Publications
A Theoretical Study on the Hydrogen Filling Process of the On-board Storage Cylinder in Hydrogen Refueling Station
May 2023
Publication
With the development of the hydrogen fuel automobile industry higher requirements are put forward for the construction of hydrogen energy infrastructure the matching of parameters and the control strategy of hydrogen filling rate in the hydrogen charging process of hydrogen refueling stations. At present the technological difficulty of hydrogen fueling is mainly reflected in the balanced treatment of reducing the temperature rise of hydrogen and shortening the filling time during the fast filling process. Vehicle hydrogen storage cylinder (VHSC) is one of the important components of hydrogen fuel cell vehicles. This study proposed a theoretical model for calculating the temperature rise in the VHSC during the high pressure refueling process and revealed the hydrogen temperature rise during refueling. A hydrogen temperature rise prediction model was constructed to elucidate the relationship between filling parameters and temperature rise. The filling process of VHSC was analyzed from the theoretical method. The theoretical analysis results were consistent with the simulation and experimental analysis results which provided a theoretical basis for the current hydrogen temperature control algorithm of the gas source in the hydrogen refueling station and then reduced the energy consumption required for hydrogen cooling in the hydrogen refueling station.
Hybrid Model Predictive Control of Renewable Microgrids and Seasonal Hydrogen Storage
Jun 2023
Publication
Optimal energy management of microgrids enables efficient integration of renewable energies by considering all system flexibilities. For systems with significant seasonal imbalance between energy production and demand it may be necessary to integrate seasonal storage in order to achieve fully decarbonized operation. This paper develops a novel model predictive control strategy for a renewable microgrid with seasonal hydrogen storage. The strategy relies on data-based prediction of the energy production and consumption of an industrial power plant and finds optimized energy flows using a digital twin optimizer. To enable seasonal operation incentives for long-term energy shifts are provided by assigning a cost value to the storage charge and adding it to the optimization target function. A hybrid control scheme based on rule-based heuristics compensates for imperfect predictions. With only 6% oversizing compared to the optimal system layout the strategy manages to deliver enough energy to meet all demand while achieving balanced hydrogen production and consumption throughout the year.
Investment Timing Analysis of Hydrogen-Refueling Stations and the Case of China: Independent or Co-Operative Investment?
Jun 2023
Publication
The investment in hydrogen-refueling stations (HRS) is key to the development of a hydrogen economy. This paper focuses on the decision-making for potential investors faced with the thought-provoking question of when the optimal timing to invest in HRS is. To fill the gap that exists due to the fact that few studies explain why HRS investment timing is critical we expound that earlier investment in HRS could induce the first mover advantages of the technology diffusion theory. Additionally differently from the previous research that only considered that HRS investment is just made by one individual firm we innovatively examine the HRS co-investment made by two different firms. Accordingly we compare these two optional investment modes and determine which is better considering either independent investment or co-operative investment. We then explore how the optimal HRS investment timing could be figured out under conditions of uncertainty with the real options approach. Given the Chinese HRS case under the condition of demand uncertainty the hydrogen demand required for triggering investment is viewed as the proxy for investment timing. Based on analytical and numerical results we conclude that one-firm independent investment is better than two-firm cooperative investment to develop HRS not only in terms of the earlier investment timing but also in terms of the attribute for dealing with the uncertainty. Finally we offer recommendations including stabilizing the hydrogen demand for decreasing uncertainty and accelerating firms’ innovation from both technological and strategic perspectives in order to ensure firms can make HRS investments on their own.
Numerical Simulation of Hydrogen Diffusion in Cement Sheath of Wells Used for Underground Hydrogen Storage
Jul 2023
Publication
The negative environmental impact of carbon emissions from fossil fuels has promoted hydrogen utilization and storage in underground structures. Hydrogen leakage from storage structures through wells is a major concern due to the small hydrogen molecules that diffuse fast in the porous well cement sheath. The second-order parabolic partial differential equation describing the hydrogen diffusion in well cement was solved numerically using the finite difference method (FDM). The numerical model was verified with an analytical solution for an ideal case where the matrix and fluid have invariant properties. Sensitivity analyses with the model revealed several possibilities. Based on simulation studies and underlying assumptions such as non-dissolvable hydrogen gas in water present in the cement pore spaces constant hydrogen diffusion coefficient cement properties such as porosity and saturation etc. hydrogen should take about 7.5 days to fully penetrate a 35 cm cement sheath under expected well conditions. The relatively short duration for hydrogen breakthrough in the cement sheath is mainly due to the small molecule size and high hydrogen diffusivity. If the hydrogen reaches a vertical channel behind the casing a hydrogen leak from the well is soon expected. Also the simulation result reveals that hydrogen migration along the axial direction of the cement column from a storage reservoir to the top of a 50 m caprock is likely to occur in 500 years. Hydrogen diffusion into cement sheaths increases with increased cement porosity and diffusion coefficient and decreases with water saturation (and increases with hydrogen saturation). Hence cement with a low water-to-cement ratio to reduce water content and low cement porosity is desirable for completing hydrogen storage wells.
Energy Management of Hydrogen Hybrid Electric Vehicles—Online-Capable Control
May 2024
Publication
The results shown in this paper extend our research group’s previous work which presents the theoretically achievable hydrogen engine-out NOeo x (H2-NOeo x ) Pareto front of a hydrogen hybrid electric vehicle (H2-HEV). While the Pareto front is calculated offline which requires significant computing power and time this work presents an online-capable algorithm to tackle the energy management of a H2-HEV with explicit consideration of the H2-NOeo x trade-off. Through the inclusion of realistic predictive data on the upcoming driving mission a model predictive control algorithm (MPC) is utilized to effectively tackle the conflicting goal of achieving low hydrogen consumption while simultaneously minimizing NOeo x . In a case study it is shown that MPC is able to satisfy user-defined NOeo x limits over the course of various driving missions. Moreover a comparison with the optimal Pareto front highlights MPC’s ability to achieve close-to-optimal fuel performance for any desired cumulated NOeo x target on four realistic routes for passenger cars.
Forecasting Hydrogen Vehicle Refuelling for Sustainable Transportation: A Light Gradient-Boosting Machine Model
May 2024
Publication
Efficiently predicting and understanding refuelling patterns in the context of HFVs is paramount for optimising fuelling processes infrastructure planning and facilitating vehicle operation. This study evaluates several supervised machine learning methodologies for predicting the refuelling behaviour of HFVs. The LightGBM model emerged as the most effective predictive model due to its ability to handle time series and seasonal data. The selected model integrates various input variables encompassing refuelling metrics day of the week and weather conditions (e.g. temperature precipitation) to capture intricate patterns and relationships within the data set. Empirical testing and validation against real-world refuelling data underscore the efficacy of the LightGBM model demonstrating a minimal deviation from actual data given limited data and thereby showcasing its potential to offer valuable insights to fuelling station operators vehicle manufacturers and policymakers. Overall this study highlights the potential of sustainable predictive modelling for optimising fuelling processes infrastructure planning and facilitating vehicle operation in the context of HFVs.
The Prospects of Hydrogen in Achieving Net Zero Emissions by 2050: A Critical Review
May 2023
Publication
Hydrogen (H2) usage was 90 metric tonnes (Mt) in 2020 almost entirely for industrial and refining uses and generated almost completely from fossil fuels leading to nearly 900 Mt of carbon dioxide emissions. However there has been significant growth of H2 in recent years. Electrolysers' total capacity which are required to generate H2 from electricity has multiplied in the past years reaching more than 300 MW through 2021. Approximately 350 projects reportedly under construction could push total capacity to 54 GW by the year 2030. Some other 40 projects totalling output of more than 35 GW are in the planning phase. If each of these projects is completed global H2 production from electrolysers could exceed 8 Mt by 2030. It's an opportunity to take advantage of H2S prospects to be a crucial component of a clean safe and cost-effective sustainable future. This paper assesses the situation regarding H2 at the moment and provides recommendations for its potential future advancement. The study reveals that clean H2 is experiencing significant unparalleled commercial and political force with the amount of laws and projects all over the globe growing quickly. The paper concludes that in order to make H2 more widely employed it is crucial to significantly increase innovations and reduce costs. The practical and implementable suggestions provided to industries and governments will allow them to fully capitalise on this growing momentum.
Thermocouple Thermal Inertia During Refuelling of Hydrogen Tanks: CFD Validation
Sep 2023
Publication
Fueling and defueling of hydrogen composite tanks is an important issue for the safe handling of hydrogen. To prevent temperature rise during refuelling (maximum allowed T=+85°C) the rate of fueling must be carefully controlled. Using Computational Fluid Dynamics (CFD) we simulate the temperature and velocity distribution inside the tank during these processes including cases where thermal stratification occurs. Simulations of two tank configurations with tilted injectors are presented along with experimental data validation. A model is proposed to account for the thermal inertia of the thermocouples making it possible to compare more reliably CFD results with experimental measurements.
Techno-Economic Evaluation of Hydrogen-Based Cooking Solutions in Remote African Communities—The Case of Kenya
Apr 2023
Publication
Hydrogen has recently been proposed as a versatile energy carrier to contribute to archiving universal access to clean cooking. In hard-to-reach rural settings decentralized produced hydrogen may be utilized (i) as a clean fuel via direct combustion in pure gaseous form or blended with Liquid Petroleum Gas (LPG) or (ii) via power-to-hydrogen-to-power (P2H2P) to serve electric cooking (e-cooking) appliances. Here we present the first techno-economic evaluation of hydrogen-based cooking solutions. We apply mathematical optimization via energy system modeling to assess the minimal cost configuration of each respective energy system on technical and economic measures under present and future parameters. We further compare the potential costs of cooking for the end user with the costs of cooking with traditional fuels. Today P2H2P-based e-cooking and production of hydrogen for utilization via combustion integrated into the electricity supply system have almost equal energy system costs to simultaneously satisfy the cooking and electricity needs of the isolated rural Kenyan village studied. P2H2P-based e-cooking might become advantageous in the near future when improving the energy efficiency of e-cooking appliances. The economic efficiency of producing hydrogen for utilization by end users via combustion benefits from integrating the water electrolysis into the electricity supply system. More efficient and cheaper hydrogen technologies expected by 2050 may improve the economic performance of integrated hydrogen production and utilization via combustion to be competitive with P2H2P-based e-cooking. The monthly costs of cooking per household may be lower than the traditional use of firewood and charcoal even today when applying the current life-line tariff for the electricity consumed or utilizing hydrogen via combustion. Driven by likely future technological improvements and the expected increase in traditional and fossil fuel prices any hydrogen-based cooking pathway may be cheaper for end users than using charcoal and firewood by 2030 and LPG by 2040. The results suggest that providing clean cooking in rural villages could economically and environmentally benefit from utilizing hydrogen. However facing the complexity of clean cooking projects we emphasize the importance of embedding the results of our techno-economic analysis in holistic energy delivery models. We propose useful starting points for future aspects to be investigated in the discussion section including business and financing models.
Emerging Trends and Challenges in Pink Hydrogen Research
May 2024
Publication
Pink hydrogen is the name given to the technological variant of hydrogen generation from nuclear energy. This technology aims to address the environmental challenges associated with conventional hydrogen production positioning itself as a more sustainable and eco-efficient alternative while offering a viable alternative to nuclear power as a source of electricity generation. The present research analyzes the landscape of pink hydrogen research an innovative strand of renewable energy research. The methodology included a comprehensive search of scientific databases which revealed a steady increase in the number of publications in recent years. This increase suggests a growing interest in and recognition of the importance of pink hydrogen in the transition to cleaner and more sustainable energy sources. The results reflect the immaturity of this technology where there is no single international strategy and where there is some diversity of research topic areas as well as a small number of relevant topics. It is estimated that the future development of Gen IV nuclear reactors as well as Small Modular Reactor (SMR) designs will also favor the implementation of pink hydrogen.
Renewable Marine Fuel Production for Decarbonised Maritime Shipping: Pathways, Policy Measures and Transition Dynamics
Jun 2023
Publication
This article investigates the potential of renewable and low-carbon fuel production for the maritime shipping sector using Sweden as a case in focus. Techno-economic modelling and socio-technical transition studies are combined to explore the conditions opportunities and barriers to decarbonising the maritime shipping industry. A set of scenarios have been developed considering demand assumptions and potential instruments such as carbon price energy tax and blending mandate. The study finds that there are opportunities for decarbonising the maritime shipping industry by using renewable marine fuels such as advanced biofuels (e.g. biomethanol) electrofuels (e.g. e-methanol) and hydrogen. Sweden has tremendous resource potential for bio-based and hydrogen-based renewable liquid fuel production. In the evaluated system boundary biomethanol presents the cheapest technology option while e-ammonia is the most expensive one. Green electricity plays an important role in the decarbonisation of the maritime sector. The results of the supply chain optimisation identify the location sites and technology in Sweden as well as the trade flows to bring the fuels to where the bunker facilities are potentially located. Biomethanol and hydrogen-based marine fuels are cost-effective at a carbon price beyond 100 €/tCO2 and 200 €/tCO2 respectively. Linking back to the socio-technical transition pathways the study finds that some shipping companies are in the process of transitioning towards using renewable marine fuels thereby enabling niche innovations to break through the carbon lock-in and eventually alter the socio-technical regime while other shipping companies are more resistant. Overall there is increasing pressure from (inter)national energy and climate policy-making to decarbonise the maritime shipping industry.
Hydrogen as Short-Term Flexibility and Seasonal Storage in a Sector-Coupled Electricity Market
Jul 2023
Publication
The rapid expansion of renewable energies has the potential to decarbonize the electricity supply. This is more challenging in difficult-to-electrify sectors. The use of hydrogen provides a massive potential for this issue. However expanding hydrogen production increases electricity demand while providing additional flexibility to the electricity market. This paper mainly aims to analyze the economic effects of this sector coupling between the European electricity and national hydrogen markets. The developed energy market model jointly considers both markets to reach an overall welfare optimum. A novel modeling approach allows the interaction of these markets without the need for several iterative optimization runs. This allows for a detailed analysis of various market participants’ changes in consumer and producer surpluses. The optimization is conducted in 13 connected Central European countries to account for various power plant fleets generation mixes and electricity prices. Results show an overall welfare increase of EUR 4 to 28 billion in 2030 and an EUR 5 to 158 billion increase in 2040. However there is a surplus shift from consumers to producers. The consumer surplus is reduced by up to EUR 44 billion in 2030 and EUR 60 billion while producers benefit to achieve the overall welfare benefits. The reduction of consumer surplus changes if significant price peaks occur. Fuel cell applications can avoid these price peaks resulting in a surplus shift from thermal power plants to consumers. Hence consumer surplus can increase by up to EUR 146 billion in the respective 2040 scenarios. Pink hydrogen accounts for a sizable portion of total hydrogen production up to 58 percent in 2030 and up to 30 percent in 2040. As a result nuclear power plants that are nearly entirely allocated in France stand to benefit greatly from this sector coupling. Additional efforts could be made to address the link between hydrogen and natural gas prices. Furthermore the potential for cross-border hydrogen trade and the implementation of national legal and regulatory frameworks could be assessed.
Investigation of Different Load Characteristics, Component Dimensioning, and System Scaling for the Optimized Design of a Hybrid Hydrogen-Based PV Energy System
Jul 2023
Publication
The realization of a carbon-neutral civilization which has been set as a goal for the coming decades goes directly hand-in-hand with the need for an energy system based on renewable energies (REs). Due to the strong weather-related daily and seasonal fluctuations in supply of REs suitable energy storage devices must be included for such energy systems. For this purpose an energy system model featuring hybrid energy storage consisting of a hydrogen unit (for long-term storage) and a lithium-ion storage device (for short-term storage) was developed. With a proper design such a system can ensure a year-round energy supply by using electricity generated by photovoltaics (PVs). In the energy system that was investigated hydrogen (H2) was produced by using an electrolyser (ELY) with a PV surplus during the summer months and then stored in an H2 tank. During the winter due to the lack of PV power the H2 is converted back into electricity and heat by a fuel cell (FC). While the components of such a system are expensive a resource- and cost-efficient layout is important. For this purpose a Matlab/Simulink model that enabled an energy balance analysis and a component lifetime forecast was developed. With this model the results of extensive parameter studies allowed an optimized system layout to be created for specific applications. The parameter studies covered different focal points. Several ELY and FC layouts different load characteristics different system scales different weather conditions and different load levels—especially in winter with variations in heating demand—were investigated.
Enhancing Safety of Liquid and Vaporised Hydrogen Transfer Technologies in Public Areas for Mobile Applications
Sep 2023
Publication
Federico Ustolin,
Donatella Cirrone,
Vladimir V. Molkov,
Dmitry Makarov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Giordano Emrys Scarponi,
Alessandro Tugnoli,
Ernesto Salzano,
Valerio Cozzani,
Daniela Lindner,
Birgit Gobereit,
Bernhard Linseisen,
Stuart J. Hawksworth,
Thomas Jordan,
Mike Kuznetsov,
Simon Jallais and
Olga Aneziris
International standards related to cryogenic hydrogen transferring technologies for mobile applications (filling of trucks ships stationary tanks) are missing and there is lack of experience. The European project ELVHYS (Enhancing safety of liquid and vaporized hydrogen transfer technologies in public areas for mobile applications) aims to provide indications on inherently safer and efficient cryogenic hydrogen technologies and protocols in mobile applications by proposing innovative safety strategies which are the results of a detailed risk analysis. This is carried out by applying an inter-disciplinary approach to study both the cryogenic hydrogen transferring procedures and the phenomena that may arise from the loss of containment of a piece of equipment containing hydrogen. ELVHYS will provide critical inputs for the development of international standards by creating inherently safer and optimized procedures and guidelines for cryogenic hydrogen transferring technologies thus increasing their safety level and efficiency. The aim of this paper is twofold: present the state of the art of liquid hydrogen transfer technologies by focusing on previous research projects such as PRESLHY and introduce the objectives and methods planned in the new EU project ELVHYS.
Optimization of Integrated Energy System Considering Electricity and Hydrogen Coordination in the Context of Carbon Trading
Apr 2024
Publication
In order to improve the consumption of renewable energy and reduce the carbon emissions of integrated energy systems (IESs) this paper proposes an optimal operation strategy for an integrated energy system considering the coordination of electricity and hydrogen in the context of carbon trading. The strategy makes full use of the traditional power-to-gas hydrogen production process and establishes a coupling model comprising cogeneration and carbon capture equipment an electrolytic cell a methane reactor and a hydrogen fuel cell. Taking a minimum daily operating cost and minimal carbon emissions from the system as objective functions a mixed-integer nonlinear optimal scheduling model is established. This paper designs examples based on MATLAB R2021b and uses the GUROBI solver to solve them. The results show that compared with the traditional two-stage operation process the optimization method can reduce the daily operation cost of an IES by 26.01% and its carbon emissions by 90.32%. The results show that the operation mode of electro-hydrogen synergy can significantly reduce the carbon emissions of the system and realize a two-way flow of electro-hydrogen energy. At the same time the addition of carbon capture equipment and the realization of carbon recycling prove the scheduling strategy’s ability to achieve a lowcarbon economy of the scheduling strategy.
THyGA - Long Term Effect of H2 on Appliances Tested
May 2023
Publication
The goals of the long-term tests were to see the impact of blends of hydrogen and natural gas on the technical condition of the appliances and their performance after several hours of operation. To do so they were run through an accelerated test program amounting to more than 3000 testing hours for the boilers and more than 2500 testing hours for the cookers. The percentage of hydrogen in the test gas was 30% by volume. Three boilers and two cookers were tested by DGC and two boilers by GWI. This report describes the test protocol the results and analysis on the seven appliances tested.
Implications of Hydrogen Import Prices for the German Energy System in a Model-comparison Experiment
Mar 2024
Publication
With its ability to store and transport energy without releasing greenhouse gases hydrogen is considered an important driver for the decarbonisation of energy systems. As future hydrogen import prices from global markets are subject to large uncertainties it is unclear what impact different hydrogen and derivative import prices will have on the future German energy system. To answer that research question this paper explores the impact of three different import price scenarios for hydrogen and its derivatives on the German energy system in a climate-neutral setting for Europe in 2045 using three different energy system models. The analysis shows that the quantities of electricity generated as well as the installed capacities for electricity generation and electrolysis increase as the hydrogen import price rises. However the resulting differences between the import price scenarios vary across the models. The results further indicate that domestic German (and European) hydrogen production is often cost-efficient.
Hydrogen as a Renewable Energy Carrier in a Hybrid Configuration of Distributed Energy Systems: Bibliometric Mapping of Current Knowledge and Strategies
Jul 2023
Publication
Storing energy in hydrogen deposits balances the operation of energy systems and is an effective tool in the process of energy transformation towards achieving Sustainable Development Goals. To assess the validity of its use as an alternative renewable energy carrier in dispersed energy systems of hybrid configuration a comprehensive review of scientific literature was conducted in this study based on bibliometric analysis. The bibliographic database used in the study was the international Web of Science database. This review contributes to a better understanding of the characteristics of the selected research area. The evolution of research trends implemented in the design of energy systems associated with hydrogen technologies is revealed clearly indicating that it is a developing field. In recent years there has been an increase in the number of publications although the territorial range of research (mainly simulation) conducted in the domain does not include areas with the most favourable infrastructural conditions. The analysis reveals weak cooperation between South American African East Asian and Oceanic countries. In the light of earlier thematically similar literature reviews several research gaps are also identified and proposals for future research are presented. They concern in particular the parallel implementation and optimization of the operation of hydrogen (HRES—Hybrid Renewable Energy System and HESS—Hybrid Energy Storage System) solutions in terms of economics ecology lifespan and work efficiency as well as their feasibility analysis. With the support of other researchers and those involved in the subject matter this review may contribute to the further development of hybrid hydrogen systems in terms of increasing competitiveness and promoting the implementation of these technologies.
Hydrogen Combustion, Production, and Applications: A Review
May 2024
Publication
The demand for fossil fuels is rising rapidly leading to increased greenhouse gas emissions. Hydrogen has emerged as a promising clean energy alternative that could help meet future demands way sustainably especially if produced using renewable methods. For hydrogen to meaningfully contribute to energy transitions it needs more integration into sectors like transportation buildings and power that currently have minimal hydrogen usage. This requires developing extensive cross-sector hydrogen infrastructure. This review examines hydrogen combustion as a fuel by exploring and comparing production techniques enriching ammonia with hydrogen as a CO2-free option and hydrogen applications in engines. Additionally a techno-economic environmental risk analysis is discussed. Results showed steam methane reforming is the most established and cost-effective production method at $1.3–1.5/kg H2 and 70–85% efficiency but generates CO2. Biomass gasification costs $1.25–2.20/kg H2 and pyrolysis $1.77–2.05/kg H2 offering renewable options. However bio-photolysis currently has high costs of $1.42–2.13/kg H2 due to low conversion rates requiring large reactors. Blending H2/NH3 could enable carbon-free combustion aiding carbon neutrality pursuits but minimizing resultant NOx is crucial. Hydrogen’s wide uses from transportation to power underline its potential as a transformational energy carrier.
System-Level Offshore Wind Energy and Hydrogen Generation Availability and Operations and Maintenance Costs
May 2024
Publication
With the current trends of wind energy already playing a major part in the Scottish energy supply the capacity of wind farms is predicted to grow exponentially and reach further depths offshore. However a key challenge that presents itself is the integration of large producing assets into the current UK grid. One potential solution to this is green hydrogen production which is being heavily researched in industry with many concepts being investigated for large-scale purposes. However the operations and maintenance (O&M) costs and availability of green hydrogen systems need to be quantified to ensure economical and technical viability which is sparse in the available literature. The study presented in this paper investigated the availability and O&M costs of coupled wind–hydrogen systems by attempting to quantify the failure rates repair times repair costs and number of technicians required for key green hydrogen components. This study also utilised an O&M model created by the University of Strathclyde which uses Monte Carlo Markov chain simulations to produce the O&M outputs. A number of assumptions were made throughout the study in relation to the O&M model inputs and the baseline availability for the coupled wind–hydrogen system was 85.24%. Whilst the wind turbine still contributed a major part to the downtime seen in the simulations the combined hydrogen system also contributed a significant amount a total of 37% which could have been due to the technology readiness levels of some the components included in the hydrogen system.
Economic Assessment of Hydrogen Production in a Renewable Energy Community in Italy
Feb 2023
Publication
Renewable Energy Community (REC) is a new paradigm in European Union to produce transform share and sell renewables at a local consumer level also via e-fuel (i.e. hydrogen). This work investigates the economic feasibility of a hydrogen Power-to-Gas (PtG) system realized inside a REC using only excess renewable electricity not consumed by REC itself. A single centralized photovoltaic (PV) plant is directly connected to an electrolyser; a hydrogen compressor and two hydrogen storages at low and high pressure complete the PtG system. A scenario of a REC composed by 450 residential electric users (around 1000 people) has been analysed coupled with described PtG considering eight different sizes of PV plant. In the study Italian subsidies to REC shared energy are evaluated as incentives to hydrogen production. An optimal size of PtG components for each PV size is investigated at the limit of economical sustainability evaluating net present value (NPV) positive and near zero. Results show that for the considered REC it is possible to produce and sell up to around 3 tons per year of green hydrogen at most to the same lowest selling price declared currently in the Italian market (5 €/kg).
Derivation and Validation of a Reference Data-based Real Gas Model for Hydrogen
Mar 2023
Publication
Hydrogen plays an important role for the decarbonization of the energy sector. In its gaseous form it is stored at pressures of up to 1000 bar at which real gas effects become relevant. To capture these effects in numerical simulations accurate real gas models are required. In this work new correlation equations for relevant hydrogen properties are developed based on the Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). Within the regarded temperature (150e400 K) and pressure (0.1e1000 bar) range this approach yields a substantially improved accuracy compared to other databased correlations. Furthermore the developed equations are validated in a numerical simulation of a critical flow Venturi nozzle. The results are in much better accordance with experimental data compared to a cubic equation of state model. In addition the simulation is even slightly faster.
A Green Route for Hydrogen Producton from Alkaline Thermal Treatment (ATT) of Biomass with Carbon Storage
Apr 2023
Publication
Hydrogen a green energy carrier is one of the most promising energy sources. However,it is currently mainly produced from depleting fossil fuels with high carbon emissions which has serious negative effects on the economy and environment. To address this issue sustainable hydrogen production from bio-energy with carbon capture and storage (HyBECCS) is an ideal technology to reduce global carbon emissions while meeting energy demand. This review presents an overview of the latest progress in alkaline thermal treatment (ATT) of biomass for hydrogen production with carbon storage especially focusing on the technical characteristics and related challenges from an industrial application perspective. Additionally the roles of alkali and catalyst in the ATT process are critically discussed and several aspects that have great influences on the ATT process such as biomass types reaction parameters and reactors are expounded. Finally the potential solutions to the general challenges and obstacles to the future industrial-scale application of ATT of biomass for hydrogen production are proposed.
Policy Toolbox for Low Carbon and Renewable Hydrogen
Nov 2021
Publication
The report “Policy Toolbox for Low Carbon and Renewable Hydrogen” is based on an assessment of the performance of hydrogen policies in different stages of market maturity and segments of the value chain. 48 policies were shortlisted based on their economic efficiency and effectiveness and mapped to barriers across the value chain and over time. These policies were subsequently clustered into policy packages for three country archetypes: a self-sufficient hydrogen producer an importer and an exporter of hydrogen.
The paper can be found on their website.
The paper can be found on their website.
OIES Podcast - China and Hydrogen: A Tale of Three Cities
Apr 2023
Publication
China is by far the world’s largest producer and consumer of hydrogen mostly from coal and other fossil fuels and the country has an ambitious hydrogen strategy. In this podcast we dive into the provincial strategies on hydrogen in China and specifically discuss a recent paper published by the Institute entitled China’s hydrogen development: A tale of three cities. The paper looks at the experiences and plans of the pilot hydrogen clusters located in Datong Shanxi province Chengdu in Sichuan province and Zhangjiakou in the northern part of Hebei province which surrounds Beijing. In this podcast we are speaking with the paper’s author Arabella Miller-Wang recently an Aramco fellow at the Institute and also a Research Assistant at the Smith School of Enterprise and the Environment of The University of Oxford as well as with Michal Meidan director of the China Energy Programme at OIES and with Martin Lambert who heads hydrogen research at the OIES.
The podcast can be found on their website.
The podcast can be found on their website.
Highly Efficient Solar Hydrogen Production through the Use of Bifacial Photovoltaics and Membrane Electrolysis
Jul 2020
Publication
T The large-scale implementation of solar hydrogen production requires an optimal combination of photovoltaic systems with suitably-designed electrochemical cells possibly avoiding power electronics for DC-DC conversion to decrease costs. Here a stable solar-driven water splitting system is presented obtained through the direct connection of a state-of-the-art proton exchange membrane (PEM) electrolyzer to a bifacial silicon hetero junction (SHJ) solar module of three cells in series with total area of 730 cm2 . The bifaciality of the solar module has been optimized through modeling in terms of the number of cells module height and inclination. During outdoor operation in the standard monofacial configuration the system is able to produce 3.7 gr of H2 h 1 m 2 with an irradiation of 1000 W m 2 and a solar-to-hydrogen efficiency (STH) of 11.55%. The same system operating in bifacial mode gives rise to a higher H2 flux and STH efficiency reaching values of 4.2 gr of H2 h 1 m 2 and STH of 13.5%. Such a noticeable difference is achieved through the collection of albedo radiation from the ground by the bifacial PV system. The system has been tested outdoors for more than 55 h exhibiting very good endurance with no appreciable change in production and eff
Intensification of Hydrogen Production: Pd–Ag Membrane on Tailored Hastelloy-X Filter for Membrane-Assisted Steam Methane Reforming
Dec 2023
Publication
H2 production via membrane-assisted steam methane reforming (MA-SMR) can ensure higher energy efficiency and lower emissions compared to conventional reforming processes (SMR). Ceramic-supported Pd–Ag membranes have been extensively investigated for membrane-assisted steam methane reforming applications with outstanding performance. However costs sealings for integration in the reactor structure and resistance to solicitations remain challenging issues. In this work the surface quality of a low-cost porous Hastelloy-X filter is improved by asymmetric filling with α-Al2O3 of decreasing size and deposition of γ-Al2O3 as an interdiffusion barrier. On the modified support a thin Pd–Ag layer was deposited via electroless plating (ELP) resulting in a membrane with H2/N2 selectivity >10000. The permeation characteristics of the membrane were studied followed by testing for membrane-assisted methane steam reforming. The results showed the ability of the membrane reactor to overcome thermodynamic conversion of the conventional process for all explored operating conditions as well as ensuring 99.3% H2 purity in the permeate stream at 500 ◦C and 4 bar.
Design for Reliability and Safety: Challenges and Opportunities in Hydrogen Mobility Assets
Sep 2023
Publication
Safety and reliability are important performance attributes of any engineered system where humanmachine interactions are present. However they are usually approached as afterthoughts or in some cases unintended consequences of the system design and development process that must be addressed and verified in subsequent design stages. In plain words safety and reliability are often seen as constraints that add layers of complexity and extra costs to the minimum functional system of interest. No longer. Shell Hydrogen is embedding the Design for Reliability and Safety approach to engineer our products and assets in such a way that safety and reliability are at the core of a concurrent engineering process throughout the system lifecycle. This has been achieved in practice by leveraging systems reliability and safety engineering methods along with the experience and expertise of Shell Hydrogen original equipment manufacturers and system integrators in designing building and operating hydrogen assets for mobility applications.<br/>The challenges in implementing this approach are many ranging from access to historical data on equipment and component safety and reliability performance to lack of standardization in the industry when dealing with hydrogen related hazards. In this paper we will describe the approach in more detail some of our early successes and failures during deployment and the continual improvement journey that lies ahead.
Underground Hydrogen Storage to Balance Seasonal Variations in Energy Demand: Impact of Well Configuration on Storage Performance in Deep Saline Aquifers
Mar 2023
Publication
Grid-scale underground hydrogen storage (UHS) is essential for the decarbonization of energy supply systems on the path towards a zero-emissions future. This study presents the feasibility of UHS in an actual saline aquifer with a typical dome-shaped anticline structure to balance the potential seasonal mismatches between energy supply and demand in the UK domestic heating sector. As a main requirement for UHS in saline aquifers we investigate the role of well configuration design in enhancing storage performance in the selected site via numerical simulation. The results demonstrate that the efficiency of cyclic hydrogen recovery can reach around 70% in the short term without the need for upfront cushion gas injection. Storage capacity and deliverability increase in successive storage cycles for all scenarios with the co-production of water from the aquifer having a minimal impact on the efficiency of hydrogen recovery. Storage capacity and deliverability also increase when additional wells are added to the storage site; however the distance between wells can strongly influence this effect. For optimum well spacing in a multi-well storage scenario within a dome-shaped anticline structure it is essential to attain an efficient balance between well pressure interference effects at short well distances and the gas uprising phenomenon at large distances. Overall the findings obtained and the approach described can provide effective technical guidelines pertaining to the design and optimization of hydrogen storage operations in deep saline aquifers.
OIES Podcast - The EU Hydrogen and Gas Decarbonisation Package
Mar 2023
Publication
David Ledesma discusses with Alex Barnes the European Commission’s decision to make hydrogen a key part of its decarbonisation strategy. The 2022 REPowerEU Strategy set a target of 20MT consumption of renewable hydrogen by 2030. The Commission is keen to promote a single European market in hydrogen similar to the current one for natural gas. To this end it has published proposals on the regulation of future European hydrogen infrastructure (pipelines storage facilities and import terminals). The EU Council (representing Member States) and the EU Parliament are finalising their amendments to the Commission proposals prior to ‘trilogue’ negotiations and final agreement later this year. The OIES’s paper ‘The EU Hydrogen and Gas Decarbonisation Package: help or hindrance for the development of a European hydrogen market?’ published in March 2023 examines the EU Commission proposals and their suitability for a developing hydrogen market.
The podcast can be found on their website.
The podcast can be found on their website.
Optimal Battery and Hydrogen Fuel Cell Sizing in Heavy-haul Locomotives
Jul 2023
Publication
Global supply chains must be decarbonised as part of meeting climate targets set by the United Nations and world leaders. Rail networks are vital infrastructure in passenger and freight transport however have not received the same push for decarbonisation as road transport. In this investigation we used real world data from locomotives operating on seven rail corridors to identify optimal battery capacity and hydrogen fuel cell (HFC) power in hybrid systems. We found that the required battery capacity is dependent on both the available regenerative braking energy and on the capacity required to buffer surpluses and deficits from the HFC. The optimal system for each corridor was identified however it was found that one 3.6 MWh battery and 860 kW HFC system could service six of the seven corridors. The optimal systems presented in this work suggest an average of around 5 h of battery storage for the HFC power which is larger than the 2 h previously reported in literature. This may indicate a gap between purely theoretical works that use only route topography and speed and those that employ real world locomotive data.
The EU Hydrogen and Gas Decarbonisation Package: Help or Hindrance for the Development of a European Hydrogen Market?
Mar 2023
Publication
The European Commission has identified hydrogen as a key part of its decarbonisation strategy. The 2022 REPowerEU Strategy set a target of 20MT consumption of renewable hydrogen by 2030. The Commission is keen to promote a single European market in hydrogen similar to the current one for natural gas. To this end it has published proposals on the regulation of future European hydrogen infrastructure (pipelines storage facilities and import terminals). The European Council (representing Member States) and the European Parliament are finalising their amendments to the Commission proposals prior to ’trilogue’ negotiations and final agreement later this year. The paper ‘The EU Hydrogen and Gas Decarbonisation Package: help or hindrance for the development of a European hydrogen market?’ examines the European Commission proposals and their suitability for a developing hydrogen market.
Research & Innovation to Support Net-zero Industrial Technologies
Mar 2023
Publication
The Green Deal Industrial Plan aims to boost the competitiveness of Europe’s net-zero industry and to accelerate the transition to climate neutrality. The Plan is based on four pillars: (1) a predictable and simplified regulatory environment; (2) faster access to funding; (3) developing skills for net-zero industry; and (4) open trade for resilient supply chains.
Configuration Optimization of Hydrogen-Based Multi-Microgrid Systems under Electricity Market Trading and Different Hydrogen Production Strategies
Apr 2023
Publication
Hydrogen-based multi-microgrid systems (HBMMSs) are beneficial for energy saving and emission reductions. However the optimal sizing of HBMMSs lacks a practical configuration optimization model and a reasonable solution method. To address these problems we designed a novel structure of HBMMSs that combines conventional energy renewable energy and a hydrogen energy subsystem. Then we established a bi-level multi-objective capacity optimization model while considering electricity market trading and different hydrogen production strategies. The objective of the inner model which is the minimum annual operation cost and the three objectives of the outer model which are the minimum total annual cost (TAC); the annual carbon emission (ACE); and the maximum self-sufficiency rate (SSR) are researched simultaneously. To solve the above optimization model a two-stage solution method which considers the conflicts between objectives and the objectivity of objective weights is proposed. Finally a case study is performed. The results show that when green hydrogen production strategies are adopted the three objectives of the best configuration optimization scheme are USD 404.987 million 1.106 million tons and 0.486 respectively.
Study on the Dynamic Optimal Control Strategy of an Electric-Hydrogen Hybrid Energy Storage System for a Direct Drive Wave Power Generation System
Jul 2023
Publication
A direct drive wave power generation system (DDWPGS) has the advantages of a simple structure and easy deployment and is the first choice to provide electricity for islands and operation platforms in the deep sea. However due to the off-grid the source and load cannot be matched so accommodation is an important issue. Hydrogen storage is the optimal choice for offshore wave energy accommodation. Therefore aiming at the source-load mismatch problem of the DDWPGS an electric-hydrogen hybrid energy storage system (HESS) for the DDWPGS is designed in this paper. Based on the characteristics of the devices in the electric-hydrogen HESS a new dynamic power allocation strategy and its control strategy are proposed. Firstly empirical mode decomposition (EMD) is utilized to allocate the power fluctuations that need to be stabilized. Secondly with the state of charge (SOC) of the battery and the operating characteristics of the alkaline electrolyzer being considered the power assignments of the battery and the electrolyzer are determined using the rule-based method. In addition model predictive control (MPC) with good tracking performance is used to adjust the output power of the battery and electrolyzer. Finally the supercapacitor (SC) is controlled to maintain the DC bus voltage while also balancing the system’s power. A simulation was established to verify the feasibility of the designed system. The results show that the electric-hydrogen HESS can stabilize the power fluctuations dynamically when the DDWPGS captures instantaneous power. Moreover its control strategy can not only reduce the start-stop times of the alkaline electrolyzer but also help the energy storage devices to maintain a good state and extend the service life.
Energy Management Strategy for a Net Zero Emission Islanded Photovoltaic Microgrid-Based Green Hydrogen System
Apr 2024
Publication
Investing in green hydrogen systems has become a global objective to achieve the net-zero emission goal. Therefore it is seen as the primary force behind efforts to restructure the world’s energy lessen our reliance on gas attain carbon neutrality and combat climate change. This paper proposes a power management for a net zero emission PV microgrid-based decentralized green hydrogen system. The hybrid microgrid combines a fuel cell battery PV electrolyzer and compressed hydrogen storage (CHSU) unit aimed at power sharing between the total components of the islanded DC microgrid and minimizing the equivalent hydrogen consumption (EHC) by the fuel cell and the battery. In order to minimize the EHC and maintain the battery SOC an optimization-based approach known as the Equivalent Consumption Minimization Strategy (ECMS) is used. A rulebased management is used to manage the power consumed by the electrolyzer and the CHSU by the PV system in case of excess power. The battery is controlled by an inverse droop control to regulate the dc bus voltage and the output power of the PV system is maximized by the fuzzy logic controller-based MPPT. As the hybrid microgrid works in the islanded mode a two-level hierarchical control is applied in order to generate the voltage and the frequency references. The suggested energy management approach establishes the operating point for each system component in order to enhance the system’s efficiency. It allows the hybrid system to use less hydrogen while managing energy more efficiently.
Green Hydrogen Potential in Tropical Countries: The Colombian Case
Mar 2023
Publication
Tropical countries can approach their natural resources to produce low-carbon H2 from solar wind hydro and biomass resources to satisfy their domestic demand and to export it. To do so Colombia published the National Hydrogen Roadmap in which green H2 was prioritized. This study estimates Colombia's potential to produce green H2 and a timeline of scenarios displaying the required installed capacity capital investment and environmental analysis related to water utilization and CO2 capture. Accordingly Colombia can produce H2 at a rate of 9 Mt/a by 2050 by installing 121 GW renewables while processing 303 Mt/a of residual biomass. In this scenario Colombia's share of the H2 international market can reach 1.2% with a cumulative investment of over 244 billion USD by 2050. This study provides insights into potential global resources for low-carbon H2 generation.
A Techno-economic Study of the Strategy for Hydrogen Transport by Pipelines in Canada
Jan 2023
Publication
Hydrogen as a clean zero-emission energy fuel will play a critical role in energy transition and achievement of the net-zero target in 2050. Hydrogen delivery is integral to the entire value chain of a full-scale hydrogen economy. This work conducted a systematic review and analysis of various hydrogen transportation methods including truck tankers for liquid hydrogen tube trailers for gaseous hydrogen and pipelines by identifying and ranking the main properties and affecting factors associated with each method. It is found that pipelines especially the existing natural gas pipelines provide a more efficient and cheaper means to transport hydrogen over long distances. Analysis was further conducted on Canadian natural gas pipeline network which has been operating for safe effective and efficient energy transport over six decades. The established infrastructure along with the developed operating and management experiences and skillful manpower makes the existing pipelines the best option for transport of hydrogen in either blended or pure form in the country. The technical challenges in repurposing the existing natural gas pipelines for hydrogen service were discussed and further work was analyzed.
An Experimental Study on the Large-Volume Liquid Hydrogen Release in an Open Space
Apr 2024
Publication
Liquid hydrogen is one of the high-quality energy carriers but a large leak of liquid hydrogen can pose significant safety risks. Understanding its diffusion law after accidental leakage is an important issue for the safe utilization of hydrogen energy. In this paper a series of open-space large-volume liquid hydrogen release experiments are performed to observe the evolution of visible clouds during the release and an array of hydrogen concentration sensors is set up to monitor the fluctuation in hydrogen concentration at different locations. Based on the experimental conditions the diffusion of hydrogen clouds in the atmosphere under different release hole diameters and different ground materials is compared. The results show that with the release of liquid hydrogen the white visible cloud formed by air condensation or solidification is generated rapidly and spread widely and the visible cloud is most obvious near the ground. With the termination of liquid hydrogen release solid air is deposited on the ground and the visible clouds gradually shrink from the far field to the release source. Hydrogen concentration fluctuations in the far field in the case of the cobblestone ground are more dependent on spontaneous diffusion by the hydrogen concentration gradient. In addition compared with the concrete ground the cobblestone ground has greater resistance to liquid hydrogen extension; the diffusion of hydrogen clouds to the far field lags. The rapid increase stage of hydrogen concentration at N8 in Test 7 lags about 3 s behind N12 in Test 6 N3 lags about 7.5 s behind N1 and N16 lags about 8.25 s behind N14. The near-source space is prone to high-concentration hydrogen clouds. The duration of the high-concentration hydrogen cloud at N12 is about 15 s which is twice as long as the duration at N8 increasing the safety risk of the near-source space.
Hydrogen Storage for a Net-zero Carbon Future
Apr 2023
Publication
If a hydrogen economy is to become a reality along with efficient and decarbonized production and adequate transportation infrastructure deployment of suitable hydrogen storage facilities will be crucial. This is because due to various technical and economic reasons there is a serious possibility of an imbalance between hydrogen supply and demand. Hydrogen storage could also be pivotal in promoting renewable energy sources and facilitating the decarbonization process by providing long duration storage options which other forms of energy storage such as batteries with capacity limitations or pumped hydro with geographical limitations cannot meet. However hydrogen is not the easiest substance to store and handle. Under ambient conditions the extremely low volumetric energy density of hydrogen does not allow for its efficient and economic storage which means it needs to be compressed liquefied or converted into other substances that are easier to handle and store. Currently there are different hydrogen storage solutions at varying levels of technology market and commercial readiness with different applications depending on the circumstances. This paper evaluates the relative merits and techno-economic features of major types of hydrogen storage options: (i) pure hydrogen storage (ii) synthetic hydrocarbons (iii) chemical hydrides (iv) liquid organic hydrogen carriers (v) metal hydrides and (vi) porous materials. The paper also discusses the main barriers to investment in hydrogen storage and highlights key features of a viable business model in particular the policy and regulatory framework needed to address the primary risks to which potential hydrogen storage investors are exposed.
Optimal Capacity Planning of Green Electricity-Based Industrial Electricity-Hydrogen Multi-Energy System Considering Variable Unit Cost Sequence
Apr 2024
Publication
Utilizing renewable energy sources (RESs) such as wind and solar to convert electrical energy into hydrogen energy can promote the accommodation of green electricity. This paper proposes an optimal capacity planning approach for an industrial electricity-hydrogen multi-energy system (EHMES) aimed to achieve the local utilization of RES and facilitate the transition to carbon reduction in industrial settings. The proposed approach models the EHMES equipment in detail and divides the system’s investment and operation into producer and consumer sides with energy trading for effective integration. Through this effort the specialized management for different operators and seamless incorporation of RES into industrial users can be achieved. In addition the variations in investment and operating costs of equipment across different installed capacities are considered to ensure a practical alignment with real-world scenarios. By conducting a detailed case study the influence of various factors on the capacity configuration outcomes within an EHMES is analyzed. The results demonstrate that the proposed method can effectively address the capacity configuration of equipment within EHMES based on the local accommodation of RES and variable unit cost sequence. Wind power serves as the primary source of green electricity in the system. Energy storage acts as crucial equipment for enhancing the utilization rate of RES.
Energy, Exergy and Thermoeconomic Analyses on Hydrogen Production Systems Using High-temperature Gas-cooled and Water-cooled Nuclear Reactors
Dec 2023
Publication
The use of nuclear energy is inevitable to reduce the dependence on fossil fuels in the energy sector. High-temperature gas-cooled reactors (HTGRs) are considered as a system suitable for the purpose of reducing the use of fossil fuels. Furthermore eco-friendly mass production of hydrogen is crucial because hydrogen is emerging as a next-generation energy carrier. The unit cost of hydrogen production by the levelized cost of energy (LCOE) method varies widely depending on the energy source and system configuration. In this study energy exergy and thermoeconomic analyses were performed on the hydrogen production system using the HTGR and high-temperature water-cooled nuclear reactor (HTWR) to calculate reasonable unit cost of the hydrogen produced using a thermoeconomic method called modified production structure analysis (MOPSA). A flowsheet analysis was performed to confirm the energy conservation in each component. The electricity generated from the 600 MW HTGR system was used to produce 1.28 kmol/s of hydrogen by electrolysis to split hot water vapor. Meanwhile 515 MW of heat from the 600 MW HTWR was used to produce 8.10 kmol/s of hydrogen through steam reforming and 83.6 MW of electricity produced by the steam turbine was used for grid power. The estimated unit cost of hydrogen from HTGR is approximately USD 35.6/GJ with an initial investment cost of USD 2.6 billion. If the unit cost of natural gas is USD 10/GJ and the carbon tax is USD 0.08/kg of carbon dioxide the unit cost of hydrogen produced from HTWR is approximately USD 13.92/GJ with initial investment of USD 2.32 billion. The unit cost of the hydrogen produced in the scaled-down plant was also considered.
Future of Hydrogen in Industry: Initial Industrial Site Surveys
Jul 2023
Publication
This is a summary report of a study which aimed to understand the safety feasibility cost and impacts for 7 industrial sites to switch from natural gas to 100% hydrogen for heating. The volunteer industrial sites:<br/>♦ are located away from industrial clusters<br/>♦ use natural gas to meet most of their energy demand<br/>♦ will likely be most impacted by decisions on the future of the natural gas grid<br/>We have published the report in order to share its findings with other industrial sites and wider industry in particular those considering hydrogen as an option for decarbonisation.<br/>Note that:<br/>♦ some work was carried out on a non-hydrogen alternative energy source but to a lesser level of detail and not to determine the optimal decarbonisation solution<br/>♦ the findings do not apply to other end user environments because of differences between these environments and the consumption of gas<br/>The study was commissioned in 2022 by the former Department for Business and Energy and undertaken by AECOM and their safety sub-contractor ESR.<br/>The evidence will inform strategic decisions in 2026 on the role of low carbon hydrogen as a replacement for natural gas heating.
A Study on the Viability of Fuel Cells as an Alternative to Diesel Fuel Generators on Ships
Jul 2023
Publication
This study investigates methods for reducing air pollution in the shipping sector particularly in port areas. The study examines the use of fuel cells as an alternative to diesel generators. Environmental pollution at ports remains a critical issue so using fuel cells as an alternative to conventional energy systems warrants further research. This study compares commercial fuel cell types that can be used on a case study very large crude carrier (VLCC) vessel specifically although the technology is applicable to other vessels and requirements. Seven different fuel cell types were ranked based on five criteria to accomplish this. The proton-exchange membrane cell type was found to be the most suitable fuel cell type for the case study vessel. Based on the input fuel ammonia-based hydrogen storage has been identified as the most promising option along with using an ammonia reforming unit to produce pure hydrogen. Furthermore this study provides an integrated fuel cell module and highlights the economic environmental and maintenance aspects of implementing the proton-exchange membrane fuel cell module for this case study. It also calculates the required space as a crucial constraint of implementing fuel cell technology at sea.
OIES Podcast - Renewable Hydrogen Import Routes into the EU
Jun 2023
Publication
In this podcast David Ledesma talks to Martin Lambert and Abdurahman Alsulaiman about the potential hydrogen import market particularly focusing on the EU which currently holds the largest and earliest hydrogen target. The podcast explores the emerging hydrogen trade market and considers numerous possibilities for its open up providing better clarity on policy statements and balance them against project announcements.
Throughout the podcast Martin and Abdulrahman delve into various key points – they shed light on the primary areas of focus for projects set to be completed by or before 2030 as well as the distinction between announcements and tangible progress such as projects currently at the Final Investment Decision stage or under construction.
Additionally they explore the EU’s role as one of the few countries to have publicly announced its requirements for hydrogen imports and its ambitious hydrogen import target. The EU is currently establishing a benchmark for the future hydrogen market. However in order for the EU to succeed in establishing future hydrogen supply lines with future trade partners it will be crucial to engage in open dialogues covering a wide range of topics.
Join us in this podcast as we uncover the potential of the hydrogen import market with a specific focus on the EU and discuss the necessary steps for its success.
The podcast can be found on their website.
Throughout the podcast Martin and Abdulrahman delve into various key points – they shed light on the primary areas of focus for projects set to be completed by or before 2030 as well as the distinction between announcements and tangible progress such as projects currently at the Final Investment Decision stage or under construction.
Additionally they explore the EU’s role as one of the few countries to have publicly announced its requirements for hydrogen imports and its ambitious hydrogen import target. The EU is currently establishing a benchmark for the future hydrogen market. However in order for the EU to succeed in establishing future hydrogen supply lines with future trade partners it will be crucial to engage in open dialogues covering a wide range of topics.
Join us in this podcast as we uncover the potential of the hydrogen import market with a specific focus on the EU and discuss the necessary steps for its success.
The podcast can be found on their website.
Evaluating Partners for Renewable Energy Trading: A Multidimensional Framework and Tool
Apr 2024
Publication
The worsening climate crisis has increased the urgency of transitioning energy systems from fossil fuels to renewable sources. However many industrialized countries are struggling to meet their growing demand for renewable energy (RE) through domestic production alone and therefore seek to import additional RE using carriers such as hydrogen ammonia or metals. The pressing question for RE importers is therefore how to select trading partners i.e. RE exporting countries. Recent research has identified a plethora of different selection criteria reflecting the complexity of energy systems and international cooperation. However there is little guidance on how to reduce this complexity to more manageable levels as well as a lack of tools for effective partner evaluation. This article aims to fill these gaps. It proposes a new multidimensional framework for evaluating and comparing potential RE trading partners based on four dimensions: economy and technology environment and development regulation and governance and innovation and cooperation. Focusing on Germany as an RE importer an exploratory factor analysis is used to identify a consolidated set of composite selection criteria across these dimensions. The results suggest that Germany’s neighboring developed countries and current net energy exporters such as Canada and Australia are among the most attractive RE trading partners for Germany. A dashboard tool has been developed to provide the framework and composite criteria including adjustable weights to reflect the varying preferences of decision-makers and stakeholders. The framework and the dashboard can provide helpful guidance and transparency for partner selection processes facilitating the creation of RE trade networks that are essential for a successful energy transition.
High Surface Area Carbon Nitride Nanotubes for Improved Hydrogen Storage: A Grinding and Solution Mixing Approach
Jul 2025
Publication
This study examines the structural chemical and hydrogen storage properties of graphitic carbon nitride (gC3N4) nanotubes synthesized via a novel grinding-solution-synthesis (GSS) method which involve two consecutive precursor mixing processes: grinding and solution mixing. The impact of grinding duration on morphology surface area and hydrogen storage capacity was analyzed. X-ray diffraction (XRD) confirmed characteristic (100) and (002) peaks at ~13.1◦ and 28.0◦ respectively. Fourier-transform infrared (FTIR) spectroscopy identified tri-s-triazine heterocycles and hydrogen-bonded amino groups with a new peak at 1650 cm− 1 suggesting structural modifications. X-ray photoelectron spectroscopy (XPS) confirmed elemental composition with minor bonding variations. Nitrogen adsorption/desorption analyses showed that the 30-min ground sample (B1G30) had the highest specific surface area (321 m2 g-1) and pore volume (1.07 cm3 /g) while prolonged grinding (60–90 min) caused nanotube degradation reducing these properties. Scanning and transmission electron microscopy (SEM/TEM) confirmed nanotubular morphology with decreasing diameters and increasing structural collapse at longer grinding durations. Hydrogen storage tests revealed B1G30 exhibited the highest capacity (0.81 wt% at 3.7 MPa) decreasing with extended grinding (B1G60: 0.79 wt% B1G90: 0.75 wt%) due to structural collapse. Extrapolated data suggested B1G30 could reach ~4.0 wt% at 10 MPa. These findings underscore the importance of nanotube integrity in optimizing hydrogen adsorption and highlight g-C3N4 nanotubes’ potential for hydrogen storage applications. This GSS technique presents a cost-effective method for industrial-scale fabrication of high-surface-area g-C3N4 nanotubes enabling their large-scale use in energy storage carbon capture photocatalysis and other applications.
High-Performance Hydrogen-Fueled Internal Combustion Engines: Feasibility Study and Optimization via 1D-CFD Modeling
Mar 2024
Publication
Hydrogen-powered mobility is believed to be crucial in the future as hydrogen constitutes a promising solution to make up for the non-programmable character of the renewable energy sources. In this context the hydrogen-fueled internal combustion engine represents one of the suitable technical solutions for the future of sustainable mobility. As a matter of fact hydrogen engines suffer from limitations in volumetric efficiency due to the very low density of the fuel. Consequently hydrogen-fueled ICEs can reach sufficient torque and power density only if suitable supercharging solutions are developed. Moreover gaseous-engine performance can be improved to a great extent if direct injection is applied. In this perspective a remarkable know-how has been developed in the last two decades on NG engines which can be successfully exploited in this context. The objective of this paper is twofold. In the first part a feasibility study has been carried out with reference to a typical 2000cc SI engine by means of 1D simulations. This study was aimed at characterizing the performance on the full load curve with respect to a baseline PFI engine fueled by NG. In this phase the turbocharging/supercharging device has not been included in the model in order to quantify the attainable benefits in the absence of any limitation coming from the turbocharger. In the second part of this paper the conversion of a prototype 1400cc direct injection NG engine running with stoichiometric mixture to run on a lean hydrogen combustion mode has been investigated via 1D simulations. The matching between engine and turbocharger has been included in the model and the effects of two different turbomatching choices have been presented and discussed.
Hydrogen 4.0: A Cyber–Physical System for Renewable Hydrogen Energy Plants
May 2024
Publication
The demand for green hydrogen as an energy carrier is projected to exceed 350 million tons per year by 2050 driven by the need for sustainable distribution and storage of energy generated from sources. Despite its potential hydrogen production currently faces challenges related to cost efficiency compliance monitoring and safety. This work proposes Hydrogen 4.0 a cyber–physical approach that leverages Industry 4.0 technologies—including smart sensing analytics and the Internet of Things (IoT)—to address these issues in hydrogen energy plants. Such an approach has the potential to enhance efficiency safety and compliance through real-time data analysis predictive maintenance and optimised resource allocation ultimately facilitating the adoption of renewable green hydrogen. The following sections break down conventional hydrogen plants into functional blocks and discusses how Industry 4.0 technologies can be applied to each segment. The components benefits and application scenarios of Hydrogen 4.0 are discussed while how digitalisation technologies can contribute to the successful integration of sustainable energy solutions in the global energy sector is also addressed.
Decarbonisation Options for the Cement Industry
Jan 2023
Publication
The cement industry is a building block of modern society and currently responsible for around 7% of global and 4% of EU CO2 emissions. While facing global competition and a challenging business environment the EU cement sector needs to decarbonise its production processes to comply with the EU’s ambitious 2030 and 2050 climate targets. This report provides a snapshot of the current cement production landscape and discusses future technologies that are being explored by the sector to decarbonise its processes describing the transformational change the industry faces. This report compiles the current projects and announcements to deploy breakthrough technologies which do require high capital investments. However with 2050 just one investment cycle away the sector needs to commercialise new low-CO2 technologies this decade to avoid the risk of stranded assets. As Portland cement production is highly CO2-intensive and EU plants are already operating close to optimum efficiency the industry appears to be focussing on carbon capture storage and utilisation technologies - while breakthroughs in alternative chemistries are still being explored - to reduce emissions. While the EU has played an important role in supporting early stage R&D for these technologies it is now striving to fill the funding gap for the commercialisation of breakthrough technologies. The recent momentum towards CO2-free cement provides the EU with the opportunity to be a frontrunner in creating markets for green cement.
No more items...