Publications
Acoustic Emission Characteristics of Used 70 MPa Type IV Hydrogen Storage Tanks During Hydrostatic Burst Tests
Sep 2019
Publication
Currently the periodic inspection of composite tanks is typically achieved via hydrostatic test combined with internal and external visual inspections. Acoustic emission (AE) technology demonstrates a promising non destructive testing method for damage mode identification and damage assessment. This study focuses on AE signals characteristics and evolution behaviours for used 70 MPa Type IV hydrogen storage tanks during hydrostatic burst tests. AE-based tensile tests for epoxy resin specimen and carbon fiber tow were implemented to obtain characteristics of matrix cracking and fiber breakage. Then broadband AE sensors were used to capture AE signals during multi-step loading tests and hydrostatic burst tests. K-means ++ algorithm and wavelet packet transform are performed to cluster AE signals and verify the validity. Combining with tensile tests three clusters are manifested via matrix cracking fiber/matrix debonding and fiber breakage according to amplitude duration counts and absolute energy. The number of three clustering signals increases with the increase of pressure showing accumulated and aggravated damage. The sudden appearance of a large number of fiber breakage signals during hydrostatic burst tests suggests that the composite tank structure is becoming mechanically unstable namely the impending burst failure of the tank.
Commercialisation of Energy Storage
Mar 2015
Publication
This report was created to ensure a deeper understanding of the role and commercial viability of energy storage in enabling increasing levels of intermittent renewable power generation. It was specifically written to inform thought leaders and decision-makers about the potential contribution of storage in order to integrate renewable energy sources (RES) and about the actions required to ensure that storage is allowed to compete with the other flexibility options on a level playing field.<br/>The share of RES in the European electric power generation mix is expected to grow considerably constituting a significant contribution to the European Commission’s challenging targets to reduce greenhouse gas emissions. The share of RES production in electricity demand should reach about 36% by 2020 45-60% by 2030 and over 80% in 2050.<br/>In some scenarios up to 65% of EU power generation will be covered by solar photovoltaics (PV) as well as on- and offshore wind (variable renewable energy (VRE) sources) whose production is subject to both seasonal as well as hourly weather variability. This is a situation the power system has not coped with before. System flexibility needs which have historically been driven by variable demand patterns will increasingly be driven by supply variability as VRE penetration increases to very high levels (50% and more).<br/>Significant amounts of excess renewable energy (on the order of TWh) will start to emerge in countries across the EU with surpluses characterized by periods of high power output (GW) far in excess of demand. These periods will alternate with times when solar PV and wind are only generating at a fraction of their capacity and non-renewable generation capacity will be required.<br/>In addition the large intermittent power flows will put strain on the transmission and distribution network and make it more challenging to ensure that the electricity supply matches demand at all times.<br/>New systems and tools are required to ensure that this renewable energy is integrated into the power system effectively. There are four main options for providing the required flexibility to the power system: dispatchable generation transmission and distribution expansion demand side management and energy storage. All of these options have limitations and costs and none of them can solve the RES integration challenge alone. This report focuses on the question to what extent current and new storage technologies can contribute to integrate renewables in the long run and play additional roles in the short term.
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
Hydrogen Embrittlement: Future Directions—Discussion
Jun 2017
Publication
The final session of the meeting consisted of a discussion panel to propose future directions for research in the field of hydrogen embrittlement and the potential impact of this research on public policy.
This article is a transcription of the recorded discussion of ‘Hydrogen Embrittlement: Future Directions’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals Jan 16th–18th 2017. The text is approved by the contributors. H.L. transcribed the session and drafted the manuscript. Y.C. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of ‘Hydrogen Embrittlement: Future Directions’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals Jan 16th–18th 2017. The text is approved by the contributors. H.L. transcribed the session and drafted the manuscript. Y.C. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Carbon Capture and Storage Could Clear a Path to the UK's Carbon Reduction Targets: An ETI Technology Programme Highlight Report
Sep 2014
Publication
Capturing and sealing away carbon dioxide released from industrial processes and electricity generation is acknowledged internationally to be potentially a winning intervention in the battle against climate change. The collected technologies that make up Carbon Capture and Storage (CCS) could remove more than 90% of the carbon emissions from energy intensive industries and electricity production. In power generation CCS not only provides low-carbon output but it also preserves capacity in fossil fuel-fired plant to respond to shifts in demand. This is a near-unique combination that could mitigate the different shortcomings of harnessing the wind the sun or nuclear fission.<br/>CCS could clear a path to the UK’s carbon reduction targets; secure its energy supplies; and reduce the cost of those achievements. With CCS in play a low-carbon future with secure energy supplies becomes affordable. However without our research has found that the costs of meeting the UK’s lowcarbon targets could double to £60bn a year by 2050 at today’s prices.<br/>However CCS has to be honed technically and commercially before it can become a reality. ETI supported by its partners has made important progress and continues to do so.
Bioanode as a Limiting Factor to Biocathode Performance in Microbial Electrolysis Cells
Mar 2017
Publication
The bioanode is important for a microbial electrolysis cell (MEC) and its robustness to maintain its catalytic activity affects the performance of the whole system. Bioanodes enriched at a potential of +0.2 V (vs. standard hydrogen electrode) were able to sustain their oxidation activity when the anode potential was varied from -0.3 up to +1.0 V. Chronoamperometric test revealed that the bioanode produced peak current density of 0.36 A/m2 and 0.37 A/m2 at applied potential 0 and +0.6 V respectively. Meanwhile hydrogen production at the biocathode was proportional to the applied potential in the range from -0.5 to -1.0 V. The highest production rate was 7.4 L H2/(m2 cathode area)/day at -1.0 V cathode potential. A limited current output at the bioanode could halt the biocathode capability to generate hydrogen. Therefore maximum applied potential that can be applied to the biocathode was calculated as -0.84 V without overloading the bioanode.
Pathways to Hydrogen as an Energy Carrier
Feb 2007
Publication
When hydrogen is used as an alternative energy carrier it is very important to understand the pathway from the primary energy source to the final use of the carrier. This involves for example the understanding of greenhouse gas emissions associated with the production of hydrogen and throughout the lifecycle of a given utilization pathway as well as various energy or exergy1 efficiencies and aspects involved. This paper which is based on a talk given at the Royal Society in London assesses and reviews the various production pathways for hydrogen with emphasis on emissions energy use and energy efficiency. The paper also views some aspects of the breaking of the water molecule and examines some new emerging physical evidence which could pave the way to a new and more feasible pathway.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Understanding and Mitigating Hydrogen Embrittlement of Steels: A Review of Experimental, Modelling and Design Progress from Atomistic to Continuum
Feb 2018
Publication
Hydrogen embrittlement is a complex phenomenon involving several lengthand timescales that affects a large class of metals. It can significantly reduce the ductility and load-bearing capacity and cause cracking and catastrophic brittle failures at stresses below the yield stress of susceptible materials. Despite a large research effort in attempting to understand the mechanisms of failure and in developing potential mitigating solutions hydrogen embrittlement mechanisms are still not completely understood. There are controversial opinions in the literature regarding the underlying mechanisms and related experimental evidence supporting each of these theories. The aim of this paper is to provide a detailed review up to the current state of the art on the effect of hydrogen on the degradation of metals with a particular focus on steels. Here we describe the effect of hydrogen in steels from the atomistic to the continuum scale by reporting theoretical evidence supported by quantum calculation and modern experimental characterisation methods macroscopic effects that influence the mechanical properties of steels and established damaging mechanisms for the embrittlement of steels. Furthermore we give an insight into current approaches and new mitigation strategies used to design new steels resistant to hydrogen embrittlement.<br/>*Correction published see Supplements section
Effect of Gasoline Pool Fire on Liquid Hydrogen Storage Tank in Hybrid Hydrogen-gasoline Fueling Station
Nov 2015
Publication
Multiple-energy-fuelling stations which can supply several types of energy such as gasoline CNG and hydrogen could guarantee the efficient use of space. To guide the safety management of hybrid hydrogen–gasoline fuelling stations which utilize liquid hydrogen as an energy carrier the scale of gasoline pool fires was estimated using the hazard assessment tool Toxic Release Analysis of Chemical Emissions (TRACE). Subsequently the temperature and the stress due to temperature distribution were estimated using ANSYS. Based on the results the safety of liquid hydrogen storage tanks was discussed. It was inferred that the emissivity of the outer material of the tank and the safety distance between liquid hydrogen storage tanks and gasoline dispensers should be less than 0.2 and more than 8.5 m respectively to protect the liquid hydrogen storage tank from the gasoline pool fire. To reduce the safety distance several measures are required e.g. additional thermal shields such as protective intumescent paint and water sprinkler systems and an increased slope to lead gasoline off to a safe domain away from the liquid hydrogen storage tank
Dispersion of Cryogenic Hydrogen Through High-aspect Ratio Nozzles
Sep 2019
Publication
Liquid hydrogen is increasingly being used as a delivery and storage medium for stations that provide compressed gaseous hydrogen for fuel cell electric vehicles. In efforts to provide scientific justification for separation distances for liquid hydrogen infrastructure in fire codes the dispersion characteristics of cryogenic hydrogen jets (50–64 K) from high aspect ratio nozzles have been measured at 3 and 5 barabs stagnation pressures. These nozzles are more characteristic of unintended leaks which would be expected to be cracks rather than conventional round nozzles. Spontaneous Raman scattering was used to measure the concentration and temperature field along the major and minor axes. Within the field of interrogation the axis-switching phenomena was not observed but rather a self-similar Gaussian-profile flow regime similar to room temperature or cryogenic hydrogen releases through round nozzles. The concentration decay rate and half-widths for the planar cryogenic jets were found to be nominally equivalent to that of round nozzle cryogenic hydrogen jets indicating a similar flammable envelope. The results from these experiments will be used to validate models for cryogenic hydrogen dispersion that will be used for simulations of alternative scenarios and quantitative risk assessment
Dynamic System Modeling of Thermally-integrated Concentrated PV-electrolysis
Feb 2021
Publication
Understanding the dynamic response of a solar fuel processing system utilizing concentrated solar radiation and made of a thermally-integrated photovoltaic (PV) and water electrolyzer (EC) is important for the design development and implementation of this technology. A detailed dynamic non-linear process model is introduced for the fundamental system components (i.e. PV EC pump etc.) in order to investigate the coupled system behavior and performance synergy notably arising from the thermal integration. The nominal hydrogen production power is ∼2 kW at a hydrogen system efficiency of 16–21% considering a high performance triple junction III-V PV module and a proton exchange membrane EC. The device operating point relative to the maximum power point of the PV was shown to have a differing influence on the system performance when subject to temperature changes. The non-linear coupled behavior was characterised in response to step changes in water flowrate and solar irradiance and hysteresis of the current-voltage operating point was demonstrated. Whilst the system responds thermally to changes in operating conditions in the range of 0.5–2 min which leads to advantageously short start-up times a number of control challenges are identified such as the impact of pump failure electrical PV-EC disconnection and the potentially damaging accentuated temperature rise at lower water flowrates. Finally the simulation of co-generation of heat and hydrogen for various operating conditions demonstrates the significant potential for system efficiency enhancements and the required development of control strategies for demand matching is discussed.
Hydrogen Odorant and Leak Detection: Part 1, Hydrogen Odorant - Project Closure Report
Nov 2020
Publication
This work programme was focused on identifying a suitable odorant for use in a 100% hydrogen gas grid (domestic use such as boilers and cookers). The research involved a review of existing odorants (used primarily for natural gas) and the selection of five suitable odorants based on available literature. One odorant was selected based on possible suitability with a Polymer Electrolyte Membrane (PEM) based fuel cell vehicle which could in future be a possible end-user of grid hydrogen. NPL prepared Primary Reference Materials containing the five odorants in hydrogen at the relevant amount fraction levels (as would be found in the grid) including ones provided by Robinson Brothers (the supplier of odorants for natural gas in the UK). These mixtures were used by NPL to perform tests to understand the effects of the mixtures on pipeline (metal and plastic) appliances (a hydrogen boiler provided by Worcester Bosch) and PEM fuel cells. HSE investigated the health and environmental impact of these odorants in hydrogen. Olfactory testing was performed by Air Spectrum to characterise the ‘smell’ of each odorant. Finally an economic analysis was performed by E4tech. The results confirm that Odorant NB would be a suitable odorant for use in a 100% hydrogen gas grid for combustion applications but further research would be required if the intention is to supply grid hydrogen to stationery fuel cells or fuel cell vehicles. In this case further testing would need to be performed to measure the extent of fuel cell degradation caused by the non-sulphur odorant obtained as part of this work programme and also other UK projects such as the Hydrogen Grid to Vehicle (HG2V) project would provide important information about whether a purification step would be required regardless of the odorant before the hydrogen purity would be suitable for a PEM fuel cell vehicle. If purification was required it would be fine to use Odorant NB as this would be removed during the purification step.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Pyrolysis-catalytic Steam Reforming of Agricultural Biomass Wastes and Biomass Components for Production of Hydrogen/syngas
Oct 2018
Publication
The pyrolysis-catalytic steam reforming of six agricultural biomass waste samples as well as the three main components of biomass was investigated in a two stage fixed bed reactor. Pyrolysis of the biomass took place in the first stage followed by catalytic steam reforming of the evolved pyrolysis gases in the second stage catalytic reactor. The waste biomass samples were rice husk coconut shell sugarcane bagasse palm kernel shell cotton stalk and wheat straw and the biomass components were cellulose hemicellulose (xylan) and lignin. The catalyst used for steam reforming was a 10 wt.% nickel-based alumina catalyst (NiAl2O3). In addition the thermal decomposition characteristics of the biomass wastes and biomass components were also determined using thermogravimetric analysis (TGA). The TGA results showed distinct peaks for the individual biomass components which were also evident in the biomass waste samples reflecting the existence of the main biomass components in the biomass wastes. The results for the two-stage pyrolysis-catalytic steam reforming showed that introduction of steam and catalyst into the pyrolysis-catalytic steam reforming process significantly increased gas yield and syngas production notably hydrogen. For instance hydrogen composition increased from 6.62 to 25.35 mmol g 1 by introducing steam and catalyst into the pyrolysis-catalytic steam reforming of palm kernel shell. Lignin produced the most hydrogen compared to cellulose and hemicellulose at 25.25 mmol g 1. The highest residual char production was observed with lignin which produced about 45 wt.% char more than twice that of cellulose and hemicellulose.
Hydrogen Economy and the Built Environment
Nov 2011
Publication
The hydrogen economy is a proposition for the distribution of energy by using hydrogen in order to potentially eliminate carbon emissions and end our reliance on fossil fuels. Some futuristic forecasters view the hydrogen economy as the ultimate carbon free economy. Hydrogen operated vehicles are on trial in many countries. The use of hydrogen as an energy source for buildings is in its infancy but research and development is evolving. Hydrogen is generally fed into devices called fuel cells to produce energy. A fuel cell is an electrochemical device that produces electricity and heat from a fuel (often hydrogen) and oxygen. Fuel cells have a number of advantages over other technologies for power generation. When fed with clean hydrogen they have the potential to use less fuel than competing technologies and to emit no pollution (the only bi-product being water). However hydrogen has to be produced and stored in the first instance. It is possible to generate hydrogen from renewable sources but the technology is still immature and the transformation is wasteful. The creation of a clean hydrogen production and distribution economy at a global level is very costly. Proponents of a world-scale hydrogen economy argue that hydrogen can be an environmentally cleaner source of energy to end-users particularly in transportation applications without release of pollutants (such as particulate matter) or greenhouse gases at the point of end use. Critics of a hydrogen economy argue that for many planned applications of hydrogen direct use of electricity or production of liquid synthetic fuels from locally-produced hydrogen and CO2 (e.g. methanol economy) might accomplish many of the same net goals of a hydrogen economy while requiring only a small fraction of the investment in new infrastructure. This paper reviews the hydrogen economy how it is produced and distributed. It then investigates the different types of fuel cells and identifies which types are relevant to the built environment both in residential and nonresidential sections. It concludes by examining what are the future plans in terms of implementing fuel cells in the built environment and discussing some of the needs of built environment sector.
Link to Document
Link to Document
Influence of hydraulic sequential tests on the burst strength of Type-4 compressed hydrogen containers
Sep 2019
Publication
One of the topics for the revision deliberation of GTR13 on hydrogen and fuel cell vehicles is the study of an appropriate initial burst pressure of the containers. The purpose of this study is to investigate the influence of the hydraulic sequential tests on the residual burst pressure in order to examine the appropriate initial burst pressure correlated with the provisions for the residual burst pressure at the Endof-Life (EOL). Specifically we evaluated any deterioration and variations of burst pressure due to hydraulic sequential tests on 70MPa compressed-hydrogen containers. When the burst pressure after the hydraulic sequential testing (EOL) was compared with the initial burst pressure at the beginning of life (BOL) the pressure proved to have decreased by a few percent while the variation increased. In the burst test it was observed that the rupture originated in the cylindrical part in all the BOL containers while in some of the EOL containers the rupture originated in the dome part. Since the dome part is a section that suffers an impact of vertical drop test it is conceivable that some sort of damage occurred in the CFRP. Therefore it was assumed that this damage was the main causal factor for the decrease in the burst pressure and the increase of the burst pressure variation at the dome part.
Implementing Maritime Battery-electric and Hydrogen Solutions: A Technological Innovation Systems Analysis
Sep 2020
Publication
Maritime transport faces increasing pressure to reduce its greenhouse gas emissions to be in accordance with the Paris Agreement. For this to happen low- and zero-carbon energy solutions need to be developed. In this paper we draw on sustainability transition literature and introduce the technological innovation system (TIS) framework to the field of maritime transportation research. The TIS approach analytically distinguishes between different innovation system functions that are important for new technologies to develop and diffuse beyond an early phase of experimentation. This provides a basis for technology-specific policy recommendations. We apply the TIS framework to the case of battery-electric and hydrogen energy solutions for coastal maritime transport in Norway. Whereas both battery-electric and hydrogen solutions have developed rapidly the former is more mature and has a strong momentum. Public procurement and other policy instruments have been crucial for developments to date and will be important for these technologies to become viable options for shipping more generally.
Multi-state Techno-economic Model for Optimal Dispatch of Grid Connected Hydrogen Electrolysis Systems Operating Under Dynamic Conditions
Oct 2020
Publication
The production of hydrogen through water electrolysis is a promising pathway to decarbonize the energy sector. This paper presents a techno-economic model of electrolysis plants based on multiple states of operation: production hot standby and idle. The model enables the calculation of the optimal hourly dispatch of electrolyzers to produce hydrogen for different end uses. This model has been tested with real data from an existing installation and compared with a simpler electrolyzer model that is based on two states. The results indicate that an operational strategy that considers the multi-state model leads to a decrease in final hydrogen production costs. These reduced costs will benefit businesses especially while electrolysis plants grow in size to accommodate further increases in demand.
Structural Model of Power Grid Stabilization in the Green Hydrogen Supply Chain System—Conceptual Assumptions
Jan 2022
Publication
The paper presents the conceptual assumptions of research concerning the design of a theoretical multi-criteria model of a system architecture to stabilize the operation of power distribution networks based on a hydrogen energy buffer taking into account the utility application of hydrogen. The basis of the research process was a systematic literature review using the technique of in-depth analysis of full-text articles and expert consultations. The structural model concept was described in two dimensions in which the identified variables were embedded. The first dimension includes the supply chain phases: procurement and production with warehousing and distribution. The second dimension takes into account a comprehensive and interdisciplinary approach and includes the following factors: technical economic–logistical locational and formal–legal.
A Study of Decrease Burst Strength on Compressed-hydrogen Containers by Drop Test
Sep 2019
Publication
We investigate an appropriate initial burst pressure of compressed hydrogen containers that correlates with a residual burst pressure requirement at the end of life (EOL) and report an influence of hydraulic sequential tests on residual burst pressure. Results indicate that a container damage caused by a drop test during hydraulic sequential tests has a large influence on burst pressure. The container damage induced through hydraulic sequential tests is investigated using non-destructive evaluations to clarify a strength decreasing mechanism. An ultrasonic flaw detection analysis is conducted before and after the drop test and indicated that the damage occurred at the cylindrical and dome parts of the container after the drop test. An X-ray computed tomography imaging identifies a delamination inside laminated structure made of carbon fiber reinforced plastics (CFRP) layer with some degree of delamination reaching the end boss of the container. Results suggest that a load profile fluctuates in the CFRP layer at the dome part and that a burst strength of the dome part decreases. Therefore an observed decreasing in drop damage at the dome part can be used to prevent a degradation of EOL container burst strength.
A Review of Recent Advances on the Effects of Microstructural Refinement and Nano-Catalytic Additives on the Hydrogen Storage Properties of Metal and Complex Hydrides
Dec 2010
Publication
The recent advances on the effects of microstructural refinement and various nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides obtained in the last few years in the allied laboratories at the University of Waterloo (Canada) and Military University of Technology (Warsaw Poland) are critically reviewed in this paper. The research results indicate that microstructural refinement (particle and grain size) induced by ball milling influences quite modestly the hydrogen storage properties of simple metal and complex metal hydrides. On the other hand the addition of nanometric elemental metals acting as potent catalysts and/or metal halide catalytic precursors brings about profound improvements in the hydrogen absorption/desorption kinetics for simple metal and complex metal hydrides alike. In general catalytic precursors react with the hydride matrix forming a metal salt and free nanometric or amorphous elemental metals/intermetallics which in turn act catalytically. However these catalysts change only kinetic properties i.e. the hydrogen absorption/desorption rate but they do not change thermodynamics (e.g. enthalpy change of hydrogen sorption reactions). It is shown that a complex metal hydride LiAlH4 after high energy ball milling with a nanometric Ni metal catalyst and/or MnCl2 catalytic precursor is able to desorb relatively large quantities of hydrogen at RT 40 and 80 °C. This kind of behavior is very encouraging for the future development of solid state hydrogen systems.
Significantly Enhanced Electrocatalytic Activity of Copper for Hydrogen Evolution Reaction Through Femtosecond Laser Blackening
Jan 2021
Publication
In this work we report on the creation of a black copper via femtosecond laser processing and its application as a novel electrode material. We show that the black copper exhibits an excellent electrocatalytic activity for hydrogen evolution reaction (HER) in alkaline solution. The laser processing results in a unique microstructure: microparticles covered by finer nanoparticles on top. Electrochemical measurements demonstrate that the kinetics of the HER is significantly accelerated after bare copper is treated and turned black. At −0.325 V (v.s. RHE) in 1 M KOH aqueous solution the calculated area-specific charge transfer resistance of the electrode decreases sharply from 159 Ω cm2 for the untreated copper to 1 Ω cm2 for the black copper. The electrochemical surface area of the black copper is measured to be only 2.4 times that of the untreated copper and therefore the significantly enhanced electrocatalytic activity of the black copper for HER is mostly a result of its unique microstructure that favors the formation and enrichment of protons on the surface of copper. This work provides a new strategy for developing high-efficient electrodes for hydrogen generation.
Value Added of the Hydrogen and Fuel Cell Sector in Europe
Mar 2019
Publication
Fuel cells and hydrogen (FCH) could bring significant environmental benefits across the energy system if deployed widely: low carbon and highly efficient energy conversions with zero air quality emissions. The socio-economic benefits to Europe could also be substantial through employment in development manufacturing installation and service sectors and through technology export. Major corporations are stressing the economic and environmental value of FCH technologies and the importance of including them in both transport and stationary energy systems globally while national governments and independent agencies are supporting their role in the energy systems transition.
Recognising the potential economic and industrial benefits from a strong FCH supply chain in Europe and the opportunities for initiatives to support new energy supply chains the FCH 2 JU commissioned a study to evaluate for the first time the value added that the fuel cell and hydrogen sector can bring to Europe by 2030.
The outputs of the study are divided into three reports:
The Value Chain study complements the Hydrogen Roadmap for Europe recently published by the FCH 2 JU. This lays out a pathway for the large-scale deployment of hydrogen and fuel cells to 2050 in order to achieve a 2-degree climate scenario. This study also quantified socio-economic and environmental benefits but with important differences in scope between the two studies. The Hydrogen Roadmap for Europe looked at the wider picture quantifying the scale of FCH roll-out needed to meet the 2-degree scenario objectives. It assessed the socio-economic impacts of a sector of that scale looking top-down at the entire FCH value chain. The Value Chain study presented here is a narrower and more detailed bottom-up assessment of the value-added in manufacturing activities and the immediate ecosystem of suppliers that this is likely to create.
Recognising the potential economic and industrial benefits from a strong FCH supply chain in Europe and the opportunities for initiatives to support new energy supply chains the FCH 2 JU commissioned a study to evaluate for the first time the value added that the fuel cell and hydrogen sector can bring to Europe by 2030.
The outputs of the study are divided into three reports:
- A ‘Summary’ report that provides a synthetic overview of the study conclusions;
- a ‘Findings’ report that presents the approach and findings of the study;
- and an ‘Evidence’ report that provides the detailed background information and analysis that supports the findings and recommendations.
The Value Chain study complements the Hydrogen Roadmap for Europe recently published by the FCH 2 JU. This lays out a pathway for the large-scale deployment of hydrogen and fuel cells to 2050 in order to achieve a 2-degree climate scenario. This study also quantified socio-economic and environmental benefits but with important differences in scope between the two studies. The Hydrogen Roadmap for Europe looked at the wider picture quantifying the scale of FCH roll-out needed to meet the 2-degree scenario objectives. It assessed the socio-economic impacts of a sector of that scale looking top-down at the entire FCH value chain. The Value Chain study presented here is a narrower and more detailed bottom-up assessment of the value-added in manufacturing activities and the immediate ecosystem of suppliers that this is likely to create.
On the Response of a Lean-premixed Hydrogen Combustor to Acoustic and Dissipative-dispersive Entropy Waves
May 2019
Publication
Combustion of hydrogen or hydrogen containing blends in gas turbines and industrial combustors can activate thermoacoustic combustion instabilities. Convective instabilities are an important and yet less investigated class of combustion instability that are caused by the so called “entropy waves”. As a major shortcoming the partial decay of these convective-diffusive waves in the post-flame region of combustors is still largely unexplored. This paper therefore presents an investigation of the annihilating effects due to hydrodynamics heat transfer and flow stretch upon the nozzle response. The classical compact analysis is first extended to include the decay of entropy waves and heat transfer from the nozzle. Amplitudes and phase shifts of the responding acoustical waves are then calculated for subcritical and supercritical nozzles subject to acoustic and entropic forcing. A relation for the stretch of entropy wave in the nozzle is subsequently developed. It is shown that heat transfer and hydrodynamic decay can impart considerable effects on the entropic response of the nozzle. It is further shown that the flow stretching effects are strongly frequency dependent. The results indicate that dissipation and dispersion of entropy waves can significantly influence their conversion to sound and therefore should be included in the entropy wave models.
Anionic Structural Effect in Liquid–liquid Separation of Phenol from Model Oil by Choline Carboxylate Ionic Liquid
Feb 2019
Publication
The synthesis of low-cost and highly active electrodes for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for water splitting. In this work the novel amorphous iron-nickel phosphide (FeP-Ni) nanocone arrays as efficient bifunctional electrodes for overall water splitting have been in-situ assembled on conductive three-dimensional (3D) Ni foam via a facile and mild liquid deposition process. It is found that the FeP-Ni electrode demonstrates highly efficient electrocatalytic performance toward overall water splitting. In 1 M KOH electrolyte the optimal FeP-Ni electrode drives a current density of 10 mA/cm2 at an overpotential of 218 mV for the OER and 120 mV for the HER and can attain such current density for 25 h without performance regression. Moreover a two-electrode electrolyzer comprising the FeP-Ni electrodes can afford 10 mA/cm2 electrolysis current at a low cell voltage of 1.62 V and maintain long-term stability as well as superior to that of the coupled RuO2/NF‖Pt/C/NF cell. Detailed characterizations confirm that the excellent electrocatalytic performances for water splitting are attributed to the unique 3D morphology of nanocone arrays which could expose more surface active sites facilitate electrolyte diffusion benefit charge transfer and also favorable bubble detachment behavior. Our work presents a facile and cost-effective pathway to design and develop active self-supported electrodes with novel 3D morphology for water electrolysis.
Multi-Tubular Reactor for Hydrogen Production CFD Thermal Design and Experimental Testing
Jan 2019
Publication
This study presents the Computational Fluid Dynamics (CFD) thermal design and experimental tests results for a multi-tubular solar reactor for hydrogen production based on the ferrite thermochemical cycle in a pilot plant in the Plataforma Solar de Almería (PSA). The methodology followed for the solar reactor design is described as well as the experimental tests carried out during the testing campaign and characterization of the reactor. The CFD model developed for the thermal design of the solar reactor has been validated against the experimental measurements with a temperature error ranging from 1% to around 10% depending on the location within the reactor. The thermal balance in the reactor (cavity and tubes) has been also solved by the CFD model showing a 7.9% thermal efficiency of the reactor. CFD results also show the percentage of reacting media inside the tubes which achieve the required temperature for the endothermic reaction process with 90% of the ferrite pellets inside the tubes above the required temperature of 900 °C. The multi-tubular solar reactor designed with aid of CFD modelling and simulations has been built and operated successfully
Governing the UK’s Transition to Decarbonised Heating: Lessons from a Systematic Review of Past and Ongoing Heat Transitions
May 2020
Publication
According to the UK’s Committee on Climate Change the economically efficient achievement of Government’s legally-binding carbon-reduction target will require full decarbonisation of all heat in buildings and the decarbonisation of most industrial heat over the next 20 to 30 years (BEIS 2018). This goliath task is not unprecedented. Indeed the scale of this transition is similar to the UK’s former transition from coal to natural gas heating. Albeit the rate of transition away from natural gas will certainly need to be greater than the rate of the transition toward natural gas to achieve net zero greenhouse gas emissions by 2050.<br/><br/>At present Government’s commitment stands in sharp contrast with its inaction on heat decarbonisation to date. Under pressure to progress this agenda Government has charged the Clean Heat Directorate with the task of outlining the process for determining the UK’s long-term heat policy framework to be published in the ‘Roadmap for policy on heat decarbonisation’ in the summer of 2020 (BEIS 2017). This report resulting from one of six EPSRC-funded secondments is designed to support early thinking on the roadmap by answering the research question: How can ‘Transitions’ research informs the roadmap for governing the UK’s heating transition?<br/><br/>‘Transitions’ research is an interdisciplinary field of study within the Social Sciences and Humanities that investigates the co-evolution of social and technological systems (such as the UK heating system) and the dynamics by which fundamental change in these systems occur. To investigate what insights this area of research may hold for the governance of the UK’s heat transition a systematic literature review was conducted focusing specifically on past and ongoing heat transitions across Europe.<br/><br/>The review uncovered learnings about the role of path dependency; power and politics; complexity; cross-sector interactions; multi-level governance; and intermediaries in shaping non-linear transitions toward renewable heat. This report illustrates each learning with real-world examples from case studies undertaken by Transitions researchers and concludes with a long list of policy and process-oriented governance recommendations for the UK Government.
Comparing Exergy Losses and Evaluating the Potential of Catalyst-filled Plate-fin and Spiral-wound Heat Exchangers in a Large-scale Claude Hydrogen Liquefaction Process
Jan 2020
Publication
Detailed heat exchanger designs are determined by matching intermediate temperatures in a large-scale Claude refrigeration process for liquefaction of hydrogen with a capacity of 125 tons/day. A comparison is made of catalyst filled plate-fin and spiral-wound heat exchangers by use of a flexible and robust modelling framework for multi-stream heat exchangers that incorporates conversion of ortho-to para-hydrogen in the hydrogen feed stream accurate thermophysical models and a distributed resolution of all streams and wall temperatures. Maps of the local exergy destruction in the heat exchangers are presented which enable the identification of several avenues to improve their performances.<br/>The heat exchanger duties vary between 1 and 31 MW and their second law energy efficiencies vary between 72.3% and 96.6%. Due to geometrical constraints imposed by the heat exchanger manufacturers it is necessary to employ between one to four parallel plate-fin heat exchanger modules while it is possible to use single modules in series for the spiral-wound heat exchangers. Due to the lower surface density and heat transfer coefficients in the spiral-wound heat exchangers their weights are 2–14 times higher than those of the plate-fin heat exchangers.<br/>In the first heat exchanger hydrogen feed gas is cooled from ambient temperature to about 120 K by use of a single mixed refrigerant cycle. Here most of the exergy destruction occurs when the high-pressure mixed refrigerant enters the single-phase regime. A dual mixed refrigerant or a cascade process holds the potential to remove a large part of this exergy destruction and improve the efficiency. In many of the heat exchangers uneven local exergy destruction reveals a potential for further optimization of geometrical parameters in combination with process parameters and constraints.<br/>The framework presented makes it possible to compare different sources of exergy destruction on equal terms and enables a qualified specification on the maximum allowed pressure drops in the streams. The mole fraction of para-hydrogen is significantly closer to the equilibrium composition through the entire process for the spiral-wound heat exchangers due to the longer residence time. This reduces the exergy destruction from the conversion of ortho-hydrogen and results in a higher outlet mole fraction of para-hydrogen from the process.<br/>Because of the higher surface densities of the plate-fin heat exchangers they are the preferred technology for hydrogen liquefaction unless a higher conversion to heat exchange ratio is desired.
Business Energy and Industrial Strategy Committee Inquiry into Post-Pandemic Economic Growth
Sep 2020
Publication
The Hydrogen Taskforce welcomes the opportunity to submit evidence to the Business Energy and
Industrial Strategy Committee’s inquiry into post-pandemic economic growth.
It is the Taskforce’s view that:
You can download the whole document from the Hydrogen Taskforce website here
Industrial Strategy Committee’s inquiry into post-pandemic economic growth.
It is the Taskforce’s view that:
- Due to its various applications hydrogen is critical for the UK to reach net zero by 2050;
- The UK holds world-class advantages in hydrogen production distribution and application;
- Other economies are moving ahead in the development of this sector and the UK must respond;
- The post pandemic economic recovery planning should reflect the need to achieve deep decarbonisation and support wider objectives such as achieving net zero and levelling up the
- economy; and
- The hydrogen sector is well-placed to play a key role in the UK’s economic recovery with the right policies and financial structures in place.
- Development of a cross departmental UK Hydrogen Strategy within UK Government;
- Commit £1bn of capex funding over the next spending review period to hydrogen production storage and distribution projects;
- Develop a financial support scheme for the production of hydrogen in blending industry power and transport;
- Amend Gas Safety Management Regulations (GSMR) to enable hydrogen blending and take the next steps towards 100 per cent hydrogen heating through supporting public trials and
- mandating 100 per cent hydrogen-ready boilers by 2025; and
- Commit to the support of 100 Hydrogen Refuelling Stations (HRS) by 2025 to support the rollout of hydrogen transport.
You can download the whole document from the Hydrogen Taskforce website here
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Horizon 2020 Impact Assessment Report
Nov 2011
Publication
Horizon 2020 is the biggest EU Research and Innovation programme ever with nearly €80 billion of funding available over 7 years (2014 to 2020) – in addition to the private investment that this money will attract. It promises more breakthroughs discoveries and world-firsts by taking great ideas from the lab to the market.<br/>Horizon 2020 is the financial instrument implementing the Innovation Union a Europe 2020 flagship initiative aimed at securing Europe's global competitiveness.<br/><br/>Seen as a means to drive economic growth and create jobs Horizon 2020 has the political backing of Europe’s leaders and the Members of the European Parliament. They agreed that research is an investment in our future and so put it at the heart of the EU’s blueprint for smart sustainable and inclusive growth and jobs.<br/><br/>By coupling research and innovation Horizon 2020 is helping to achieve this with its emphasis on excellent science industrial leadership and tackling societal challenges. The goal is to ensure Europe produces world-class science removes barriers to innovation and makes it easier for the public and private sectors to work together in delivering innovation.<br/><br/>Horizon 2020 is open to everyone with a simple structure that reduces red tape and time so participants can focus on what is really important. This approach makes sure new projects get off the ground quickly – and achieve results faster.<br/><br/>The EU Framework Programme for Research and Innovation will be complemented by further measures to complete and further develop the European Research Area. These measures will aim at breaking down barriers to create a genuine single market for knowledge research and innovation.
Hydrogen adsorption on transition metal carbides
Jan 2019
Publication
Transition metal carbides are a class of materials widely known for both their interesting physical properties and catalytic activity. In this work we have used plane-wave DFT methods to study the interaction with increasing amounts of molecular hydrogen on the low-index surfaces of four major carbides – TiC VC ZrC and NbC. Adsorption is found to be generally exothermic and occurs predominantly on the surface carbon atoms. We identify trends over the carbides and their surfaces for the energetics of the adsorption as a function of their electronic and geometrical characteristics. An ab initio thermodynamics formalism is used to study the properties of the slabs as the hydrogen coverage is increased.
Opportunities and Challenges of Low-Carbon Hydrogen via Metallic Membranes
Jun 2020
Publication
Today electricity & heat generation transportation and industrial sectors together produce more than 80% of energy-related CO2 emissions. Hydrogen may be used as an energy carrier and an alternative fuel in the industrial residential and transportation sectors for either heating energy production from fuel cells or direct fueling of vehicles. In particular the use of hydrogen fuel cell vehicles (HFCVs) has the potential to virtually eliminate CO2 emissions from tailpipes and considerably reduce overall emissions from the transportation sector. Although steam methane reforming (SMR) is the dominant industrial process for hydrogen production environmental concerns associated with CO2 emissions along with the process intensification and energy optimization are areas that still require improvement. Metallic membrane reactors (MRs) have the potential to address both challenges. MRs operate at significantly lower pressures and temperatures compared with the conventional reactors. Hence the capital and operating expenses could be considerably lower compared with the conventional reactors. Moreover metallic membranes specifically Pd and its alloys inherently allow for only hydrogen permeation making it possible to produce a stream of up to 99.999+% purity.
For smaller and emerging hydrogen markets such as the semiconductor and fuel cell industries Pd-based membranes may be an appropriate technology based on the scales and purity requirements. In particular at lower hydrogen production rates in small-scale plants MRs with CCUS could be competitive compared to centralized H2 production. On-site hydrogen production would also provide a self-sufficient supply and further circumvent delivery delays as well as issues with storage safety. In addition hydrogen-producing MRs are a potential avenue to alleviate carbon emissions. However material availability Pd cost and scale-up potential on the order of 1.5 million m3/day may be limiting factors preventing wider application of Pd-based membranes.
Regarding the economic production of hydrogen the benchmark by the year 2020 has been determined and set in place by the U.S. DOE at less than $2.00 per kg of produced hydrogen. While the established SMR process can easily meet the set limit by DOE other carbon-free processes such as water electrolysis electron beam radiolysis and gliding arc technologies do not presently meet this requirement. In particular it is expected that the cost of hydrogen produced from natural gas without CCUS will remain the lowest among all of the technologies while the hydrogen cost produced from an SMR plant with solvent-based carbon capture could be twice as expensive as the conventional SMR without carbon capture. Pd-based MRs have the potential to produce hydrogen at competitive prices with SMR plants equipped with carbon capture.
Despite the significant improvements in the electrolysis technologies the cost of hydrogen produced by electrolysis may remain significantly higher in most geographical locations compared with the hydrogen produced from fossil fuels. The cost of hydrogen via electrolysis may vary up to a factor of ten depending on the location and the electricity source. Nevertheless due to its modular nature the electrolysis process will likely play a significant role in the hydrogen economy when implemented in suitable geographical locations and powered by renewable electricity.
This review provides a critical overview of the opportunities and challenges associated with the use of the MRs to produce high-purity hydrogen with low carbon emissions. Moreover a technoeconomic review of the potential methods for hydrogen production is provided and the drawbacks and advantages of each method are presented and discussed.
For smaller and emerging hydrogen markets such as the semiconductor and fuel cell industries Pd-based membranes may be an appropriate technology based on the scales and purity requirements. In particular at lower hydrogen production rates in small-scale plants MRs with CCUS could be competitive compared to centralized H2 production. On-site hydrogen production would also provide a self-sufficient supply and further circumvent delivery delays as well as issues with storage safety. In addition hydrogen-producing MRs are a potential avenue to alleviate carbon emissions. However material availability Pd cost and scale-up potential on the order of 1.5 million m3/day may be limiting factors preventing wider application of Pd-based membranes.
Regarding the economic production of hydrogen the benchmark by the year 2020 has been determined and set in place by the U.S. DOE at less than $2.00 per kg of produced hydrogen. While the established SMR process can easily meet the set limit by DOE other carbon-free processes such as water electrolysis electron beam radiolysis and gliding arc technologies do not presently meet this requirement. In particular it is expected that the cost of hydrogen produced from natural gas without CCUS will remain the lowest among all of the technologies while the hydrogen cost produced from an SMR plant with solvent-based carbon capture could be twice as expensive as the conventional SMR without carbon capture. Pd-based MRs have the potential to produce hydrogen at competitive prices with SMR plants equipped with carbon capture.
Despite the significant improvements in the electrolysis technologies the cost of hydrogen produced by electrolysis may remain significantly higher in most geographical locations compared with the hydrogen produced from fossil fuels. The cost of hydrogen via electrolysis may vary up to a factor of ten depending on the location and the electricity source. Nevertheless due to its modular nature the electrolysis process will likely play a significant role in the hydrogen economy when implemented in suitable geographical locations and powered by renewable electricity.
This review provides a critical overview of the opportunities and challenges associated with the use of the MRs to produce high-purity hydrogen with low carbon emissions. Moreover a technoeconomic review of the potential methods for hydrogen production is provided and the drawbacks and advantages of each method are presented and discussed.
Hydrogen Effects in Corrosion: Discussion
Jun 2017
Publication
This session contained talks on the characterization of hydrogen-enhanced corrosion of steels and nickel-based alloys emphasizing the different observations across length scales from atomic-scale spectrographic to macro-scale fractographic examinations.
This article is the transcription of the recorded discussion of the session ‘Hydrogen Effects in Corrosion’ at the Royal Society discussion meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. M.A.S. transcribed the session and E.L.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is the transcription of the recorded discussion of the session ‘Hydrogen Effects in Corrosion’ at the Royal Society discussion meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. M.A.S. transcribed the session and E.L.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
20 Years of Carbon Capture and Storage - Accelerating Future Deployment
Nov 2016
Publication
Carbon capture and storage (CCS) technologies are expected to play a significant part in the global climate response. Following the ratification of the Paris Agreement the ability of CCS to reduce emissions from fossil fuel use in power generation and industrial processes – including from existing facilities – will be crucial to limiting future temperature increases to ""well below 2°C"" as laid out in the Agreement. CCS technology will also be needed to deliver ""negative emissions"" in the second half of the century if these ambitious goals are to be achieved.
CCS technologies are not new. This year is the 20th year of operation of the Sleipner CCS Project in Norway which has captured almost 17 million tonnes of CO2 from an offshore natural gas production facility and permanently stored them in a sandstone formation deep under the seabed. Individual applications of CCS have been used in industrial processes for decades and projects injecting CO2 for enhanced oil recovery (EOR) have been operating in the United States since the early 1970s.
This publication reviews progress with CCS technologies over the past 20 years and examines their role in achieving 2°C and well below 2°C targets. Based on the International Energy Agency’s 2°C scenario it also considers the implications for climate change if CCS was not a part of the response. And it examines opportunities to accelerate future deployment of CCS to meet the climate goals set in the Paris Agreement.
Link to Document on IEA Website
CCS technologies are not new. This year is the 20th year of operation of the Sleipner CCS Project in Norway which has captured almost 17 million tonnes of CO2 from an offshore natural gas production facility and permanently stored them in a sandstone formation deep under the seabed. Individual applications of CCS have been used in industrial processes for decades and projects injecting CO2 for enhanced oil recovery (EOR) have been operating in the United States since the early 1970s.
This publication reviews progress with CCS technologies over the past 20 years and examines their role in achieving 2°C and well below 2°C targets. Based on the International Energy Agency’s 2°C scenario it also considers the implications for climate change if CCS was not a part of the response. And it examines opportunities to accelerate future deployment of CCS to meet the climate goals set in the Paris Agreement.
Link to Document on IEA Website
Production of H2-rich Syngas from Excavated Landfill Waste through Steam Co-gasification with Biochar
Jun 2020
Publication
Gasification of excavated landfill waste is one of the promising options to improve the added-value chain during remediation of problematic old landfill sites. Steam gasification is considered as a favorable route to convert landfill waste into H2-rich syngas. Co-gasification of such a poor quality landfill waste with biochar or biomass would be beneficial to enhance the H2 concentration in the syngas as well as to improve the gasification performance. In this work steam co-gasification of landfill waste with biochar or biomass was carried out in a lab-scale reactor. The effect of the fuel blending ratio was investigated by varying the auxiliary fuel content in the range of 15e35 wt%. Moreover co-gasification tests were carried out at temperatures between 800 and 1000°C. The results indicate that adding either biomass or biochar enhances the H2 yield where the latter accounts for the syngas with the highest H2 concentration. At 800°C the addition of 35 wt% biochar can enhance the H2 concentration from 38 to 54 vol% and lowering the tar yield from 0.050 to 0.014 g/g-fuel-daf. No apparent synergetic effect was observed in the case of biomass co-gasification which might cause by the high Si content of landfill waste. In contrast the H2 production increases non-linearly with the biochar share in the fuel which indicates that a significant synergetic effect occurs during co-gasification due to the reforming of tar over biochar. Increasing the temperature of biochar co-gasification from 800 to 1000°C elevates the H2 concentration but decreases the H2/CO ratio and increases the tar yield. Furthermore the addition of biochar also enhances the gasification efficiency as indicated by increased values of the energy yield ratio.
Hydrogen Effects in Non-ferrous Alloys: Discussion
Jun 2017
Publication
This is a transcript of the discussion session on the effects of hydrogen in the non-ferrous alloys of zirconium and titanium which are anisotropic hydride-forming metals. The four talks focus on the hydrogen embrittlement mechanisms that affect zirconium and titanium components which are respectively used in the nuclear and aerospace industries. Two specific mechanisms are delayed hydride cracking and stress corrosion cracking.
This article is a transcription of the recorded discussion of the session ‘Hydrogen in non-ferrous alloys’ at the Royal Society Discussion Meeting Challenges of Hydrogen in Metals 16–18 January 2017. The text is approved by the contributors. M.P. transcribed the session. M.A.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of the session ‘Hydrogen in non-ferrous alloys’ at the Royal Society Discussion Meeting Challenges of Hydrogen in Metals 16–18 January 2017. The text is approved by the contributors. M.P. transcribed the session. M.A.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Efficient Hydrogen Production with CO2 Capture Using Gas Switching Reforming
Jul 2019
Publication
Hydrogen is a promising carbon-neutral energy carrier for a future decarbonized energy sector. This work presents process simulation studies of the gas switching reforming (GSR) process for hydrogen production with integrated CO2 capture (GSR-H2 process) at a minimal energy penalty. Like the conventional steam methane reforming (SMR) process GSR combusts the off-gas fuel from the pressure swing adsorption unit to supply heat to the endothermic reforming reactions. However GSR completes this combustion using the chemical looping combustion mechanism to achieve fuel combustion with CO2 separation. For this reason the GSR-H2 plant incurred an energy penalty of only 3.8 %-points relative to the conventional SMR process with 96% CO2 capture. Further studies showed that the efficiency penalty is reduced to 0.3 %-points by including additional thermal mass in the reactor to maintain a higher reforming temperature thereby facilitating a lower steam to carbon ratio. GSR reactors are standalone bubbling fluidized beds that will be relatively easy to scale up and operate under pressurized conditions and the rest of the process layout uses commercially available technologies. The ability to produce clean hydrogen with no energy penalty combined with this inherent scalability makes the GSR-H2 plant a promising candidate for further research.
Opportunities and Challenges for Thermally Driven Hydrogen Production Using Reverse Electrodialysis System
Jul 2019
Publication
Ongoing and emerging renewable energy technologies mainly produce electric energy and intermittent power. As the energy economy relies on banking energy there is a rising need for chemically stored energy. We propose heat driven reverse electrodialysis (RED) technology with ammonium bicarbonate (AmB) as salt for producing hydrogen. The study provides the authors’ perspective on the commercial feasibility of AmB RED for low grade waste heat (333 K–413 K) to electricity conversion system. This is to our best of knowledge the only existing study to evaluate levelized cost of energy of a RED system for hydrogen production. The economic assessment includes a parametric study and a scenario analysis of AmB RED system for hydrogen production. The impact of various parameters including membrane cost membrane lifetime cost of heating inter-membrane distance and residence time are studied. The results from the economic study suggests RED system with membrane cost less than 2.86 €/m2 membrane life more than 7 years and a production rate of 1.19 mol/m2/h or more are necessary for RED to be economically competitive with the current renewable technologies for hydrogen production. Further salt solubility residence time and inter-membrane distance were found to have impact on levelized cost of hydrogen LCH. In the present state use of ammonium bicarbonate in RED system for hydrogen production is uneconomical. This may be attributed to high membrane cost low (0.72 mol/m2/h) hydrogen production rate and large (1281436 m2) membrane area requirements. There are three scenarios presented the present scenario market scenario and future scenario. From the scenario analysis it is clear that membrane cost and membrane life in present scenario controls the levelized cost of hydrogen. In market scenario and future scenario the hydrogen production rate (which depends on membrane properties inter-membrane distance etc.) the cost of regeneration system and the cost of heating controls the levelized cost of hydrogen. For a thermally driven RED system to be economically feasible the membrane cost not more than 20 €/m2; hydrogen production rate of 3.7 mol/m2/h or higher and cost of heating not more than 0.03 €/kWh for low grade waste heat to hydrogen production.
Metallurgical Model of Diffusible Hydrogen and Non-Metallic Slag Inclusions in Underwater Wet Welding of High-Strength Steel
Nov 2020
Publication
High susceptibility to cold cracking induced by diffusible hydrogen and hydrogen embrittlement are major obstacles to greater utilization of underwater wet welding for high-strength steels. The aim of the research was to develop gas–slag systems for flux-cored wires that have high metallurgical activity in removal of hydrogen and hydroxyl groups. Thermodynamic modeling and experimental research confirmed that a decrease in the concentration of diffusible hydrogen can be achieved by reducing the partial pressure of hydrogen and water vapor in the vapor–gas bubble and by increasing the hydroxyl capacity of the slag system in metallurgical reactions leading to hydrogen fluoride formation and ionic dissolution of hydroxyl groups in the basic fluorine-containing slag of a TiO2–CaF2–Na3AlF6 system.
Pathways to Low-cost Clean Hydrogen Production with Gas Switching Reforming
Feb 2020
Publication
Gas switching reforming (GSR) is a promising technology for natural gas reforming with inherent CO2 capture. Like conventional steam methane reforming (SMR) GSR can be integrated with CO2 -gas shift and pressure swing adsorption units for pure hydrogen production. The resulting GSR-H2 process concept was techno-economically assessed in this study. Results showed that GSR-H2 can achieve 96% CO2 capture at a CO2 avoidance cost of 15 $/ton (including CO2 transport and storage). Most components of the GSR-H2 process are proven technologies but long-term oxygen carrier stability presents an important technical uncertainty that can adversely affect competitiveness when the material lifetime drops below one year. Relative to the SMR benchmark GSR-H2 replaces some fuel consumption with electricity consumption making it more suitable to regions with higher natural gas prices and lower electricity prices. Some minor alterations to the process configuration can adjust the balance between fuel and electricity consumption to match local market conditions. The most attractive commercialization pathway for the GSR-H2 technology is initial construction without CO2 capture followed by simple retrofitting for CO2 capture when CO2 taxes rise and CO2 transport and storage infrastructure becomes available. These features make the GSR-H2 technology robust to almost any future energy market scenario.
Large-scale Storage of Hydrogen
Mar 2019
Publication
The large-scale storage of hydrogen plays a fundamental role in a potential future hydrogen economy. Although the storage of gaseous hydrogen in salt caverns already is used on a full industrial scale the approach is not applicable in all regions due to varying geological conditions. Therefore other storage methods are necessary. In this article options for the large-scale storage of hydrogen are reviewed and compared based on fundamental thermodynamic and engineering aspects. The application of certain storage technologies such as liquid hydrogen methanol ammonia and dibenzyltoluene is found to be advantageous in terms of storage density cost of storage and safety. The variable costs for these high-density storage technologies are largely associated with a high electricity demand for the storage process or with a high heat demand for the hydrogen release process. If hydrogen is produced via electrolysis and stored during times of low electricity prices in an industrial setting these variable costs may be tolerable.
HyNet North West: Delivering Clean Growth
Jan 2018
Publication
HyNet North West is a significant clean growth opportunity for the UK. It is a low cost deliverable project which meets the major challenges of reducing carbon emissions from industry domestic heat and transport.<br/>HyNet North West is based on the production of hydrogen from natural gas. It includes the development of a new hydrogen pipeline; and the creation of the UK’s first carbon capture and storage (CCS) infrastructure. CCS is a vital technology to achieve the widespread emissions savings needed to meet the 2050 carbon reduction targets.<br/>Accelerating the development and deployment of hydrogen technologies and CCS through HyNet North West positions the UK strongly for skills export in a global low carbon economy.<br/>The North West is ideally placed to lead HyNet. The region has a history of bold innovation and today clean energy initiatives are thriving. On a practical level the concentration of industry existing technical skill base and unique geology means the region offers an unparalleled opportunity for a project of this kind.<br/>The new infrastructure built by HyNet is readily extendable beyond the initial project and provides a replicable model for similar programmes across the UK<br/>Contains Vision statement 2 leaflets a presentation and a summary report which are all stored as supplements.
People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility
Dec 2020
Publication
Energy from hydrogen is an appropriate technological choice in the context of sustainable development. The opportunities offered by the use of energy from hydrogen also represent a significant challenge for mobile technologies and daily life. Nevertheless despite a significant amount of research and information regarding the benefits of hydrogen energy it creates considerable controversy in many countries. Globally there is a lack of understanding about the production process of hydrogen energy and the benefits it provides which leads to concerns regarding the consistency of its use. In this study an original questionnaire was used as a research tool to determine the opinions of inhabitants of countries in which hydrogen energy is underutilized and where the infrastructure for hydrogen energy is underdeveloped. Respondents presented their attitude to ecology and indicated their knowledge regarding the operation of hydrogen energy and the use of hydrogen fuel. The results indicate that society is not convinced that the safety levels for energy derived from hydrogen are adequate. It can be concluded that knowledge about hydrogen as an energy source and the production safety and storage methods of hydrogen is very low. Negative attitudes to hydrogen energy can be an important barrier in the development of this energy in many countries.
The Influence of Refractory Metals on the Hydrogen Storage Characteristics of FeTi-based Alloys Prepared by Suspended Droplet Alloying
Jun 2020
Publication
The influence of the addition of refractory metals (molybdenum and tantalum) on the hydrogenation properties of FeTi intermetallic phase-based alloys was investigated. The suspended droplet alloying technique was applied to fabricate FeTiTa-based and FeTiMo-based alloys. The phase composition and hydrogen storage properties of the samples were investigated. The samples modified with the refractory metals exhibited lower plateau pressures and lower hydrogen storage capacities than those of the FeTi reference sample due to solid solution formation. It was observed that the equilibrium pressures decreased with the amount of molybdenum which is in good agreement with the increase in the cell parameters of the TiFe phase. Suspended droplet alloying was found to be a practical method to fabricate alloys with refractory metal additions; however it is appropriate for screening samples with desired chemical and phase compositions rather than for manufacturing purposes.
Numerical Investigation of the Initial Charging Process of the Liquid Hydrogen Tank for Vehicles
Dec 2022
Publication
Liquid hydrogen has been studied for use in vehicles. However during the charging process liquid hydrogen is lost as gas. Therefore it is necessary to estimate and reduce this loss and simulate the charging process. In this study the initial charging process of a vehicle liquid hydrogen tank under room temperature and atmospheric pressure conditions was numerically investigated. A transient thermal-fluid simulation with a phase-change model was performed to analyze variations in the volume pressure mass flow rate and temperature. The results showed that the process could be divided into three stages. In the first stage liquid hydrogen was actively vaporized at the inner wall surface of the storage tank. The pressure increased rapidly and liquid droplets were discharged into the vent pipe during the second stage. In the third stage the mass flow rates of liquid and hydrogen gas at the outlet showed significant fluctuations owing to complex momentum generated by the evaporation and charging flow. The temperatures of the inner and outer walls and insulation layer decreased significantly slower than that of the gas region because of its high heat capacity and insulation effect. The optimal structure should be further studied because the vortex stagnation and non-uniform cooling of the wall occurred near the inlet and outlet pipes.
Dynamic Simulation of Different Transport Options of Renewable Hydrogen to a Refinery in a Coupled Energy System Approach
Sep 2018
Publication
Three alternative transport options for hydrogen generated from excess renewable power to a refinery of different scales are compared to the reference case by means of hydrogen production cost overall efficiency and CO2 emissions. The hydrogen is transported by a) the natural gas grid and reclaimed by the existing steam reformer b) an own pipeline and c) hydrogen trailers. The analysis is applied to the city of Hamburg Germany for two scenarios of installed renewable energy capacities. The annual course of excess renewable power is modelled in a coupled system approach and the replaceable hydrogen mass flow rate is determined using measurement data from an existing refinery. Dynamic simulations are performed using an open-source Modelica® library. It is found that in all three alternative hydrogen supply chains CO2 emissions can be reduced and costs are increased compared to the reference case. Transporting hydrogen via the natural gas grid is the least efficient but achieves the highest emission reduction and is the most economical alternative for small to medium amounts of hydrogen. Using a hydrogen pipeline is the most efficient option and slightly cheaper for large amounts than employing the natural gas grid. Transporting hydrogen by trailers is not economical for single consumers and realizes the lowest CO2 reductions.
Alternative Marine Fuels: Prospects Based on Multi-criteria Decision Analysis Involving Swedish Stakeholders
May 2019
Publication
There is a need for alternative marine fuels in order to reduce the environmental and climate impacts of shipping in the short and long term. This study assesses the prospects for seven alternative fuels for the shipping sector in 2030 including biofuels by applying a multi-criteria decision analysis approach that is based on the estimated fuel performance and on input from a panel of maritime stakeholders and by considering explicitly the influence of stakeholder preferences. Seven alternative marine fuels—liquefied natural gas (LNG) liquefied biogas (LBG) methanol from natural gas renewable methanol hydrogen for fuel cells produced from (i) natural gas or (ii) electrolysis based on renewable electricity and hydrotreated vegetable oil (HVO)—and heavy fuel oil (HFO) as benchmark are included and ranked by ten performance criteria and their relative importance. The criteria cover economic environmental technical and social aspects. Stakeholder group preferences (i.e. the relative importance groups assign to the criteria) influence the ranking of these options. For ship-owners fuel producers and engine manufacturers economic criteria in particular the fuel price are the most important. These groups rank LNG and HFO the highest followed by fossil methanol and then various biofuels (LBG renewable methanol and HVO). Meanwhile representatives from Swedish government authorities prioritize environmental criteria specifically GHG emissions and social criteria specifically the potential to meet regulations ranking renewable hydrogen the highest followed by renewable methanol and then HVO. Policy initiatives are needed to promote the introduction of renewable marine fuels.
Hydrogen Taskforce: The Role of Hydrogen in Delivering Net Zero
Feb 2020
Publication
Hydrogen is essential to the UK meeting its net zero emissions target. We must act now to scale hydrogen solutions and achieve cost effective deep decarbonisation. With the support of Government UK industry is ready to deliver.
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
Ammonia for Power
Sep 2018
Publication
A potential enabler of a low carbon economy is the energy vector hydrogen. However issues associated with hydrogen storage and distribution are currently a barrier for its implementation. Hence other indirect storage media such as ammonia and methanol are currently being considered. Of these ammonia is a carbon free carrier which offers high energy density; higher than compressed air. Hence it is proposed that ammonia with its established transportation network and high flexibility could provide a practical next generation system for energy transportation storage and use for power generation. Therefore this review highlights previous influential studies and ongoing research to use this chemical as a viable energy vector for power applications emphasizing the challenges that each of the reviewed technologies faces before implementation and commercial deployment is achieved at a larger scale. The review covers technologies such as ammonia in cycles either for power or CO2 removal fuel cells reciprocating engines gas turbines and propulsion technologies with emphasis on the challenges of using the molecule and current understanding of the fundamental combustion patterns of ammonia blends.
Recyclable Metal Fuels for Clean and Compact Zero-carbon Power
Jun 2018
Publication
Metal fuels as recyclable carriers of clean energy are promising alternatives to fossil fuels in a future low-carbon economy. Fossil fuels are a convenient and widely-available source of stored solar energy that have enabled our modern society; however fossil-fuel production cannot perpetually keep up with increasing energy demand while carbon dioxide emissions from fossil-fuel combustion cause climate change. Low-carbon energy carriers with high energy density are needed to replace the multiple indispensable roles of fossil fuels including for electrical and thermal power generation for powering transportation fleets and for global energy trade. Metals have high energy densities and metals are therefore fuels within many batteries energetic materials and propellants. Metal fuels can be burned with air or reacted with water to release their chemical energy at a range of power-generation scales. The metal-oxide combustion products are solids that can be captured and then be recycled using zero-carbon electrolysis processes powered by clean energy enabling metals to be used as recyclable zero-carbon solar fuels or electrofuels. A key technological barrier to the increased use of metal fuels is the current lack of clean and efficient combustor/reactor/engine technologies to convert the chemical energy in metal fuels into motive or electrical power (energy). This paper overviews the concept of low-carbon metal fuels and summarizes the current state of our knowledge regarding the reaction of metal fuels with water to produce hot hydrogen on demand and the combustion of metal fuels with air in laminar and turbulent flames. Many important questions regarding metal-fuel combustion processes remain unanswered as do questions concerning the energy-cycle efficiency and life-cycle environmental impacts and economics of metals as recyclable fuels. Metal fuels can be an important technology option within a future low-carbon society and deserve focused attention to address these open questions.
No more items...