Publications
Optical Investigation and combustion Analysis of Stratified Ammonia-hydrogen Pre-chamber Engine with Variable Injection Timing
Oct 2025
Publication
This study presents an experimental investigation of a direct injection ammonia-fuelled engine using hydrogen pre-chamber jet ignition. All tests have been conducted in an optically accessible combustion chamber that is installed in the head of a single-cylinder engine. The effect of ammonia injection timing on ignition and combustion characteristics was investigated with the timing varied from 165 CAD BTDC to 40 CAD BTDC. The experiments were conducted with a fixed spark timing of 14 CAD BTDC while ammonia injection duration was adjusted to maintain a main chamber global equivalence ratio of 0.6. Two pre-chamber nozzle configurations a single-hole and a multi-hole were tested. The results show that the later NH3 injection timing (40 CAD BTDC) significantly improved combustion with a peak in-cylinder pressure of 80 bar measured compared to a peak in-cylinder pressure of 50 bar with earlier injection (165 CAD BTDC). This study indicates the importance of optimising ammonia injection timing in order to enhance combustion stability and efficiency. The hydrogen pre-chamber jet ignition combined with a late ammonia injection is a promising approach for addressing the combustion challenges of ammonia as a zero-carbon fuel for maritime applications.
Evaluation of Heat Transfer Technologies for High Temperature Polymer Electrolyte Membrane Fuel Cells as Primary Power Source in a Regional Aircraft
Oct 2025
Publication
High-temperature proton exchange membrane fuel cells (HT-PEM FCs) represent a promising avenue for generating carbon dioxide-free electricity through the utilization of hydrogen fuel. These systems present numerous advantages and challenges for mobile applications positioning them as pivotal technologies for the realization of emission-free regional aircraft. Efficient thermal management of such fuel cell-powered systems is crucial for ensuring the safe and durable operation of the aircraft while concurrently optimizing system volume mass and minimizing parasitic energy consumption. This paper presents four distinct heat transfer principles tailored for the FC-system of a conceptual hydrogen-electric regional aircraft exemplified by DLR’s H2ELECTRA. The outlined approaches encompass conductive cooling air cooling liquid cooling phase change cooling and also included is the utilization of liquid hydrogen as a heat sink. Approaches are introduced with schematic cooling architectures followed by a comprehensive evaluation of their feasibility within the proposed drivetrain. Essential criteria pertinent to airborne applications are evaluated to ascertain the efficacy of each thermal management strategy. The following criteria are selected for evaluation: safety ease of integration reliability and life-cycle costs technology readiness and development as well as performance which is comprised of heat transfer weight volume and parasitic power consumption. Of the presented cooling methods two emerged to be functionally suitable for the application in MW-scale aircraft applications at their current state of the art: liquid cooling utilizing water under high pressure or other thermal carrier liquids and phase-change cooling. Air cooling and conductive cooling have a high potential due to their reduced system complexity and mass but additional studies investigating effects at architecture level in large-scale fuel cell stacks are needed to increase performance levels. These potentially suitable heat transfer technologies warrant further investigation to assess their potential for complexity and weight reduction in the aircraft drivetrain.
Marine Hydrogen Pressure Reducing Valves: A Review on Multi-Physics Coupling, Flow Dynamics, and Structural Optimization for Ship-Borne Storage Systems
Oct 2025
Publication
As a zero-carbon energy carrier hydrogen is playing an increasingly vital role in the decarbonization of maritime transportation. The hydrogen pressure reducing valve (PRV) is a core component of ship-borne hydrogen storage systems directly influencing the safety efficiency and reliability of hydrogen-powered vessels. However the marine environment— characterized by persistent vibrations salt spray corrosion and temperature fluctuations— poses significant challenges to PRV performance including material degradation flow instability and reduced operational lifespan. This review comprehensively summarizes and analyzes recent advances in the study of high-pressure hydrogen PRVs for marine applications with a focus on transient flow dynamics turbulence and compressible flow characteristics multi-stage throttling strategies and valve core geometric optimization. Through a systematic review of theoretical modeling numerical simulations and experimental studies we identify key bottlenecks such as multi-physics coupling effects under extreme conditions and the lack of marine-adapted validation frameworks. Finally we conducted a preliminary discussion on future research directions covering aspects such as the construction of coupled multi-physics field models the development of marine environment simulation experimental platforms the research on new materials resistant to vibration and corrosion and the establishment of a standardized testing system. This review aims to provide fundamental references and technical development ideas for the research and development of high-performance marine hydrogen pressure reducing valves with the expectation of facilitating the safe and efficient application and promotion of hydrogen-powered shipping technology worldwide.
Threats and Challenges Associated with Ammonia Transport via Pipeline Systems
Oct 2025
Publication
Ammonia due to its favorable physicochemical properties is considered an effective hydrogen carrier enabling the storage of surplus energy generated from renewable sources. Large-scale implementation of this concept requires the safe transport of ammonia over long distances commonly achieved through pipeline systems—a practice with global experience dating back to the 1960s. However operational history demonstrates that failures in such infrastructures remain inevitable often leading to severe environmental consequences. This article reviews both passive and active methods for preventing and mitigating incidents in ammonia pipeline systems. Passive measures include the assessment of material compatibility with ammonia and the designation of adequate buffer zones. Active methods focus on leak detection techniques such as balance-based systems acoustic monitoring and ammonia-specific sensors. Additionally the article highlights the potential environmental risks associated with ammonia release emphasizing its contribution to the greenhouse effect as well as its adverse impacts on soil surface and groundwater and human health. By integrating historical lessons with modern safety technologies the article contributes to the development of reliable ammonia transport infrastructure for the hydrogen economy.
Evaluating the Role of Hybrid Renewable Energy Systems in Supporting South Africa’s Energy Transition
Oct 2025
Publication
This report evaluates the role of Hybrid Renewable Energy Systems (HRESs) in supporting South Africa’s energy transition amidst persistent power shortages coal dependency and growing decarbonisation imperatives. Drawing on national policy frameworks including the Integrated Resource Plan (IRP 2019) the Just Energy Transition (JET) strategy and Net Zero 2050 targets this study analyses five major HRES configurations: PV–Battery PV–Diesel–Battery PV–Wind–Battery PV–Hydrogen and Multi-Source EMS. Through technical modelling lifecycle cost estimation and trade-off analysis the report demonstrates how hybrid systems can decentralise energy supply improve grid resilience and align with socio-economic development goals. Geographic application cost-performance metrics and policy alignment are assessed to inform region-specific deployment strategies. Despite enabling technologies and proven field performance the scale-up of HRESs is constrained by financial regulatory and institutional barriers. The report concludes with targeted policy recommendations to support inclusive and regionally adaptive HRES investment in South Africa.
Co-Optimization of Capacity and Operation for Battery-Hydrogen Hybrid Energy Storage Systems Based on Deep Reinforcement Learning and Mixed Integer Programming
Oct 2025
Publication
The hybrid energy storage system (HESS) that combines battery with hydrogen storage exploits complementary power/energy characteristics but most studies optimize capacity and operation separately leading to suboptimal overall performance. To address this issue this paper proposes a bi-level co-optimization framework that integrates deep reinforcement learning (DRL) and mixed integer programming (MIP). The outer layer employs the TD3 algorithm for capacity configuration while the inner layer uses the Gurobi solver for optimal operation under constraints. On a standalone PV–wind–load-HESS system the method attains near-optimal quality at dramatically lower runtime. Relative to GA + Gurobi and PSO + Gurobi the cost is lower by 4.67% and 1.31% while requiring only 0.52% and 0.58% of their runtime; compared with a direct Gurobi solve the cost remains comparable while runtime decreases to 0.07%. Sensitivity analysis further validates the model’s robustness under various cost parameters and renewable energy penetration levels. These results indicate that the proposed DRL–MIP cooperation achieves near-optimal solutions with orders of magnitude speedups. This study provides a new DRL–MIP paradigm for efficiently solving strongly coupled bi-level optimization problems in energy systems.
Hydrogen Vehicle Adoption: Perceptions, Barriers, and Global Strategies
Oct 2025
Publication
This paper analyzes the potential of hydrogen technologies in transport placing it within the context of global environmental and energy challenges. Its primary purpose is to eval‑ uate the prospects for the implementation of these technologies at international and na‑ tional levels including Poland. This study utilizes a literature review and an analysis of the results of a highly limited exploratory pilot survey measuring public perception of hydrogen technology in transport. It is critical to note that the survey was conducted on a small non‑representative sample and exhibited a strong geographical bias primarily collecting responses from Europe (50 people) and North America (30 people). This study also details hydrogen vehicle types (FCEV HICE) and the essential infrastructure required (HRS). Despite solid technological foundations the development of hydrogen technology heavily relies on non‑technical factors such as infrastructure development support pol‑ icy and social acceptance. Globally the number of vehicles and stations is growing but remains limited with the pace of development correlating with the involvement of coun‑ tries. The pilot survey revealed a generally positive perception of the technology (mainly due to environmental benefits) but highlighted three key barriers: limited availability of refueling infrastructure—51.5% of respondents strongly agreed on this obstacle high pur‑ chase and maintenance costs and insufficient public awareness. Infrastructure subsidies and tax breaks were identified as effective incentives. Hydrogen technology offers a poten‑ tially competitive and sustainable transport solution but it demands significant systemic support intensive investment in large‑scale infrastructure expansion and comprehensive educational activities. Further governmental engagement is crucial. The severe limitations resulting from the pilot nature of the survey should be rigorously taken into account dur‑ ing interpretation.
Assessment of Regional Hydrogen Refueling Station Layout Planning and Carbon Reduction Benefits Based on Multi-Dimensional Factors of Population, Land, and Demand
Oct 2025
Publication
The urgent global transition toward low-carbon energy systems has highlighted the need for systematic planning of hydrogen refueling stations (HRS) to facilitate clean energy adoption. This study develops an integrated framework for regional HRS layout optimization and carbon emission assessment considering population distribution land area and hydrogen demand. Using Hainan Province as a case study the model estimates regional hydrogen demand determines optimal HRS deployment evaluates spatial coverage and refueling distances and quantifies potential carbon emission reductions under various renewable energy scenarios. Model validation with Haikou demonstrates its reliability and applicability at the regional scale. Results indicate pronounced spatial disparities in hydrogen demand and infrastructure requirements emphasizing that prioritizing station deployment in densely populated urban areas can enhance accessibility and maximize emission reduction. The framework offers a practical data-efficient tool for policymakers and planners to guide early-stage hydrogen infrastructure development and supports strategies for regional decarbonization and sustainable energy transitions.
Degradation Heterogeneity in Active X70 Pipeline Welds Microstructure-Property Coupling Under Multiphysics Environments of Hydrogen-Blended Natural Gas
Oct 2025
Publication
This study investigates the performance degradation of X70 steel weld material in highpressure natural gas pipelines in the Sichuan-Chongqing region and its impact on pipeline safety by investigating their behavior under multiphysics environments including varying gas media (nitrogen methane hydrogen-blended) pressure conditions (0.1–10 MPa) and material regions (base metal vs. weld). A key novelty of this work is the introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. A key novelty of this work is the explicit introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. Slow strain rate tensile tests combined with fracture morphology and microstructure analysis reveal that welds exhibit inferior mechanical properties due to microstructural inhomogeneity and residual stresses including a yield stress reduction of 15.2–18.7%. The risk of brittle fracture was highest in the hydrogen-blended environment while nitrogen exhibited the most benign effect. Material region changes were identified as the most significant factor affecting degradation. This research provides crucial data and theoretical support for pipeline safety design and material performance optimization.
Enhanced Performance of TiO2 Composites for Solar Cells and Photocatalytic Hydrogen Production
Oct 2025
Publication
Titanium dioxide (TiO2) is widely used in solar cells and photocatalysts given its excellent photoactivity low cost and high structural electronic and optical stability. Here a novel TiO2 composite was prepared by coating TiO2 inverse opal (IO) with TiO2 nanorods (NRs). With a porous three-dimensional network structure the composite exhibited higher light absorption; enhanced the separation of the electron–hole pairs; deepened the infiltration of the electrolyte; better transported and collected charge carriers; and greatly improved the power conversion efficiency (PCE) of the quantum-dot sensitized solar cells (QDSSCs) based on it while also boosting its own photocatalytic hydrogen generation efficiency. A very high PCE of 12.24% was achieved by QDSSCs utilizing CdS/CdSe sensitizer. Furthermore the TiO2 composite exhibited high photocatalytic activity with a H2 release rate of 1080.2 µ mol h−1 g −1 several times that of bare TiO2 IO or TiO2 NRs.
Transient Analysis of Solar Driven Hydrogen Generation System Using Industrial Waste Water
Oct 2025
Publication
This study investigates an integrated solar-powered system for wastewater treatment and hydrogen production combining solar PV a humidification–dehumidification (HDH) system solar thermal collectors and electrolysis. The objective is to evaluate the feasibility of utilizing industrial wastewater for both clean water production and green hydrogen generation. A transient analysis is conducted using TRNSYS and EES software modeling a system designed to process 4000 kg of wastewater daily. The results indicate that the HDH system produces 300 kg of clean water per hour while the electrolyzer generates approximately 66.5 kg of hydrogen per hour. The solar PV system operates under the weather conditions of Kohat Pakistan. This integrated approach demonstrates significant potential for sustainable wastewater treatment and renewable energy production offering a promising solution for industrial applications.
A Review on Combustion Instability of Hydrogen-Enriched Marine Gas Turbines
Nov 2025
Publication
Hydrogen is widely regarded as a promising carbon-free alternative fuel. However the development of low-emission marine gas turbine combustion systems has been hindered by the associated risks of combustion instability also termed as thermoacoustic oscillations. Although there is sufficient literature on hydrogen fuel and combustion instability systematic reviews addressing the manifestations and mechanisms of these instabilities remain limited. The present study aims to provide a comprehensive review of combustion instabilities in hydrogen-enriched marine gas turbines with a particular focus on elucidating the characteristics and underlying mechanisms. The review begins with a concise overview of recent progress in understanding the fundamental combustion properties of hydrogen and then details various instability phenomena in hydrogen-enriched methane flames. The mechanisms by which hydrogen enrichment affects combustion instabilities are extensively discussed particularly in relation to the feedback loop in thermoacoustic combustion systems. The paper concludes with a summary of the key combustion instability challenges associated with hydrogen addition to methane flames and offers prospects for future research. In summary the review highlights the interaction between hydrogenenriched methane flames and thermoacoustic phenomena providing a foundation for the development of stable low-emission combustion systems in industrial marine applications incorporating hydrogen enrichment.
Methodology for Evaluating and Comparing Different Sustainable Energy Generation and Storage Systems for Residential Buildings—Application to the Case of Spain
Nov 2025
Publication
This paper focuses on assessing different sustainable energy generation and storage systems for residential buildings in Spain identifying the best-performing system according to the end-user requirements. As outlined by the consulted literature the authors have selected two types of hybrid configurations—a Photovoltaic System with Battery Backup (PSBB) and a Photovoltaic System with Hydrogen Hybrid Storage Backup (PSHB)—and a Grid-Based System with Renewable Hydrogen Contribution (GSHC) is proposed. A Fuzzy Analytical Hierarchy Process methodology (FAHP) is employed for evaluating the hybrid power systems from a multi-criteria approach: acquisition operational and environmental. The main requirements for selecting the optimal system are organized under these criteria and evaluated using key performance indicators. This methodology allows the selection of the best option considering objective and subjective system performance indicators. Beyond establishing the ranking a sensitivity analysis was conducted to provide insights into how individual criteria influence the ranking of the hybrid power systems alternatives. The results demonstrate that the selection of hybrid power systems for a residential building is highly dependent on consumer preferences but the PSBB system scores highly in operation and acquisition criteria while the GSHC has good performance in all the criteria.
Deployment of Modular Renewable Energy Sources and Energy Storage Schemes in a Renewable Energy Valley
Nov 2025
Publication
While community energy initiatives and pilot projects have demonstrated technical feasibility and economic benefits their site-specific nature limits transferability to systematic scalable investment models. This study addresses this gap by proposing a modular framework for Renewable Energy Valleys (REVs) developed from real-world Community Energy Lab (CEL) demonstrations in Crete Greece which is an island with pronounced seasonal demand fluctuation strong renewable potential and ongoing hydrogen valley initiatives. Four modular business schemes are defined each representing different sectoral contexts by combining a baseline of 50 residential units with one representative large consumer (hotel rural households with thermal loads municipal swimming pool or hydrogen bus). For each scheme a mixed-integer linear programming model is applied to optimally size and operate integrated solar PV wind battery (BAT) energy storage and hydrogen systems across three renewable energy penetration (REP) targets: 90% 95% and 99.9%. The framework incorporates stochastic demand modeling sector coupling and hierarchical dispatch schemes. Results highlight optimal technology configurations that minimize dependency on external sources and curtailment while enhancing reliability and sustainability under Mediterranean conditions. Results demonstrate significant variation in optimal configurations across sectors and targets with PV capacity ranging from 217 kW to 2840 kW battery storage from 624 kWh to 2822 kWh and hydrogen systems scaling from 65.2 kg to 192 kg storage capacity. The modular design of the framework enables replication beyond the specific context of Crete supporting the scalable development of Renewable Energy Valleys that can adapt to diverse sectoral mixes and regional conditions.
Evaluating Greenhouse Gas Reduction Efficiency Through Hydrogen Ecosystem Implementation from a Life-Cycle Perspective
Nov 2025
Publication
With growing global demand for sustainable decarbonization hydrogen energy systems have emerged as a key pillar in achieving carbon neutrality. This study assesses the greenhouse gas (GHG) reduction efficiency of Republic of Korea’s hydrogen ecosystem from a life-cycle perspective focusing on production and utilization stages. Using empirical data—including the national hydrogen supply structure fuel cell electric vehicle (FCEV) deployment and hydrogen power generation records the analysis compares hydrogenbased systems with conventional fossil fuel systems. Results show that current hydrogen production methods mainly by-product and reforming-based hydrogen emit an average of 6.31 kg CO2-eq per kg H2 providing modest GHG benefits over low-carbon fossil fuels but enabling up to a 77% reduction when replacing high-emission sources like anthracite. In the utilization phase grey hydrogen-fueled stationary fuel cells emit more GHGs than the national grid. By contrast FCEVs demonstrate a 58.2% GHG reduction compared to internal combustion vehicles with regional variability. Importantly this study omits the distribution phase (storage and transport) due to data heterogeneity and a lack of reliable datasets which limits the comprehensiveness of the LCA. Future research should incorporate sensitivity or scenario-based analyses such as comparisons between pipeline transport and liquefied hydrogen transport to better capture distribution-phase impacts. The study concludes that the environmental benefit of hydrogen systems is highly dependent on production pathways end-use sectors and regional conditions. Strategic deployment of green hydrogen regional optimization and the explicit integration of distribution and storage in future assessments are essential to enhancing hydrogen’s contribution to national carbon neutrality goals.
Feasibility and Sensitivity Analysis of an Off-Grid PV/Wind Hybrid Energy System Integrated with Green Hydrogen Production: A Case Study of Algeria
Nov 2025
Publication
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the technoeconomic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer fuel cell and hydrogen storage) to supply both electricity and hydrogen to decentralized sites in Algeria. Using HOMER Pro five representative Algerian regions were analyzed accounting for variations in solar irradiation wind speed and groundwater availability. A deferrable water-extraction and treatment load was incorporated to model the water requirements of the electrolyzer. In addition a comprehensive sensitivity analysis was conducted on solar irradiation wind speed and the capital costs of PV panels and wind turbines to capture the effects of renewable resource and investment cost fluctuations. The results indicate significant regional variation with the levelized cost of energy (LCOE) ranging from 0.514 to 0.868 $/kWh the levelized cost of hydrogen (LCOH) between 8.31 and 12.4 $/kg and the net present cost (NPC) between 10.28 M$ and 17.7 M$ demonstrating that all cost metrics are highly sensitive to these variations.
Benefit Allocation Strategies for Electric–Hydrogen Coupled Virtual Power Plants with Risk–Reward Tradeoffs
Nov 2025
Publication
Driven by carbon neutrality goals electric–hydrogen coupled virtual power plants (EHCVPPs) integrate renewable hydrogen production with power system flexibility resources emerging as a critical technology for large-scale renewable integration. As distributed energy resources (DERs) within EHCVPPs diversify heterogeneous resources generate diversified market values. However inadequate benefit allocation mechanisms risk reducing participation incentives destabilizing cooperation and impairing operational efficiency. To address this benefit allocation must balance fairness and efficiency by incorporating DERs’ regulatory capabilities risk tolerance and revenue contributions. This study proposes a multi-stage benefit allocation framework incorporating risk–reward tradeoffs and an enhanced optimization model to ensure sustainable EHCVPP operations and scalability. The framework elucidates bidirectional risk–reward relationships between DERs and EHCVPPs. An individualized risk-adjusted allocation method and correction mechanism are introduced to address economic-centric inequities while a hierarchical scheme reduces computational complexity from diverse DERs. The results demonstrate that the optimized scheme moderately reduces high-risk participants’ shares increasing operator revenue by 0.69% demand-side gains by 3.56% and reducing generation-side losses by 1.32%. Environmental factors show measurable yet statistically insignificant impacts. The framework meets stakeholders’ satisfaction and minimizes deviation from reference allocations.
Changes in the Operating Conditions of Distribution Gas Networks as a Function of Altitude Conditions and the Proportion of Hydrogen in Transported Natural Gas
Nov 2025
Publication
The article presents a comparison between the pressure conditions of a real low-pressure gas network and the results of hydraulic calculations obtained using various simulation programs and empirical equations. The calculations were performed using specialized gas network analysis software: STANET (ver 10.0.26) SimNet SSGas 7 and SONET. Additionally the simulation results were compared with calculations based on the empirical Darcy–Weisbach and Renouard equations. In the first part of the analysis two calculation models were compared. In one model the geodetic elevation of individual network nodes was included (elevation-aware model) while in the second calculations were performed without considering node elevation (flat model). For low-pressure gas networks accounting for elevation is critical due to the presence of the pressure recovery phenomenon which does not occur in medium- and high-pressure networks. Furthermore considering the growing need to increase the share of renewable energy the study also examined the network’s operating conditions when using natural gas–hydrogen mixtures. The following hydrogen concentrations were considered: 2.5% 5.0% 10.0% 20.0% and 50.0%. The results confirm the importance of incorporating elevation data in the modeling of low-pressure gas networks. This is supported by the small differences between calculated results and actual pressure measurements taken from the operating network. Moreover increasing the hydrogen content in the mixture intensifies the pressure recovery effect. The hydraulic results obtained using different computational tools were consistent and showed only minor discrepancies.
Durable Pt-Decorated NiFe-LDH for High-Current-Density Electrocatalytic Water Splitting Under Alkaline Conditions
Nov 2025
Publication
The development of durable and efficient catalysts capable of driving both hydrogen and oxygen evolution reactions is essential for advancing sustainable hydrogen production through overall water electrolysis. In this study we developed a corrosion-mediated approach where Ni ions originate from the self-corrosion of the nickel foam (NF) substrate to construct Pt-modified NiFe layered double hydroxide (Pt-NiFeOxHy@NiFe-LDH) under ambient conditions. The obtained catalyst exhibits a hierarchical architecture with abundant defect sites which favor the uniform distribution of Pt clusters and optimized electronic configuration. The Pt-NiFeOxHy@NiFe-LDH catalyst constructed through the interaction between Pt sites and defective NiFe layered double hydroxide (NiFe-LDH) demonstrates remarkable hydrogen evolution reaction (HER) activity delivering an overpotential as low as 29 mV at a current density of 10 mA·cm−2 and exhibiting a small tafel slope of 34.23 mV·dec−1 in 1 M KOH together with excellent oxygen evolution reaction (OER) performance requiring only 252 mV to reach 100 mA·cm−2 . Moreover the catalyst demonstrates outstanding activity and durability in alkaline seawater maintaining stable operation over long-term tests. The Pt-NiFeOxHy@NiFe-LDH electrode when integrated into a two-electrode system demonstrates operating voltages as low as 1.42 and 1.51 V for current densities of 10 and 100 mA·cm−2 respectively and retains outstanding stability under concentrated alkaline conditions (6 M KOH 70 ◦C). Overall this work establishes a scalable and economically viable pathway toward high-efficiency bifunctional electrocatalysts and deepens the understanding of Pt-LDH interfacial synergy in promoting water-splitting catalysis.
Correlation Development for Para-to-Ortho Hydrogen Catalytic Conversion in Vapor-Cooled Shields of Hydrogen Tanks
Nov 2025
Publication
The cooling effect from the para-ortho hydrogen conversion (POC) combined with a vaporcooled shield (VCS) and multi-layer insulation (MLI) can effectively extend the storage duration of liquid hydrogen in cryogenic tanks. However there is currently no effective and straightforward empirical correlation available for predicting the catalytic POC efficiency in VCS pipelines. This study focuses on the development of correlations for the catalytic conversion of para-hydrogen to ortho-hydrogen in pipelines particularly in the context of cryogenic hydrogen storage systems. A model that incorporates the Langmuir adsorption characteristics of catalysts and introduces the concept of conversion efficiency to quantify the catalytic process’s performance is introduced. Experimental data were obtained in the temperature range of 141.9~229.9 K from a cryogenic hydrogen catalytic conversion facility where the effects of temperature pressure and flow rate on the catalytic conversion efficiency were analyzed. Based on a validation against the experimental data the proposed model offers a reliable method for predicting the cooling effects and optimizing the catalytic conversion process in VCS pipelines which may contribute to the improvement of liquid hydrogen storage systems enhancing both the efficiency and duration of storage.
No more items...