope 3 emissions particularly material emissions during the construction phase on process system optimization while complying with stringent environmental constraints such as carbon limits. By evaluating emission reduction scenarios the model highlights the role of power purchase agreements (PPAs) from renewable sources and the trade-offs between conventional and novel hydrogen production technologies. The key findings indicate that while electrolyzer-based systems (PEM and AWE) offer potential for emission reduction their high energy demand and significant scope 3 material emissions pose challenges for a complete transition in the near term. The study identified two optimal design configurations: one utilizing PPAs as the primary energy source coupled with the conventional SMR-CCS process and another that combines both conventional (SMR-CCS) and novel hydrogen production technologies under a hybrid purview. Ultimately the findings contribute toward the ongoing efforts to achieve true net-carbon neutrality.
Development of a MILP Optimization Framework to Design Grid-connected Microgrids: Enhancing Operational Synergy Among Wind, Solar, Batteries, and Hydrogen Storage
Sep 2025
Publication
By integrating Renewable Energy Sources (RES) and storage devices Hybrid Energy Systems (HESs) represent a promising solution for decarbonizing isolated and remote communities. Proper sizing and management of systems comprising a variety of components requires however more advanced methods than conventional energy systems. This study proposes a novel Mixed Integer Linear Programming (MILP) framework for the simultaneous design of a grid-connected HES supported by renewable generators. Unlike the standard design approach based on parametric dispatch strategies this framework simultaneously optimizes the energy management of each system configuration under analysis. The novel approach is applied to size a combination of Li-Ion batteries an alkaline electrolyzer H2 tanks and a PEM fuel cell to maximize the NPV of a system including a wind turbine and a photovoltaic field. Managing thousands of variables at the same time the framework simultaneously optimizes how all components are used to fulfill the load and balance the input/export of power within a limited electrical network. Results show that the combination of BESS and H2 can provide for both the need for short- and long-term energy storage and that the MILP optimization can effectively allocate the energy flows and produce 558 k€ of revenues per year 15.5% of the initial investment cost of 3.6 M€. The investment cost of the system is recovered in six years and presents an NPV of 5.51 M€ after 20 years. Results from the proposed method are also compared to common approaches based on rule-based parametric dispatch strategies demonstrating the superiority of MILP for the design and management of complex HESs.
Hydrogen Barrier Coatings: Application and Assessment
Sep 2025
Publication
Hydrogen embrittlement (HE) threatens the structural integrity of industrial components exposed to hydrogenrich environments. This review critically explores hydrogen barrier coatings (HBCs) polymeric metallic ceramic and composite their application and assessment focusing on measured effectiveness in limiting hydrogen permeation and hydrogen embrittlement. Also coating application methods and permeation assessment techniques are evaluated. Recent advances in nanostructured and hybrid coatings are emphasized highlighting the pressing need for durable scalable and environmentally sustainable hydrogen barrier coatings to ensure the reliability of emerging hydrogen-based energy solutions. This comprehensive critical review further distinguishes itself by linking coating deposition methods to defect-driven transport behaviour critically assessing permeation test approaches. It also highlights the emerging role of polymeric and hybrid multilayer coatings with direct implications for advanced and reliable hydrogen production storage and transport infrastructure.
Synthesis of Activated Carbon from Zhundong Coal and its Hydrogen Storage Application
May 2025
Publication
Activated carbon as a hydrogen storage material possesses advantages such as low cost high safety lightweight and good cycling performance. Zhundong coal characterized by low calorific value high volatility and elevated reaction activity stands out as an exceptional raw material for the production of activated carbon. This study employed Zhundong coal for the synthesis of hydrogen storage activated carbon exploring the impact of acid treatment and varied activation conditions on Zhundong coal. The specific surface area of sample ZD-HK3-AC is 1980 m2 /g and the gravimetric hydrogen storage density reaches 0.91 wt% under the condition of 80bar at room temperature. The adsorption–desorption isotherms nearly overlapped demonstrating excellent cycling performance and high mechanical strength. At the same time the relationship between the pore structure parameters of activated carbon and hydrogen storage density was explored revealing the mechanism of activated carbon adsorption and hydrogen storage. These findings hold significant guiding implications for the preparation and research of hydrogen storage materials utilizing activated carbon.
Advancing Electrochemical Modelling of PEM Electrolyzers through Robust Parameter Estimation with the Weighted Mean of Vectors Algorithm
Jul 2025
Publication
The electrochemical modelling of proton exchange membrane electrolyzers (PEMEZs) relies on the precise determination of several unknown parameters. Achieving this accuracy requires addressing a challenging optimization problem characterized by nonlinearity multimodality and multiple interdependent variables. Thus a novel approach for determining the unknown parameters of a detailed PEMEZ electrochemical model is proposed using the weighted mean of vectors algorithm (WMVA). An objective function based on mean square deviation (MSD) is proposed to quantify the difference between experimental and estimated voltages. Practical validation was carried out on three commercial PEMEZ stacks from different manufacturers (Giner Electrochemical Systems and HGenerators™). The first two stacks were tested under two distinct pressure-temperature settings yielding five V–J data sets in total for assessing the WMVA-based model. The results demonstrate that WMVA outperforms all optimizers achieving MSDs of 1.73366e−06 1.91934e−06 1.09306e−05 6.18248e−05 and 4.41586e−06 corresponding to improvements of approximately 88% 82.9% 82.4% 54.5% and 59.5% over the poorest-performing algorithm in each case respectively. Moreover comparative analyses statistical studies and convergence curves confirm the robustness and reliability of the proposed optimizer. Additionally the effects of temperature and hydrogen pressure variations on the electrical and physical steady-state performance of the PEMEZ are carefully investigated. The findings are further reinforced by a dynamic simulation that illustrates the impact of temperature and supplied current on hydrogen production. Accordingly the article facilitates better PEMEZ modelling and optimizing hydrogen production performance across various operating conditions.
Numerical Modelling of Gas Mixing in Salt Caverns During Cyclic Hydrogen Storage
Oct 2025
Publication
This study presents the development of a robust numerical model for simulating underground hydrogen storage (UHS) in salt caverns with a particular focus on the interactions between original gas-methane (CH4) and injected gas represented by hydrogen (H2). Using the Schlumberger Eclipse 300 compositional reservoir simulator the cavern was modelled as a highly permeable porous medium to accurately represent gas flow dynamics. Two principal mixing mechanisms were investigated: physical dispersion modelled by numerical dispersion and molecular diffusion. Multiple cavern configurations and a range of dispersion–diffusion coefficients were assessed. The results indicate that physical dispersion is the primary factor affecting hydrogen purity during storage cycles while molecular diffusion becomes more significant during long-term gas storage. Gas mixing was shown to directly impact the calorific value and quality of withdrawn hydrogen. This work demonstrates the effectiveness of commercial reservoir simulators for UHS analysis and proposes a methodological framework for evaluating hydrogen purity in salt cavern storage operations.
In-service and Repair Welding of Pressurized Hydrogen Pipelines - A Review on Current Challenges and Strategies
Aug 2025
Publication
Hydrogen is the energy carrier for a sustainable future without fossil fuels. As this requires a reliable transportation infrastructure the conversion of existing natural gas (NG) grids is an essential part of the worldwide individual national hydrogen strategies in addition to newly erected pipelines. In view of the known effect of hydrogen embrittlement the compatibility of the materials already in use (typically low-alloy steels in a wide range of strengths and thicknesses) must be investigated. Initial comprehensive studies on the hydrogen compatibility of pipeline materials indicate that these materials can be used to a certain extent. Nevertheless the material compatibility for hydrogen service is currently of great importance. However pipelines require frequent maintenance and repair work. In some cases it is necessary to carry out welding work on pipelines while they are under pressure e.g. the well-known tapping of NG grids. This in-service welding brings additional challenges for hydrogen operations in terms of additional hydrogen absorption during welding and material compatibility. The challenge can be roughly divided into two parts: (1) the possible austenitization of the inner piping material exposed to hydrogen which can lead to additional hydrogen absorption and (2) the welding itself causes an increased temperature range. Both lead to a significantly increased hydrogen solubility in the respective materials compared to room temperature. In that connection the knowledge on hot tapping on hydrogen pipelines is rare so far due to the missing service experiences. Fundamental experimental investigations are required to investigate the possible transferability of the state-of-the-art concepts from NG to hydrogen pipeline grids. This is necessary to ensure that no critical material degradation occurs due to the potentially increased hydrogen uptake. For this reason the paper introduces the state of the art in pipeline hot tapping encompassing current research projects and their individual solution strategies for the problems that may arise for future hydrogen service. Methods of material testing their limitations and possible solutions will be presented and discussed.
Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating
Sep 2025
Publication
Switch-point heating systems are essential for railway reliability and safety in winter but present logistical and economic challenges in remote regions. This study presents a novel application of a hydrogen-enabled microgrid as an off-grid energy solution for powering a switch-point heating system at a rural Austrian railway station offering an alternative to conventional grid-based electricity with a specific focus on enhancing the share of renewable energy sources. The proposed system integrates photovoltaics (PV) optional wind energy and hydrogen storage to address the seasonal mismatch between a high energy supply in the summer and peak winter demand. Three energy supply scenarios are analysed and compared based on local conditions technical simplicity and economic viability. Energy flow modelling based on site-specific climate and operational data is used to determine hydrogen production rates storage capacity requirements and system sizing. A comprehensive cost analysis of all major subsystems is conducted to assess economic viability. The study demonstrates that hydrogen is a highly effective solution for seasonal energy storage with a PV-only configuration emerging as the most suitable option under current site conditions. Thus it offers a replicable framework for decarbonising critical stationary railway infrastructure.
An Integrated AI-driven Framework for Maximizing the Efficiency of Heterostructured Nanomaterials in Photocatalytic Hydrogen Production
Jul 2025
Publication
The urgency for sustainable and efficient hydrogen production has increased interest in heterostructured nanomaterials known for their excellent photocatalytic properties. Traditional synthesis methods often rely on trial-and-error resulting in inefficiencies in material discovery and optimization. This work presents a new AI-driven framework that overcomes these challenges by integrating advanced machine-learning techniques specific to heterostructured nanomaterials. Graph Neural Networks (GNNs) enable accurate representations of atomic structures predicting material properties like bandgap energy and photocatalytic efficiency within ±0.05 eV. Reinforcement Learning optimises synthesis parameters reducing experimental iterations by 40% and boosting hydrogen yield by 15–20%. Physics-Informed Neural Networks (PINNs) successfully predict reaction pathways and intermediate states minimizing synthesis errors by 25%. Variational Autoencoders (VAEs) generate novel material configurations improving photocatalytic efficiency by up to 15%. Additionally Bayesian Optimisation enhances predictive accuracy by 30% through efficient hyperparameter tuning. This holistic framework integrates material design synthesis optimization and experimental validation fostering a synergistic data flow. Ultimately it accelerates the discovery of novel heterostructured nanomaterials enhancing efficiency scalability and yield thus moving closer to sustainable hydrogen production with improvements in photolytic efficiency setting a benchmark for AI-assisted research.
Hydrogen Production Intensification by Energy Demand Management in High-Temperature Electrolysis
Aug 2025
Publication
Solid oxide electrolysers (SOEs) can decarbonise H2 supply when powered by renewable electricity but remain constrained by high electrical demand and integration penalties. Our objective is to minimise the electrical (Pel) and thermal (Qth) energy demand per mole of H2 by jointly tuning cell temperature steam fraction steam utilisation pressure and current density. Compared with prior single-variable or thermo-neutral-constrained studies we develop and validate a steady-state process-level optimisation framework that couples an Aspen Plus SOE model with electrochemical post-processing and heat caused by ohmic resistance recovery. A Box–Behnken design explores five key operating parameters to capture synergies and trade-offs between Qth and Pel energy inputs. Single-objective optimisation yields Pel = 170.1 kJ mol⁻¹ H2 a 41.4% reduction versus literature baselines. Multi-objective optimisation using an equal-weighted composite desirability function aggregating thermal and electrical demands further reduces Pel by 21.2% while balancing thermal input 4–8% lower than single-objective baselines at moderate temperature (~781 °C) and pressure (~17.5 bar). Findings demonstrate a clear process intensification advantage over previous studies by simultaneously leveraging operating parameter synergies and heat-integration. However results are bounded by steady-state perfectly mixed isothermal assumptions. The identified operating windows are mechanistically grounded targets that warrant stack-scale and plantlevel validation.
Cyclic Liquid Organic Hydrogen Carriers for Efficient Hydrogen Storage using Mesoporous Catalytic Systems
Jul 2025
Publication
Liquid organic hydrogen carriers (LOHCs) are a promising class of hydrogen storage media in which hydrogen is reversibly bound to organic molecules. In this work we focus explicitly on cyclic LOHCs (both homocyclic and heterocyclic organic compounds) and their catalytic dehydrogenation. We clarify that other carriers (e.g. alcohols like methanol or carboxylic acids like formic acid) exist but are not the focus here; these alternatives are discussed only in comparative context. Cyclic LOHCs typically enable safe ambient-temperature hydrogen storage with hydrogen contents around 6–8 wt%. Key challenges include the high dehydrogenation temperatures (often 200–350 °C) catalyst costs and catalyst deactivation via coke formation. We introduce a comparative analysis table contrasting cyclic LOHCs with alternative carriers in terms of hydrogen density operating conditions catalyst types toxicity and cost. We also expand the catalyst discussion to highlight coke formation mechanisms and the use of mesoporous metal-oxide supports to mitigate deactivation. Finally a techno-economic analysis is provided to address system costs of LOHC storage and regeneration. Finally we underscore the viability and limitations of cyclic LOHCs including practical storage capacities catalyst life and projected costs.
No more items...