Publications
Fuel Cell Air Compressor Concepts to Enhance the Efficiency of FCEV
Oct 2025
Publication
The thermal management system and the balance-of-plant (BoP) in fuel cell electric vehicles (FCEV) are characterized by a particularly high level of complexity and a number of interfaces. Optimizing the efficiency of the overall vehicle is of special importance to maximize the range and increase the attractiveness of this technology to customers. This paper focuses on the optimization potential of the air supply system in the BoP whereby the charging concepts of the electric supercharger (ESC) and the electrically assisted turbocharger (EAT) as well as the integration of water spray injection (WSI) at the compressor inlet are investigated in the framework of an FCEV complete vehicle co-simulation. As a benchmark for the integration of these optimization measures the complete vehicle co-simulation is designed for a fuel cell electric passenger car of the current generation. Here thermo-hydraulic fluid circuits in the thermal management software KULI are coupled with mathematical-physical models in MATLAB/Simulink. Applying advanced simulation methodologies for the components of fuel cell powertrain and vehicle cabin enables the mapping of the effects of realistic operating conditions on the FCEV characteristics. The EAT offers the advantage over the ESC that due to the arrangement of an exhaust gas turbine a part of the exhaust gas enthalpy flow downstream of the fuel cell stack can be recovered which reduces the electrical compressor drive power. Moreover an additional reduction of this power consumption can be achieved by WSI as the effect of evaporative cooling lowers the initial compression temperature. For analysis and comparison these concepts are again modeled with high degree of detail and integrated into the benchmark overall vehicle simulation. The results indicate considerable reductions in the electric compressor drive power of the EAT compared to the ESC with noteworthy potential for reducing the vehicle’s hydrogen consumption. At an operating point in Worldwide harmonized Light Duty Test Cycle (WLTC) under 35 ◦ C ambient temperature and 25 % relative humidity the electrical compressor drive power shows a reduction potential of −40 % which corresponds to a vehicle-level hydrogen consumption reduction of up to −3 %. In addition the results also highlight the effect of the WSI in both charging concepts whereby its potential to reduce the hydrogen consumption on the overall vehicle level is relatively small. In WLTC at 35 ◦C ambient temperature and 25 % relative humidity the compressor drive power reduction potential for ESC and EAT averages −5 % while the effect on hydrogen consumption is only around −0.25 %.
Influence of Optimized Decarburization on Hydrogen Uptake and Aqueous Corrosion Behaviors of Ultrasong Martensitic Steel
Oct 2025
Publication
This study examined the effects of microstructural alterations by controlling the surface carbon gradient via a thermal decarburizing process on hydrogen evolution adsorption and permeation along with neutral aqueous corrosion behavior of an ultra-high-strength steel with a tensile strength of 2.4 GPa. Microstructural analyses showed that an optimized decarburizing process at 1100 ◦C led to partial transformation to ferrite without precipitating Fe3C in a marked fraction. Electrochemical impedance spectroscopy along with the permeation results revealed that there was a notable decrease in hydrogen evolution and subsurface hydrogen concentration. Moreover immersion test in a neutral aqueous condition showed slower corrosion kinetics with a comparatively uniform corroded surface indicating improved corrosion resistance. However the extent of improvement is significantly limited under non-optimized decarburizing conditions specifically when the temperature is below or above 1100 ◦C due to insufficient decarburization or the formation of coarse-spheroidized Fe3C particles accompanied by a porous subsurface layer. In particular a far greater adsorption tendency at bridge sites on Fe3C (001) in a pre-charged surface is highlighted. This study provides insight that the adjustment of the carbon gradient through an optimized annealing process can be an effective technical strategy to overcome the critical drawbacks of ultrastrong martensitic steels under hydrogen-rich or corrosive conditions.
Highly Selective Production of ‘‘Jadeite Hydrogen” from the Catalytic Decomposition of Diesel
Mar 2025
Publication
Clean hydrogen (H2) is highly desirable for the sustainable development of society in the era of carbon neutrality. However the current capability of water electrolysis and steam methane (CH4) reforming to produce green and blue H2 is very limited mainly due to the high production cost difficult scale-up technology or operational risk. Here we propose the direct catalytic decomposition of diesel using a nano-Fe-based catalyst to produce the so-called ‘‘jadeite H2” while simultaneously fixing the carbon from the diesel in the form of carbon nanotubes (CNTs). Efforts are made to understand the suppression mechanism of the CH4 byproduct such as by tuning the catalyst type space velocity and reaction time. The optimal green index (GI)—that is the molar ratio of H2/carbon in a gaseous state—of the proposed technology exceeds 42 which is far higher than those of any previously reported chemical vapor deposition (CVD) method. Moreover the carbon footprint (CFP) of the proposed technology is far lower than those of grey H2 blue H2 and other dehydrogenation technologies. Compared with most of the technologies mentioned above the energy consumption (per mole of H2) and reactor amplification of the proposed technology validate its high efficiency and great practical feasibility.
Recent Advances in MXene-based Nanocomposites for Photocatalytic Wastewater Treatment, Carbon Dioxide Reduction, and Hydrogen Production: A Comprehensive Review
Oct 2025
Publication
This review critically examines recent advancements in MXene-based nanocomposites and their roles in photocatalytic applications for environmental remediation and renewable energy. MXenes two-dimensional transition metal carbides nitrides and carbonitrides (Mn+1XnTx where M = transition metal X = C/N Tx = surface terminations such as –O –OH –F) exhibit high electrical conductivity tunable band structures hydrophilic surfaces and large specific surface areas. These properties make them highly effective in enhancing photocatalytic activity when incorporated into composite systems. The review summarizes synthesis methods structural modifications and the mechanisms underlying photocatalytic performance highlighting their efficiency in degrading organic inorganic and microbial pollutants converting CO₂ into value-added chemicals and generating H₂ via water splitting. Key challenges including stability oxidation and scalability are analyzed along with strategies such as surface passivation heterojunction formation and hybridization with antioxidant materials to improve performance. Future research should focus on developing green synthesis methods improving long-term stability and exploring scalable production to facilitate practical deployment. These insights provide a comprehensive understanding of MXene nanocomposites supporting their advancement as multifunctional photocatalysts for a clean and sustainable energy future.
Pathways to Environmental Sustainability through Energy Efficiency: A Strategic Next Energy Vision for Sustainable Development by 2050
Oct 2025
Publication
As the global push for carbon neutrality accelerates energy efficiency has become essential for sustainable development especially for nations like Nigeria that face rising energy demands and significant environmental challenges. This study explores how integrating energy efficiency with carbon neutrality can support Nigeria’s strategic energy goals while offering global lessons for other countries facing similar challenges focusing on key sectors including industry transport and power generation. The study systematically examines the impacts of renewable energy (RE) technologies like solar wind and hydropower—alongside policy reforms technological innovations and demand-side management strategies to advance energy efficiency in Nigeria. Key findings include the identification of strategic policy frameworks technological solutions and the transformative role of green hydrogen in decarbonizing hard-to-electrify sectors. The study also emphasizes the importance of international climate finance decentralized RE systems like solar mini-grids for improving energy access and economic opportunities for job creation in the RE sector. Furthermore it highlights the need for behavioral changes community engagement and consistent policy implementation to address infrastructure gaps and drive energy efficiency goals. The novelty of this research lies in its scenario-based analysis of Nigeria’s low-carbon transition detailing both the opportunities and challenges such as policy inconsistencies infrastructure deficits and financial constraints. The findings stress the importance of international collaboration technological advancements and targeted investments to overcome these challenges. By offering actionable insights and strategic recommendations this study provides a roadmap for policymakers industry stakeholders and researchers to drive Nigeria towards a sustainable carbon-neutral future by 2050.
Catalytic Pathways Towards Sustainable Aviation Fuel Production from Waste Biomass: A Systematic Review
Oct 2025
Publication
Sustainable aviation fuel (SAF) derived from renewable resources presents a practical alternative to Jet-A fuel by mitigating the ecological impact of aviation’s reliance on fossil fuel. Among the available feedstocks waste biomass and waste oils present key advantages due to their abundance sustainability potential and waste valorization benefits. Despite continuous progress in SAF technologies comprehensive assessments of catalytic routes and their efficiency in transforming waste-based feedstocks into aviation-grade fuels remain limited. This review addresses this gap by systematically evaluating recent studies (2019–2024) that investigate catalytic conversion and upgrading of waste-derived biomass toward SAF production. Selection of thermochemical processes including pyrolysis gasification and hydrothermal liquefaction or biological pathways is driven by the physicochemical characteristics of the waste. These processes yield intermediates such as biocrude and bio-oils undergo catalytic upgrading to meet aviation fuel standards. Zeolitic acids sulfided NiMo or CoMo catalysts noble-metal/oxide systems and bifunctional or carbon-based catalysts drive hydroprocessing deoxygenation cracking and isomerisation reactions delivering high selectivity toward C8-C16fractions. Performance mechanisms and selectivity of these catalysts are critically assessed in relation to feedstock characteristics and operating conditions. Key factors such as metal-acid balance hierarchical porosity and tolerance to heteroatoms enhance catalytic efficiency. Persistent challenges including deactivation coking sintering and feedstock impurities continue to limit long-term performance and scalability in waste-to-SAF applications. Mitigation strategies including oxidative and resulfidation regeneration and support modification have demonstrated improved stability. Moreover waste-derived catalysts and circularity enhance process sustainability. Future work should align catalyst design with feedstock pretreatment and techno-economic assessments to scale sustainable and cost-effective waste-to-SAF pathways.
QDQN-ThermoNet: A Quantum-driven Dual Depp Q-network Framework for Intelligent Thermal Regulation in Solid-state and Hydrogen Fuel Cell Systems of Future Electric Vehicles
Oct 2025
Publication
This paper presents QDQN-ThermoNet a novel Quantum-Driven Dual Deep Q-Network framework for intelligent thermal regulation in next-generation electric vehicles with hybrid energy systems. Our approach introduces a dual-agent architecture where a classical DQN governs solid-state battery thermal management while a quantumenhanced DQN regulates proton exchange membrane fuel cell dynamics both sharing a unified quantumenhanced experience replay buffer to facilitate cross-system information transfer. Hardware-in-the-Loop validation across diverse operational scenarios demonstrates significant performance improvements compared to classical methods including enhanced thermal stability (95.1 % vs. 82.3 %) faster thermal response (2.1 s vs. 4.7 s) reduced overheating events (0.3 vs. 3.2) and superior energy efficiency (22.4 % energy savings). The quantum-enhanced components deliver 38.7 % greater sample efficiency and maintain robust performance under sparse data conditions (33.9 % improvement) while material-adaptive control strategies leveraging MXeneenhanced phase change materials achieve a 50.3 % reduction in peak temperature rise during transients. Component lifetime analysis reveals a 33.2 % extension in battery service life through optimized thermal management. These results establish QDQN-ThermoNet as a significant advancement in AI-driven thermal management for future electric vehicle platforms effectively addressing the complex challenges of coordinating thermal regulation across divergent energy sources with different optimal operating temperatures.
Fuel Cell and Electric Vehicles: Resource Use and Associated Environmental Impacts
Oct 2025
Publication
Achieving transport decarbonization depends on electric vehicle (EV) and fuel cell vehicle (FCV) deployment yet their material demands and impacts vary by vehicle type. This study explores how powertrain preferences in light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) shape future resource use and material-related environmental outcomes. Using dynamic material flow analysis and prospective life cycle assessment we assess three scenarios. In the S3 EV-dominant scenario 2050 lithium and cobalt demand rises by up to 11.9-fold and 1.8-fold relative to 2020 with higher global warming and human toxicity impacts. The S2 FCV-dominant scenario leads to a 21.7-fold increase in platinum-group metal demand driving up freshwater ecotoxicity and particulate emissions. A balanced S1 scenario EVs in LDVs and FCVs in HDVs yields moderate material demand and environmental burdens. These findings demonstrate that no single pathway can fully resolve material-related impacts while combining EVs and FCVs across LDVs and HDVs enables a more balanced and sustainable transition.
A Review and Inventory of U.S. Hydrogen Emissions for Production, Distribution and Storage
Nov 2025
Publication
In response to the growing global interest in hydrogen as an energy carrier this study provides the first attempt to develop a baseline inventory of U.S. hydrogen emissions from production distribution and storage. The scope of this study was limited to pure hydrogen emissions and excludes emissions from low purity hydrogen streams and carriers. A detailed literature search was conducted utilizing various greenhouse gas emissions inventory protocol principles and guidelines to consolidate a list of activity data and emission factors. The best available activity data and emission factors were then selected via a Multi-Criteria-Based Decision Making Method named Technique for Order Preference by Similarity to Ideal Solution or modelled using best-engineering estimates. The study estimated total U.S. hydrogen emissions of 0.063 MMTA with emission bounds ranging from 0.02 to 0.11 MMTA. Given the total estimated H2 production capacity of 7.97 MMTA the study estimates a total U.S. hydrogen emission rate for production distribution and storage of 0.79% (0.26%–1.32%). To reduce the uncertainty in the estimated total hydrogen emissions future work should be conducted to measure facility-level hydrogen emission factors across multiple sectors. The inventory framework developed in this study can serve as a living document that can be updated and enhanced as more empirical data is obtained. This study also provides detailed insights regarding key emission or leakage sources and causes from each supply chain stage. The insights and conclusions from this study can provide direction for hydrogen production companies and safety professionals as they develop hydrogen emission mitigation measures and controls.
From Investment to Impact: Exploring Socio-economic Prospect of Hydrogen Investment in Tees Valley, UK
Oct 2025
Publication
Financial viability is fundamental for investment success however long run sustainable investment relies on delivering tangible socio-economic benefits that foster societal acceptance enhancing community welfare and well-being. This study developed a quantitative model to evaluate the socio-economic impact of a proposed 1 GW green and 2 GW blue hydrogen investment in Tees Valley UK from 2027 to 2035. We introduced the socioeconomic impact (SEI) ratio defined as the ratio of socio-economic impact to the Levelized Cost of Hydrogen (LCOH) to illustrate the significance of socio-economic impact beyond financial returns. Findings indicate that the cumulative environmental and economic impact of green hydrogen amounted to £1.5 ± 0.5 bn and £1.35 ± 0.27 bn respectively with an employment impact of £269 ± 28 mn. In contrast the proposed blue hydrogen investment is expected to deliver £2.9 ± 0.9 bn environmental impact £1.84 ± 0.37 bn economic impact and £212 ± 26 mn employment social impact. The SEI ratio of green hydrogen was found to range between 48 % and 62 % and 60 %–79 % for blue hydrogen suggesting overall SEI ratio of approximately 60 % for combined green and blue investment. Sensitivity analysis using Monte Carlo simulation revealed that the results are particularly sensitive to the Gross Value Added (GVA) emission and employment factors. These findings highlight the importance of integrating socio-economic considerations into hydrogen planning investment strategies and decision-making to optimise environmental societal and economic outcomes.
Numerical Investigation of Combustion, Performance, and Emission Attributes of Premixed Ammonia-hydrogen/air Flames within a Swirl Burners of a Gas Turbine
Oct 2025
Publication
This study investigates numerically combustion attributes and NOx formation of premixed ammonia-hydrogen/air flames within a swirl burner of a gas turbine considering various conditions of hydrogen fraction (HF: 0 % 5 % 30 % 40 % and 50 %) equivalence ratio (φ: 0.85 1.0 and 1.2) and mixture inlet temperature (Tin: 400–600 K). The results illustrate that flame temperature increases with hydrogen addition from 1958 K for pure ammonia to 2253 K at 50 % HF. Raising the inlet temperature from 400 K to 600 K markedly enhances combustion intensity resulting in an increase of the Damköhler number (Da) from 117 to 287. NOx levels rise from ∼1800 ppm (0 % HF) to ∼7500 ppm (50 % HF) and peak at 8243 ppm under lean conditions (φ = 0.85). Individual NO N2O and NO2 emissions also reach maxima at φ = 0.85 with values of 5870 ppm 2364 ppm and 10 ppm respectively decreasing significantly under richer conditions (2547 ppm 1245 ppm and 5 ppm at φ = 1.2). These results contribute to advancing low-carbon fuel technologies and highlight the viability of ammonia-hydrogen co-firing as a pathway toward sustainable gas turbine operation.
Solar-powered Hydrogen Production: Modelling PEM Electrolyser Systems for Optimal Integration with Solar Energy
Oct 2025
Publication
This study presents an experimental approach to modelling PEM electrolysers for green hydrogen production using solar energy. The objective is to implement a temperature steady-state electrolyser model to assess the optimal coupling configuration with a photovoltaic plant and estimate the yearly hydrogen production capacity. The research focuses on the energy consumption of ancillary systems under different load conditions developing a steady-state operational model that improves hydrogen production predictions by accounting for these consumptions. The model based on polynomial equations captures the non-linear variation in energy costs under partial load conditions. PEM electrolysers produce hydrogen above 3.0 quality (99.9% purity) and it is feasible to integrate purification processes to reach 5.0 quality (99.999% purity). While small-scale systems include purification large-scale facilities separate it enabling process optimisation. Two models are introduced to estimate hydrogen mass flow depending on purity: a base-purity model and a high-purity model that includes drying and pressure swing adsorption. Both are based on experimental data from a five-year-old small-scale electrolyser and are applicable to large-scale systems at partial load. Due to test conditions the model applied to large-scale facilities underestimates hydrogen production affected by energy losses from a non-optimised purification process and electrolyser degradation. Model validation with large-scale operational data from the literature shows the model captures plant behaviour well despite the consistent underestimation described above. The model is applied to several European locations to identify optimal photovoltaic-to-electrolyser ratios. Oversizing factors between 1.4 and 2 are needed to cover ancillary consumption. The levelised cost remains comparable for both purity levels despite higher energy demands for high-purity hydrogen due to the greater cost of the electrolyser over the photovoltaic plant.
Advancing the Energy Transition in the Steel Industry: A Game-theoretic Bilevel Approach for Green Hydrogen Supply Chains
Sep 2025
Publication
Green hydrogen is essential for advancing the energy transition as it is regarded as a CO2-neutral flexible and storable energy carrier. Particularly in steel production which is known for its high energy intensity hydrogen has great potential to replace conventional energy sources. In a game-theoretic bi-level optimization model involving a power plant operator and a steel company we investigate in which situations the production and use of green hydrogen is advantageous from an economic and ecological point of view. Through an extensive case study based on a realworld scenario we can observe that hydrogen production can serve as a profitable and flexible secondary income opportunity for the power plant operator and help avoid curtailment and spot market losses. On the other hand the steel manufacturer can reduce CO2 emissions and associated costs while also meeting the growing customer demand for low-carbon products. However our findings also highlight important trade-offs and uncertainties. While lower electricity generation costs or improved electrolyzer efficiency enhance hydrogen’s competitiveness increases in coal and CO2 emission prices do not always result in greater hydrogen adoption. This is due to the persistent reliance on a non-replaceable share of coal in steel production which raises the overall cost of both low-carbon and carbon-intensive steel. The model further shows that consumer demand elasticity plays a critical role in determining hydrogen uptake. These insights underscore the importance of not only reducing hydrogen costs but also designing supportive policies that address market acceptance and the full cost structure of green industrial products.
Process Analysis and Techno-economic Comparison of Aviation Biofuel Production via Microbial Oil and Ethanol Upgrading
Oct 2025
Publication
The transport sector is the largest source of greenhouse gases in the EU after the energy supply one contributing approximately 27% of total emissions. Although decarbonization pathways for light-duty transport are relatively well established heavy-duty transport shipping and aviation emissions are difficult to eliminate through electrification. In particular the aviation sector is strongly dependent on liquid hydrocarbons making the development of sustainable aviation fuels (SAFs) a critical priority for achieving long-term climate targets. This study evaluates four biomass-to-liquid pathways for producing jet-like SAF from lignocellulosic biomass: (1) triacylglycerides (TAGs) production from syngas fermentation (2) TAGs production from sugar fermentation (3) ethanol production from syngas fermentation and (4) ethanol production from sugar fermentation. These pathways are simulated using Aspen Plus™ and the mass and heat balances obtained are used to assess their technical performance (e.g. carbon utilization energetic fuel efficiency) and techno-economic viability (e.g. production cost capital investment). Pathway (4) demonstrated the highest jet fuel selectivity (63%) and total carbon utilization (32.5%) but at higher power demands. Pathway (1) was self-sufficient in energy due to internal syngas utilization but exhibited lower carbon efficiencies. Cost analysis revealed that microbial oil-based pathways were restrained by higher hydrogen demands and lower product selectivity compared to ethanol-based routes. However with advancements in microbial oil production efficiency and reduced water usage these pathways could become competitive.
An Empirical Study of Kingdom of Saudi Arabia Citizens' Intentions about the Adoption of Hydrogen Fuel Cell Vehicles
Oct 2025
Publication
A comprehensive understanding of consumer preferences and demand factors is essential for successfully implementing demand-side strategies for alternative energy solutions such as hydrogen. This study aims to identify the key determinants influencing the adoption propensity for Hydrogen fuel cell vehicles (HFCVs) in the Kingdom of Saudi Arabia (KSA). Developing a conceptual framework to organise the key factors influencing consumers’ decisions to adopt or reject this technology. Using data from an online survey of 384 prospective customers we employed structural equation modelling (SEM) via Smart-PLS 4.1 to analyze consumer intent. The findings reveal that perceived benefits barriers opinions and governmental initiatives have a significant impact on the likelihood of HFCV adoption. The study emphasises the significance of collaborative efforts among key stakeholders including manufacturers hydrogen producers research institutions and financial entities in addressing challenges and advancing the development of the hydrogen transportation ecosystem in KSA. Financial incentives and subsidies such as purchasing subsidies awareness and reduced registration costs for HFCVs may be instituted.
Towards Green and Smart Ports: A Review of Digital Twin and Hydrogen Applications in Maritime Management
Oct 2025
Publication
Modern ports are pivotal to global trade facing increasing pressures from operational demands resource optimization complexities and urgent decarbonization needs. This study highlights the critical importance of digital model adoption within the maritime industry particularly in the port sector while integrating sustainability principles. Despite a growing body of research on digital models industrial simulation and green transition a specific gap persists regarding the intersection of port management hydrogen energy integration and Digital Twin (DT) applications. Specifically a bibliometric analysis provides an overview of the current research landscape through a study of the most used keywords while the document analysis highlights three primary areas of advancement: optimization of hydrogen storage and integrated energy systems hydrogen use in propulsion and auxiliary engines and DT for management and validation in maritime operations. The main outcome of this research work is that while significant individual advancements have been made across critical domains such as optimizing hydrogen systems enhancing engine performance and developing robust DT applications for smart ports a major challenge persists due to the limited simultaneous and integrated exploration of them. This gap notably limits the realization of their full combined benefits for green ports. By mapping current research and proposing interdisciplinary directions this work contributes to the scientific debate on future port development underscoring the need for integrated approaches that simultaneously address technological environmental and operational dimensions.
Nodal Marginal Price Decomposition Mechanism for the Hydrogen Energy Market Considering Hydrogen Transportation Characteristics
Oct 2025
Publication
With the growing significance of hydrogen in the global energy transition research on its pricing mechanisms has become increasingly crucial. Focusing on hydrogen markets predominantly supplied by electrolytic production this study proposes a nodal marginal hydrogen price decomposition algorithm that explicitly incorporates the time-delay dynamics inherent in hydrogen transmission. A four-dimensional price formation framework is established comprising the energy component network loss component congestion component and time-delay component. To address the nonconvex optimization challenges arising in the market-clearing model an improved second-order cone programming method is introduced. This method effectively reduces computational complexity through the reconstruction of time-coupled constraints and reformulation of the Weymouth equation. On this basis the analytical expression of the nodal marginal hydrogen price is rigorously derived elucidating how transmission dynamics influence each price component. Empirical studies using a modified Belgian 20-node system demonstrate that the proposed pricing mechanism dynamically adapts to load variations with hydrogen prices exhibiting a strong correlation with electricity cost fluctuations. The results validate the efficacy and superiority of the proposed approach in hydrogen energy market applications. This study provides a theoretical foundation for designing efficient and transparent pricing mechanisms in emerging hydrogen markets.
Optimization of Novel Variable-Channel-Width Solid Oxide Electrolysis Cell (SOEC) Design for Enhanced Hydrogen Production
Oct 2025
Publication
This study presents a novel solid oxide electrolysis cell (SOEC) design with variable channel widths to optimize thermal management and electrochemical performance for enhanced hydrogen production. Using high-fidelity computational modeling in COMSOL Multiphysics 6.1 five distinct channel width configurations were analyzed with a baseline model validated against experimental data. The simulations showed that modifying the channel geometry particularly in Scenario 2 significantly improved hydrogen production rates by 6.8% to 29% compared to a uniform channel design with the effect becoming more pronounced at higher voltages. The performance enhancement was found to be primarily due to improved fluid velocity regulation which increased reactant residence time and enhanced mass transport rather than a significant thermal effect as temperature distribution remained largely uniform across the cell. Additionally the inclusion of a dedicated heat transfer channel was shown to improve current density and overall efficiency particularly at lower voltages. While a small increase in voltage raised internal cell pressure the variable-width designs especially those with widening channels led to greater hydrogen output albeit with a corresponding increase in system energy consumption due to higher pressure. Overall the findings demonstrate that strategically designed variable-width channels offer a promising approach to optimizing SOEC performance for industrial-scale hydrogen production.
Effects of Operating Parameters on Combustion Characteristics of Hydrogen-Doped Natural Gas
Oct 2025
Publication
The operational optimization of industrial boilers utilizing hydrogen-enriched natural gas is constrained by two critical gaps: insufficient understanding of the coupled effects of hydrogen blending ratio equivalence ratio and boiler load on combustion performance— compounded by unresolved challenges of combustion instability flashback and elevated NOx emissions—and a lack of systematic investigations combining these parameters in industrial-scale systems (prior studies often focus on single variables like hydrogen fraction). To address this a comprehensive computational fluid dynamics (CFD) analysis was conducted on a 2.1 MW industrial boiler employing the Steady Laminar Flamelet Model (SLFM) with a modified k-ε turbulence model and the GRI-Mech 3.0 mechanism. Simulations covered hydrogen fractions (f(H2) = 0–25%) equivalence ratios (Φ = 0.8–1.2) and load conditions (15–100%). All NOx emissions reported herein are normalized to 3.5% O2 (mg/Nm3 ) for regulatory comparison. Results show that increasing the hydrogen content raises the flame temperature and NOx emissions while reducing CO and unburned hydrocarbons; a higher equivalence ratio elevates temperature and NOx with Φ = 0.8 balancing efficiency and emission control; and reducing load significantly lowers furnace temperature and NO emissions. Notably the boiler’s unique staged-combustion configuration (81% fuel supply to the central rich-combustion nozzle 19% to the concentric lean-combustion nozzle) was found to mitigate NOx formation by 15–20% compared to single-inlet burner designs and its integrated cyclone blades (generating maximum swirling velocity of 14.2 m/s at full load) enhanced fuel–air mixing which became particularly critical for maintaining combustion stability at low loads (≤20%) and high hydrogen blending ratios (≥20%). This study provides quantitative trade-off insights between combustion efficiency and pollutant formation offering actionable guidance for the safe efficient operation of hydrogen-enriched natural gas in industrial boilers.
Simulation of the Hydrogen Railway Engine Performance Under Different Load Conditions and Control Parameters
Oct 2025
Publication
The article examines the use of hydrogen fuel as an alternative to traditional diesel fuel for internal combustion engines (ICE) in railway applications. The main objective of the study is to analyze the operational consumption of hydrogen fuel based on the mathematical modeling of the working cycle of the EMD 12-645E3C engine installed on CIE 071 locomotives used in freight and passenger service. The article provides information on the design features of the EMD 12-645E3C engine its technical parameters and the results of bench tests. The indicator parameters of the engine at various controller positions are determined and analyzed and the results of mathematical modeling of its operation on hydrogen fuel are presented. Particular attention is paid to changes in indicator parameters including the maximum combustion pressure and the peak gas temperature in the cylinder as well as comparing the mass consumption of diesel and hydrogen fuel. The study results demonstrate that the use of hydrogen allows the engine to maintain effective power across all operational modes while simultaneously reducing energy costs up to 8%. In this case the pressure and temperature of the gases in the cylinder increased by 3–6% and 5–8%. Recommendations are also provided regarding technical challenges associated with transitioning to hydrogen fuel including the modernization of the combustion chamber fuel system and safety system.
No more items...