Publications
Assessment of the Use of a Passive Pre-Chamber in a Marine Engine Fueled with Ammonia–Hydrogen Mixtures
Oct 2025
Publication
This study investigates the combustion process in a marine spark-ignition engine fueled with an ammonia–hydrogen blend (15% hydrogen by volume) using a passive pre-chamber. A 3D-CFD model supported by a 1D engine model was employed to analyze equivalence ratios between 0.7 and 0.9 and pre-chamber nozzle diameters from 7 to 3 mm. Results indicate that combustion is consistently initiated by turbulent jets but at an equivalence ratio of 0.7 the charge combustion is incomplete. For lean mixtures reducing nozzle size improves flame propagation although not sufficiently to ensure stable operation. At an equivalence ratio of 0.8 reducing the nozzle diameter from 7 to 5 mm advances CA50 by about 6 CAD while further reduction causes minor variations. At richer conditions nozzle diameter plays a negligible role. Optimal performance was achieved with a 7 mm nozzle at equivalence ratio 0.8 delivering about 43% efficiency and 1.17 MW per cylinder.
Development of DC-DC Converters for Fuel-Cell Hybrid Power Systems in a Lift-Cruise Unmanned Aerial Vehicle
Oct 2025
Publication
Lift–cruise-type unmanned aerial vehicles (UAVs) powered by hydrogen fuel cells often integrate secondary energy storage devices to improve responsiveness to load fluctuations during different flight phases which necessitates an efficient energy management strategy that optimizes power allocation among multiple power sources. This paper presents an innovative fuel cell DC–DC converter (FDC) design for the hybrid power system of a lift–cruise-type UAV comprising a multi-stack fuel cell system and a battery. The novelty of this work lies in the development of an FDC suitable for a multi-stack fuel cell system through a dual-input single-output converter structure and a control algorithm. To integrate inputs supplied from two hydrogen fuel cell stacks into a single output a controller with a single voltage controller–dual current controller structure was applied and its performance was verified through simulations and experiments. Load balancing was maintained even under input asymmetry and fault-tolerant performance was evaluated by analyzing the FDC output waveform under a simulated single-stack input failure. Furthermore under the assumed flight scenarios the results demonstrate that stable and efficient power supply is achieved through power-supply mode switching and application of a power distribution algorithm.
Application and Research Progress of Mechanical Hydrogen Compressors in Hydrogen Refueling Stations: Structure, Performance, and Challenges
Nov 2025
Publication
The hydrogen energy industry is rapidly developing positioning hydrogen refueling stations (HRSs) as critical infrastructure for hydrogen fuel cell vehicles. Within these stations hydrogen compressors serve as the core equipment whose performance and reliability directly determine the overall system’s economy and safety. This article systematically reviews the working principles structural features and application status of mechanical hydrogen compressors with a focus on three prominent types based on reciprocating motion principles: the diaphragm compressor the hydraulically driven piston compressor and the ionic liquid compressor. The study provides a detailed analysis of performance bottlenecks material challenges thermal management issues and volumetric efficiency loss mechanisms for each compressor type. Furthermore it summarizes recent technical optimizations and innovations. Finally the paper identifies current research gaps particularly in reliability hydrogen embrittlement and intelligent control under high-temperature and high-pressure conditions. It also proposes future technology development pathways and standardization recommendations aiming to serve as a reference for further R&D and the industrialization of hydrogen compression technology.
Addressing Spatiotemporal Mismatch via Hourly Pipeline Scheduling: Regional Hydrogen Energy Supply Optimization
Nov 2025
Publication
The rapid adoption of hydrogen fuel cell vehicles (HFCVs) in the Beijing–Tianjin–Hebei (BTH) hub accentuates the mismatch between renewable-based hydrogen supply in Hebei and concentrated demand in Beijing and Tianjin. We develop a mixed-integer linear model that co-configures a hydrogen pipeline network and optimizes hourly flow schedules to minimize annualized cost and CO2 emissions simultaneously. For 15000 HFCVs expected in 2025 (137 t d−1 demand) the Pareto-optimal design consists of 13 production plants 43 pipelines and 38 refueling stations delivering 50767 t yr−1 at 68% pipeline utilization. Hebei provides 88% of the hydrogen 70% of which is consumed in the two megacities. Hourly profiles reveal that 65% of electrolytic output coincides with local wind–solar peaks whereas refueling surges arise during morning and evening rush hours; the proposed schedule offsets the 4–6 h mismatch without additional storage. Transport distances are 40% < 50 km 35% 50–200 km and 25% > 200 km. Raising the green hydrogen share from 10% to 70% increases total system cost from USD 1.56 bn to USD 2.73 bn but cuts annual CO2 emissions from 142 kt to 51 kt demonstrating the trade-off between cost and decarbonization. The model quantifies the value of sub-day pipeline scheduling in resolving spatial–temporal imbalances for large-scale low-carbon hydrogen supply.
An Overview of Development and Challenges in the Use of Hydrogen as a Fuel for a Dual-Fuel Diesel Engine
Nov 2025
Publication
The gradual exhaustion of fossil fuel reserves along with the adverse effects of their consumption on global climate drives the need for research into alternative energy sources that can meet the growing demand in a sustainable and eco-friendly way. Among these hydrogen stands out as one of the most promising options for the automotive sector being the cleanest available fuel and capable of being produced from renewable resources. This paper reviews the existing literature on compression ignition engines operating in a dualfuel configuration where diesel serves as the ignition source and hydrogen is used to enhance the combustion process. The reviewed studies focus on engine systems with hydrogen injection into the intake manifold. The investigations analyzed the influence of hydrogen energy fraction on combustion characteristics engine performance combustion stability and exhaust emissions in diesel/hydrogen dual-fuel engines operating under full or near-full-load conditions. The paper identifies the main challenges hindering the widespread and commercial application of hydrogen in diesel/hydrogen dual-fuel engines and discusses potential methods to overcome the existing barriers in this area.
Techno-Economic Analysis of Green Hydrogen Energy Production in West Africa
Nov 2025
Publication
The United Nations has set a global vision towards emissions reduction and green growth through the Sustainable Development Goals (SDGs). Towards the realisation of SDGS 7 9 and 13 we focus on green hydrogen production as a potential pathway to achievement. Green hydrogen produced via water electrolysis powered by renewable energy sources represents a pivotal solution towards climate change mitigation. Energy access in West Africa remains a challenge and dependency on fossil fuels persists. So green hydrogen offers an opportunity to harness abundant solar resources reduce carbon emissions and foster economic development. This study evaluates the techno-economic feasibility of green hydrogen production in five West African countries: Ghana Nigeria Mali Niger and Senegal. The analyses cover the solar energy potential hydrogen production capacities and economic viability using the Levelised Cost of Hydrogen (LCOH) and Net Present Value (NPV). Results indicate substantial annual hydrogen production potential with LCOH values competitive with global benchmarks amidst the EU’s Carbon Border Adjustment Mechanism (CBAM). Despite this potential several barriers exist including high initial capital costs policy and regulatory gaps limited technical capacity and water resource constraints. We recommend targeted strategies for strengthening policy frameworks fostering international partnerships enhancing regional infrastructure integration and investing in capacity-building initiatives. By addressing these barriers West Africa can be a key player in the global green hydrogen market.
Life Cycle of Fuel Cells: From Raw Materials to End-of-Life Management
Nov 2025
Publication
Fuel cells are highly efficient electrochemical devices that convert the chemical energy of fuel directly into electrical energy while generating minimal pollutant emissions. In recent decades they have established themselves as a key technology for sustainable energy supply in the transport sector stationary systems and portable applications. In order to assess their real contribution to environmental protection and energy efficiency a comprehensive analysis of their life cycle Life Cycle Assessment (LCA) is necessary covering all stages from the extraction of raw materials and the production of components through operation and maintenance to decommissioning and recycling. Particular attention is paid to the environmental challenges associated with the extraction of platinum catalysts the production of membranes and waste management. Economic aspects such as capital costs the price of hydrogen and maintenance costs also have a significant impact on their widespread implementation. This manuscript presents detailed mathematical models that describe the electrochemical characteristics energy and mass balances degradation dynamics and cost structures over the life cycle of fuel cells. The models focus on proton exchange membrane fuel cells (PEMFCs) with possible extensions to other types. LCA is applied to quantify environmental impacts such as global warming potential (GWP) while the levelized cost of electricity (LCOE) is used to assess economic viability. Particular attention is paid to the sustainability challenges of platinum catalyst extraction membrane production and end-of-life material recovery. By integrating technical environmental and economic modeling the paper provides a systematic perspective for optimizing fuel cell deployment within a circular economy.
Cost-Optimal Design of a Stand-Alone PV-Driven Hydrogen Production and Refueling Station Using Genetic Algorithms
Nov 2025
Publication
Driven by the growing availability of funding opportunities electrolyzers have become increasingly accessible unlocking significant potential for large-scale green hydrogen production. The goal of this investigation is to develop a techno-economic optimization framework for the design of a stand-alone photovoltaic (PV)-driven hydrogen production and refueling station with the explicit objective of minimizing the levelized cost of hydrogen (LCOH). The system integrates PV generation a proton-exchange-membrane electrolyzer battery energy storage compression and high-pressure hydrogen storage to meet the daily demand of a fleet of fuel cell buses. Results show that the optimal configuration achieves an LCOH of 11 €/kg when only fleet demand is considered whereas if surplus hydrogen sales are accounted for the LCOH reduces to 7.98 €/kg. The analysis highlights that more than 75% of total investment costs are attributable to PV and electrolysis underscoring the importance of capital incentives. Financial modeling indicates that a subsidy of about 58.4% of initial CAPEX is required to ensure a 10% internal rate of return under EU market conditions. The proposed methodology provides a reproducible decision-support tool for optimizing off-grid hydrogen refueling infrastructure and assessing policy instruments to accelerate hydrogen adoption in heavy-duty transport.
Optimal Dispatch Model for Hybrid Energy Storage in Low-Carbon Integrated Energy Systems
Nov 2025
Publication
Integrated Energy Systems (IESs) which leverage the synergistic coordination of electricity heat and gas networks serve as crucial enablers for a low-carbon transition. Current research predominantly treats energy storage as a subordinate resource in dispatch schemes failing to simultaneously optimise IES economic efficiency and storage operators’ profit maximisation thereby overlooking their potential value as independent market entities. To address these limitations this study establishes an operator-autonomous management framework incorporating electrical thermal and hydrogen storage in IESs. We propose a joint optimal dispatch model for hybrid energy storage systems in low-carbon IES operation. The upper-level model minimises total system operation costs for IES operators while the lower-level model maximises net profits for independent storage operators managing various storage assets. These two levels are interconnected through power price and carbon signals. The effectiveness of the proposed model is verified by setting up multiple scenarios for example analysis.
Hydrogen-Rich Gaseous Mixture for Enhanced Combustion in a Flex-Fuel Engine: An Experimental Analysis
Nov 2025
Publication
This experimental study examines the effect of adding a hydrogen-enriched synthetic gaseous mixture (HGM’) on the combustion and fuel conversion efficiency of a singlecylinder research engine (SCRE). The work assesses the viability of using this mixture as a supplemental fuel for flex-fuel engines operating under urban driving cycling conditions. An SCRE the AVL 5405 model was employed operating with ethanol and gasoline as primary fuels through direct injection (DI) and a volumetric compression ratio of 11.5:1. The HGM’ was added in the engine’s intake via fumigation (FS) with volumetric proportions ranging from 5% to 20%. The tests were executed at 1900 rpm and 2500 rpm engine speeds with indicated mean effective pressures (IMEPs) of 3 and 5 bar. When HGM’s 5% v/v was applied at 2500 rpm the mean indicated effective pressure of 3 bar was observed. A decrease of 21% and 16.5% in the ISFC was observed when using gasoline and ethanol as primary fuels respectively. The usage of an HGM’ combined with gasoline or ethanol proved to be a relevant and economically accessible strategy in the improvement of the conversion efficiency of combustion fuels once this gaseous mixture could be obtained through the vapor-catalytic reforming of ethanol giving up the use of turbochargers or lean and ultra-lean burn strategies. These results demonstrated the potential of using HGM’ as an effective alternative to increase the efficiency of flex-fuel engines.
Hydrogen Diffusivity and Hydrogen Traps Behavior of a Tempered and Untempered Martensitic Steel
Nov 2025
Publication
The effect of tempering temperature and tempering time on the density of hydrogen traps hydrogen diffusivity and microhardness in a vanadium-modified AISI 4140 martensitic steel was determined. Tempering parameters were selected to activate the second third and fourth tempering stages. These conditions were intended to promote specific microstructural transformations. Permeability tests were performed using the electrochemical method developed by Devanathan and Stachurski and microhardness was measured before and after these tests. It was observed that hydrogen diffusivity is inversely proportional to microhardness while the density of hydrogen traps is directly proportional to microhardness. The lowest hydrogen diffusivity the highest trap density and the highest microhardness were obtained in the as-quenched condition and the tempering at 286 ◦C for 0.25 h. In contrast tempering at a temperature corresponding to the fourth tempering stage increases hydrogen diffusivity and decreases the density of hydrogen traps and microhardness. However as the tempering time or temperature increases the opposite occurs which is attributed to the formation of alloy carbides. Finally hydrogen has a softening effect for tempering temperatures corresponding to the fourth tempering stage tempering times of 0.25 h and in the as-quenched condition. However with increasing tempering time hydrogen has a hardening effect.
A Comprehensive Review of Influence of Critical Parameters on Wettability of Rock-hydrogen-brine Systems: Implications for Underground Hydrogen Storage
Oct 2025
Publication
The rock wettability is one of the most critical parameters that influences rock storage potential trapping and H2 withdrawal rate during Underground hydrogen storage (UHS). However the existing review articles on wettability of H2-brine-rock systems do not provide detailed information on complexities introduced by reservoir wettability influencing parameters such as high pressure temperature salinity conditions micro-biotic effects cushion gases and organic acids relevant to subsurface environments. Therefore a comprehensive review of existing research on various parameters influencing rock wettability during UHS and residual trapping of H2 was conducted in this study. Literature that provides insight into molecular-level interaction through machine learning and molecular dynamic (MD) simulations and role of surface-active chemicals such as nanoparticles surfactants and wastewater chemicals were also reviewed. The review suggested that UHS could be feasible in clean geo-storage formations but the presence of rock surface contaminants at higher storage depth and microbial effects should be accounted for to prevent over-estimation of the rock storage potentials. The H2 wettability of storage/caprocks and associated risks of UHS projects could be higher in rocks with high proportion of carbonate minerals organic-rich shale and basalt with high plagioclase minerals content. However treatment of rock surfaces with nanofluids surfactants methylene blue and methyl orange has proven to alter the rock wettability from H2-wet towards water-wet. Research results on effect of rock wettability on residually trapped hydrogen and snap-off effects during UHS are contradictory thus further studies would be required in this area. The review generally concludes that rock wettability plays prominent role on H2 storage due to the frequency and cyclic loading of UHS hence it is vital to evaluate the effects of all possible wettability influencing parameters for successful designs and implementation of UHS projects.
Hydrogen Power Development: A Comparative Review of National Strategies and the Role of Energy in Scaling Green Hydrogen
Oct 2025
Publication
This review explores the evolving role of hydrogen in global decarbonization analysing national hydrogen strategies value chain developments and future market potential. Through a comprehensive review of policy frameworks market trends and technology pathways the paper evaluates hydrogen’s role in decarbonising sectors such as steel ammonia methanol refining transport and power generation. The study highlights the expected growth in global hydrogen demand projected cost reductions and advancements in production technologies including electrolysis and carbon capture-integrated hydrogen production. While green hydrogen offers a sustainable pathway challenges remain in infrastructure development energy efficiency and the integration of hydrogen into existing energy networks. The paper considers the economic and technological factors affecting international hydrogen trade. Despite more than 30 national hydrogen strategies being in place significant challenges remain particularly in scaling renewable electricity and infrastructure to meet growing hydrogen demand projected to reach up to 600 Mt by 2050. Key players such as Australia Norway and the Middle East are positioning themselves as major hydrogen exporters by leveraging their abundant natural resources and strategic infrastructure. On the demand side countries like Japan South Korea Germany and the Netherlands are emerging as leading importers investing heavily in hydrogen hubs and import terminals to secure future energy supplies. The expansion of hydrogen storage and transportation alongside investments in large-scale hydrogen hubs will be critical for market growth. Additionally the study emphasize the need for policy alignment strategic investments and cross-border cooperation to accelerate hydrogen adoption. Hydrogen can become a key element of the global clean energy transition by addressing optimal energy consumption and by leveraging renewable resources.
Accelerated Numerical Simulations of Hydrogen Flames: Open-source Implementation of an Advanced Diffusion Model Library in OpenFOAM
Oct 2025
Publication
Here the OpenFOAM software with the dynamic load balancer library DLBFoam is investigated for computational fluid dynamics (CFD) simulations of different hydrogen (H2 ) flames. The benefits of DLBFoam for hydrogen have not been thoroughly investigated in the past. To explore this a new open-source diffusion model library FickianTransportFoam is implemented in this study. FickianTransportFoam includes species-specific constant Lewis number and mixture-averaged models with correction velocity to account for preferential diffusion. The model is first verified for one-dimensional (1D) premixed and non-premixed counterflow flames. Additionally four hydrogen/air flames are explored: (1) two-dimensional (2D) laminar freely propagating premixed flame (2) 2D axisymmetric laminar non-premixed jet flame (3) three-dimensional (3D) turbulent non-premixed swirling flame and (4) 3D turbulent premixed swirling flame. The main results and achievements regarding the implemented transport models are as follows. First the results from 2D freely propagating flame demonstrated thermodiffusively unstable flame formation using the mixture averaged model. The analytical and numerical dispersion relationships agree well for the linear instability growth phase. Second the model functionality is demonstrated for a laminar 2D jet case with conjugate heat transfer. Furthermore validation and grid sensitivity studies for the 3D turbulent flames are carried out. Third the computational benchmark for each configuration indicates a factor of ∼10-100 speed-up when utilizing DLBFoam. Finally the test cases and source codes for FickianTransportFoam are openly shared.
Optimal Sizing and Energy Management for Fuel Cell Electric Vehicles with 3D-ordered MEAs: A Pareto Frontier Study
Oct 2025
Publication
Fuel cell electric vehicles (FCEVs) are zero-emission but face cost and power density challenges. To mitigate these limitations a novel 3D-ordered nano-structured self-supporting membrane electrode assembly (MEA) has been developed. This paper investigates the optimal component sizing of the battery and fuel cell in FCEVs equipped with 3D-ordered MEAs integrating the energy management. To explore the trade-offs between component cost operational cost and fuel cell degradation the sizing and energy management problem is formulated into a multi-objective optimisation problem. A Pareto frontier (PF) study is conducted using the decomposed multi-objective evolutionary algorithm (MOEA/D) for a more diverse distribution of feasible solutions. The modular design of fuel cells is derived from a scaled and stressed experiment. After executing MOEA/D across the three aggressive driving cycles power source configurations are selected from the corresponding PFs based on objective trade-offs ensuring robustness of the overall system. The optimisation performance of the MOEA/D is compared with that of the multi-objective Particle Swarm Optimisation. In addition the selected powertrain configurations are evaluated and compared through standard and realworld driving cycles in a simulation environment. This paper also performs a sensitivity analysis to reveal the influence of diverse component unit costs and hydrogen price. The results indicate that the mediumsized configuration consisting of a 63.31 kW fuel cell stack and a 52.15 kWh battery pack delivers the best overall performance. It achieves a 26.71% reduction in component cost and up to 12.76% savings in hydrogen consumption across various driving conditions. These findings provide valuable insights into the design and optimisation of fuel cell systems for FCEVs.
Experimental Validation of DC-link Based Voltage Control Framework for Islanded Hydrogen DC Microgrids
Oct 2025
Publication
The integration of hydrogen technologies into islanded DC microgrids presents significant challenges in maintaining voltage stability and coordinating power flow under highly variable renewable energy conditions. This paper proposes a novel DC-link voltage control (DCVC) framework that incorporates adaptive droop control and autonomous operation algorithms to regulate fuel cells electrolysers and battery systems in a coordinated manner. Unlike conventional fixed-gain or priority-based methods the proposed adaptive control dynamically adjusts the droop coefficient in response to voltage deviations enhancing system stability and responsiveness. The control framework is validated on an industry-standard hydrogen DC microgrid platform developed at Griffith University featuring real-time implementation on a Raspberry Pi controller and comprehensive integration with solar wind wave and hydrogen energy sources. A small-signal stability analysis confirms that the proposed control ensures asymptotic voltage convergence under dynamic operating conditions. Experimental results across five case studies demonstrate that the proposed DCVC strategy ensures fast transient response minimises overshoot and maintains the DC-link voltage near the nominal 380 V under varying load and generation scenarios. The framework facilitates flexible energy sharing while ensuring safe hydrogen production and storage. It is also compatible with low-cost open-source hardware making it a scalable solution for remote and off-grid energy applications.
Techno-enviro-socio-economic Assessment and Sensitivity Analysis of an off-grid Tidal/Fuel Cell/Electrolyzer/Photovoltaic Hybrid System for Hydrogen and Electricity Production in Cameroon Coastal Areas
Oct 2025
Publication
Coastal regions in Cameroon including Douala Kribi Campo Dibamba and Limbe faced persistent electricity challenges driven by grid instability growing demand and dependence on fossil fuels. Solar resource availability was high but intermittent whereas tidal energy was predictable and energy-dense yet underused. This pilot delivers the first Cameroonian assessment of an off-grid tidal/PV/electrolyzer/hydrogen-storage/fuel-cell architecture explicitly co-optimizing electricity service and green hydrogen production and evaluating performance with a tri-metric economic lens (net present cost levelized cost of electricity and the levelized cost of hydrogen). The system was optimized to minimize net present cost (NPC) levelized cost of electricity (LCOE) levelized cost of hydrogen (LCOH) and three tidal-flow scenarios were analyzed to represent hydrokinetic variability. The design served households small businesses fishing activities schools and health facilities with a baseline demand of 389.50 kWh/day; surplus renewable power drove the electrolyzer to produce hydrogen for later reconversion in the fuel cell. Under the first scenario (1.25 m/s average speed) the optimal mix comprised 137 PV modules (600 W each) a 100 kW fuel cell six 40 kW tidal turbines six 10 kW electrolyzers a 19.5 kW converter and 41 hydrogen tanks (40 L each) yielding an NPC of US$ 2.16 million an LCOE of US$ 0.782/kWh and a LCOH of US$ 19.2/kg of hydrogen. The second scenario (1.47 m/s) required only 12 PV modules one electrolyzer and an 11.3 kW converter lowering costs to an NPC of US$ 1.52 million an LCOE of US$ 0.553/ kWh and a LCOH of US$ 15.4/kg of hydrogen. In the third scenario (1.61 m/s) the configuration shifted to 298 PV modules three tidal turbines eight electrolyzers and a 39.6 kW converter resulting in the highest NPC (US$ 2.47 million) and LCOE (US$ 0.901/kWh) with a LCOH of US$ 18.8/kg of hydrogen. The study also contributes a transparent component-wise employment indicator linking installed capacities/energies to jobs; deployment is expected to create about seven local jobs during installation and early operation tidal turbines (3) solar panels (1) electrolyzers (1) hydrogen tanks (1) and fuel cell (1) with additional minor operation and maintenance positions thereafter. Social analysis indicated improved energy access support for local livelihoods and job creation; environmental results confirmed clean operation with limited marine disturbance. A sensitivity study varying capital and replacement-cost multipliers showed robust performance across economic conditions. Taken together these contributions provide a decision-ready blueprint for coastal communities: a first-of-its-kind Cameroonian hybrid that quantifies both electricity and hydrogen costs (including feasible LCOH) and demonstrates socio-economic co-benefits offering a cost-effective pathway to strengthen energy security foster local development and reduce environmental impact.
Development of Newly Designed Biomass-based Electrodes used in Water Electrolysis for Clean Hydrogen Production
Oct 2025
Publication
The conventional electrolysis is recognized as a mature and promising hydrogen (H2) production technology but there is still a strong need for further performance improvement. In this regard achieving an effective H2 evolution reaction at the cathode requires costly catalysts such as platinum and various catalyst-modified electrode materials. Nevertheless these materials are expensive and involve complex production procedures. Due to an increasing interest in deploying biomaterial-based cathodes as potential alternatives to conventional cathode materials we make the focus of this study on such materials and a graphite-loaded bioelectrode is in this regard synthesized for electrolysis application for effective H2 production. The surface morphology and electrochemical activity of the produced biocathode are characterized. Our results show that the H2 production performance of the system improves with the increasing graphite dosage on the biocathode and with the applied voltage ranging from 2 to 6 V. At improved operating conditions the highest H2 production rate of 1000 ppm (8.18 mg/m3 min) is obtained using a 1.5 g graphite-loaded biocathode at an applied voltage of 6 V. Consequently the produced graphite-loaded biocathode can be a promising option for sustainable and effective H2 production with waste minimization owing to its high conductivity low-cost and good stability.
Cutting-edge Advances in Hydrogen Applications for the Medical and Pharmaceutical Industries
Oct 2025
Publication
The adoption of clean hydrogen is expected to transform the global energy landscape reducing greenhouse gas emissions bridging gaps in renewable energy integration and driving innovation across multiple sectors. In the medical and pharmaceutical industries hydrogen offers unique opportunities for transformative progress. This review critically examines recent advances in three domains: hydrogen fuel cells as reliable scalable and sustainable energy solutions for hospitals; molecular hydrogen as a therapeutic and preventive medical gas particularly for brain disorders; and hydrogenation technologies for the efficient and sustainable pharmaceutical production. Despite encouraging advancements widespread adoption remains limited by economic constraints regulatory gaps and limited clinical evidence. Addressing these barriers through technological innovation largescale studies and life-cycle sustainability assessments is essential to translate hydrogen’s full potential into clinical and industrial practice. Responsible adoption of green hydrogen is poised to reshape the clinical approach to global health and enhance the quality of life for people worldwide.
Modeling and Experimental Approach of Membrane and Diaphragm Sono-electrolytic Production of Hydrogen
Oct 2025
Publication
This study evaluates the performance of three anion-exchange membranes (FAS-50 AMX Fujifilm-AEM) and a diaphragm separator (Zirfon® UTP 500) in alkaline water sono-electrolysis using a 25 % KOH electrolyte at ambient temperature. Energy efficiency hydrogen production kinetics and membrane stability were assessed experimentally and through modeling. Among the tested separators Zirfon achieved the highest energy efficiency outperforming AEM AMX and FAS-50. Hydrogen production rates under silent conditions ranged from 2.55 µg/s (AEM) to 2.92 µg/s (FAS-50) while sonication (40 kHz 60 W) increased rates by 0.03–0.12 µg/s with the strongest relative effect observed for FAS-50 (≈4.0 % increase). By contrast Zirfon and AEM showed slight efficiency reductions (0.5–2 %) under ultrasound due to their higher structural resistance. Ion-exchange capacity tests confirmed significant degradation of polymeric membranes (IEC losses of 60–90 %) while Zirfon maintained stability in 25 % KOH. Modeling results showed that the diaphragm resistance was dominated by the ohmic losses (55–86 %) with ultrasound reducing bubble coverage and associated resistance only marginally (<0.02 V). Overall Zirfon demonstrated superior stability and efficiency for long-term operation while ultrasound primarily enhanced hydrogen evolution kinetics in mechanically weaker polymeric membranes.
No more items...