Publications
Hydrogen Embrittlement Behaviors During SSRT Tests in Gaseous Hydrogen for Cold-word Type 316 Austenitic Stainless Steel and Iron-based Supperalloy A286 Used in Hydrogen Refueling Station
Feb 2024
Publication
To consider an appropriate evaluation method for hydrogen compatibility slow strain rate tensile (SSRT) tests were conducted on high strength piping materials cold-worked type 316 austenitic stainless steel (SUS316CW) and iron-based superalloy A286 used in hydrogen stations for two years.<br/>SUS316CW used at room temperature in 82 MPa gaseous hydrogen contained 7.8 mass ppm hydrogen. The SSRT test of SUS316CW was conducted in nitrogen at -40 °C. The fracture surface showed dimples and no hydrogen embrittlement behavior was observed. While the SSRT test of SUS316CW in 70 MPa gaseous hydrogen at -40 °C showed a slight decrease in reduction area and a brittle fracture morphology in the outer layer. This was considered to be the effect of high-pressure gaseous hydrogen during the SSRT test in addition to the pre-contained hydrogen.<br/>A286 used at -40 °C in 82 MPa gaseous hydrogen contained negligible hydrogen (0.14 mass ppm). SSRT tests were conducted at 150 °C in 70 MPa gaseous hydrogen and in air and showed a low relative reduction in area (RRA) value. To investigate the decrease in the RRA we switched the gas from hydrogen to air in the middle of the SSRT test and closely examined the RRA values and fracture morphology including side cracks. The hydrogen embrittlement was found to originate from the elastic deformation region. Stress cycling in the elastic deformation region also accelerated the effect of hydrogen. These were attributed to an increase in the lattice hydrogen content. While in the plastic deformation region hydrogen trapped in the defects and hydrogen through the generated surface cracks increased the hydrogen content at the crack tips reducing the RRA value. And there was a good correlation between the crack lengths and RRA values.<br/>Then hydrogen embrittlement mechanism depends on the operating conditions (stress and temperature) of the material and evaluating the hydrogen compatibility of materials by controlling their hydrogen content and strain according to the service environment is desirable.
Hydrogen Production from Wastewater: A Comprehensive Review of Conventional and Solar Powered Technologies
Mar 2024
Publication
The need to reduce the carbon footprint of conventional energy sources has made green hydrogen a promising solution for the energy transition. The most environmentally friendly way to produce hydrogen is through water-based production using renewable energy. However the availability of fresh water is limited so switching to wastewater instead of fresh water is the key solution to this problem. In response to this issue the present review reports the main findings of the research studies dealing with the feasibility of hydrogen production from wastewater using various technologies including biological electrochemical and advanced oxidation routes. These methods have been studied in a large number of experiments with the aim of investigating and improving the potential of each method. On the other hand the maturity of solar energy technologies has led researchers to focus on the possibility of harnessing this source and combining it with wastewater treatment techniques for the production of green hydrogen. Therefore the present review pays special attention to solar driven hydrogen production from wastewater by highlighting the potential of several technologies for simultaneous water treatment and green hydrogen production from wastewater. Recent results limitations challenges possible improvements and techno-economic assessments reported by several authors as well as future directions of research and industrial implementation in this field are reported.
Multi-state Load Model for Multiple Hydrogen Electrolysers Operation in the Power Grid
Jan 2025
Publication
This paper presents multiple hydrogen electrolysers integrations in the power grid and their operational stra tegies for better performance. Electrolysers have been considered as electrical loads and multi-state load model for the operation of an electrolysers have been proposed. Strategy for the operation of multiple electrolysers at different positions in a grid are formulated and Multi-State Round Robin strategy is proposed. The proposed strategy is validated by implementing that to a coastal power grid and to meet the hydrogen energy demand of vessels at the ports. Simulation has been conducted modeling the grid and electrolysers in DIgSILENT Power factory. A comparison has been performed between two state load model and multi state load model considering Multi-State Round Robin operational strategy. Line loading and hydrogen production are the considered per formance indicators. The results show that the proposed model and strategy improves the hydrogen production and operational flexibility of the system.
Hydrogen-induced Calcite Dissolution in Amaltheenton Formation Claystones: Implications for Underground Hydrogen Storage Caprock Integrity
Aug 2022
Publication
With the rising potential of underground hydrogen storage (UHS) in depleted oil and gas reservoirs or deep saline aquifers questions remain regarding changes to geological units due to interaction with injected hydrogen. Of particular importance is the integrity of potential caprocks/seals with respect to UHS. The results of this study show significant dissolution of calcite fossil fragments in claystone caprock proxies that were treated with a combination of hydrogen and 10 wt% NaCl brine. This is the first time it has been experimentally observed in claystones. The purpose of this short communication is to document the initial results that indicate the potential alteration of caprocks with injected hydrogen and to further highlight the need for hydrogen-specific studies of caprocks in areas proposed for UHS.
Development of Electric Power Generator by Using Hydrogen
Nov 2023
Publication
In this research we developed a hydrogen (H2 ) electric generator in an H2 generation system based on chemical reactions. In the experiment we tested the performance of the H2 electric generator and measured the amount of H2 generated. The maximum output was 700 W and the thermal efficiency was 18.2%. The theoretical value and measured value were almost the same and the maximum error was 4%.
Design and Optimal Sizing of a Hydrogen Uninterruptable Power Supply (UPS) System for Addressing Residential Power Cutoffs
Jan 2025
Publication
Hydrogen (H2) offers a green medium for storing the excess from renewables production instead of dumping it thus being crucial to decarbonisation efforts. Hydrogen also offers a storage medium for the grid’s cheap electricity to be used during grid peak demand or grid power cutoffs. Funded by the Scottish Government’s Emerging Energy Technologies this paper presents the design and performance analysis of a hydrogen uninterruptible power supply (H2GEN) for Cygnas Solutions Ltd. which is intended to enable continuity of supply in the residential sector while eradicating the need for environmentally and health risky lead–acid batteries and diesel generator backup. This paper presents the design optimal sizing and analysis of two H2Gen architectures one powered by the grid alone and the other powered by both the grid and a renewable (PV) source. By developing a model of each architecture in the HOMER space and using residential location weather data the home yearly load–demand profile and the grid yearly power outages profile in the developed models the optimal sizing of each H2Gen design was realised by minimising the costs while ensuring the H2Gen meets the home power demand during grid outages To enable HOMER to optimise its selection the sizes technical specifications and costs of all the market-available H2GEN components were added in the HOMER search space. Moreover the developed models were also used in assessing the sensitivity of the simulation outputs to several changes in the modelled system design and settings. Using a residential home with frequent power outages in New Delhi India as a case study it was found that the optimal sizing of H2Gen Architecture 1 is comprised of a 2 kW electrolyser a 0.2 kg type-I tank and a 2 kW water-cooled fuel cell directly connected to the AC bus offering an operational lifetime of 14.3 years. It was also found that the optimal sizing of Architecture 2 is comprised of a 1 kV PV utilised with the same 2 kW electrolyser 0.2 kg type-I tank and 2 kW water-cooled fuel cell connected to the AC bus. While the second design was found to have a higher capital cost due to the added PV it offered a more cost-effective and environmentally friendly architecture which contributes to the ongoing energy transition. This paper further investigated the capacity expansion of each H2GEN architecture to meet higher load demands or increased grid power outages. From the analysis of the simulation results it has been concluded that the most feasible and cost-effective H2GEN system expansion for meeting increased power demands or increased grid outages can be realised by using the developed models for optimally sizing the expanded H2Gen on a case-by-case basis because the increase in these profiles is highly time-dependent (for example an increased load demand or increased grid outage in the morning can be met by the PV while in the evening it must be met by the H2GEN). Finally this paper investigated the impact of other environmental variables such as the temperature and relative humidity on the H2GEN’s performance and provided further insights into increasing the overall system efficiency and cost benefit through utilising the H2GEN’s exhaust heat in the home space for heating/cooling and selling the electrolyser exhaust’s O2 as a commodity.
CFD Analysis of Hydrogen Leakage from a Small Hole in a Sloping Roof Hydrogen Refueling Station
Sep 2023
Publication
As a key link in the application of hydrogen energy hydrogen refueling stations are significant for their safe operation. This paper established a three-dimensional 1:1 model for a seaport hydrogen refueling station in Ningbo City. In this work the CFD software FLUENT was used to study the influence of leakage angles on the leakage of high-pressure hydrogen through a small hole. Considering the calculation accuracy and efficiency this paper adopted the pseudo-diameter model. When the obstacle was far from the leakage hole it had almost no obstructive effect on the jet's main body. Still it affected the hydrogen whose momentum in the outer layer of the jet has been significantly decayed. In this condition there would be more hydrogen in stagnation. Thus the volume of the flammable hydrogen cloud was hardly affected while there was a significant increase in the volume of the hazardous hydrogen cloud. When the obstacle was close to the leakage hole it directly affected the jet's main body. Therefore the volume of the flammable hydrogen cloud increased. However the air impeded the hydrogen jet relatively less because the hydrogen jet contacted the obstacle more quickly. The hydrogen jet blocked by the obstacle still has some momentum. Therefore there was no more hydrogen in stagnation and no significant increase in the volume of the hazardous hydrogen cloud.
Experimental Investigation on the Optimal Injection and Combustion Phasing for a Direct Injection Hydrogen-fuelled Internal Combustion Engine for Heavy-duty Applications
Dec 2024
Publication
In the current context of increasing demand for clean transportation hydrogen usage in internal combustion engines (ICEs) represents a viable solution to abate all engine-out criteria pollutants and almost zeroing CO2 tailpipe emissions. Indeed the wider flammability limits thanks to the higher flame propagation speed and the lower minimum ignition energy compared with conventional fuels extend the stable combustion regime to leaner mixtures thus allowing high thermal efficiency keeping under control the NOX emissions. To fully exploit the potential of hydrogen as a fuel and to avoid undesired abnormal combustion processes a deep characterization of the combustion process is needed. With this aim a 6-cylinder 12.9-L heavy-duty engine was converted from a port-fuel injected compressed natural gas to a direct injected hydrogen spark ignition one. A wide experimental campaign was carried out consisting of several sweeps of relative air-fuel ratios spark advances and injection timings at different engine speeds and loads aiming to define a preliminary engine map. The effect of each calibration parameter at different engine load and speed has been analyzed through the combination of relevant combustion parameters as well as NOX emissions. The results have demonstrated the critical influence of the mixture inhomogeneity when the injection is retarded through the top dead center firing as indicated by the increase in NOX emissions and combustion variability. The analysis of the combustion timing has indicated the dependence of the optimal MFB50 on the relative air-fuel ratio. Lastly the analysis of 200 consecutive cycles for each operating condition has allowed the evaluation of the influence of the main calibration parameters on the cyclic variability thus providing further insights about the lean limit of hydrogen in ICE.
Optimization of Injection Molding Process Parameters for the Lining of IV Hydrogen Storage Cylinder
Jan 2023
Publication
The hydrogen storage cylinder lining was taken as the research object. The injection model of the cylinder liner was developed employing 3D software a two-cavity injection molding system was built and Moldfow was utilized for analysis to determine the best combination of injection molding process parameters. The efects of injection process parameters (melt temperature mold temperature holding pressure holding time and cooling time) on the evaluation index were analyzed by orthogonal experiment L16(45 ). The prediction data of IV hydrogen storage cylinder lining under diferent parameters were obtained by the range analysis method. The multi-objective optimization problem of injection molding process was transformed into a single-objective optimization problem by using the grey correlation analysis method. The optimal parameters such as melt temperature 270 °C mold temperature 80 °C packing pressure 55 MPa packing time 20 s and cooling time 13 s were obtained. Taguchi method was adopted to obtain SNR (signal-to-noise ratio) while range and variance methods were used for analysis. The results showed that warpage was 0.4892 mm the volume shrinkage was 12.31% the residual stress in the frst direction was 98.13 MPa and the residual stress in the second direction was 108.1 MPa. The comprehensive index was simultaneously most impacted by the melt temperature.
Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield
Dec 2023
Publication
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors measuring techniques and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis facilitating more competent inexpensive and feasible green hydrogen production.
A Review of the Mechanics of Lined Engineered Cavities and their Implications on Hydrogen Storage
Jan 2025
Publication
Large-scale hydrogen storage at scales ranging from gigawatt-hours (GWh) to terawatt-hours (TWh) is currently projected to be an important component of the lowest cost options for a 100% variable renewable energy system driven partly by benefits to the grid from converting variable renewable electricity into hydrogen and partly by the anticipated growing role of hydrogen in a future net-zero energy system. Lined engineered cavities (LEC)s are among the prospective types of underground storage technology because they enable hydrogen storage at highpressure in the gaseous form and are expected to not rely on specific types of rock mass. They fill a niche in moderate storage capacity and cost because of their complementary advantages. An overview of various possible configurations and materials suitable for LECs for storing hydrogen is first reviewed to identify potential cost savings and performance improvements. Amongst the various LEC configurations lined engineered shafts (LES) are identified as having the greatest potential for cost reduction in softer rock masses such as sedimentary formations due to reduced excavation and construction complexity. Despite these advantages significant gaps remain in understanding the long-term behaviour of LES under cyclical loading as revealed through a review of the theoretical and experimental techniques used to study similar LEC configurations. This review paper con cludes with several recommendations for future research in numerical model formulation and material advancement with strong potential to increase the feasibility of LESs for hydrogen storage.
Hydrogen Balloon Transportation: A Cheap and Efficiency Mode to Transport Hydrogen
Nov 2023
Publication
The chances of a global hydrogen economy becoming a reality have increased significantly since the COVID pandemic and the war in Ukraine and for net zero carbon emissions. However intercontinental hydrogen transport is still a major issue. This study suggests transporting hydrogen as a gas at atmospheric pressure in balloons using the natural flow of wind to carry the balloon to its destination. We investigate the average wind speeds atmospheric pressure and temperature at different altitudes for this purpose. The ideal altitudes to transport hydrogen with balloons are 10 km or lower and hydrogen pressures in the balloon vary from 0.25 to 1 bar. Transporting hydrogen from North America to Europe at a maximum 4 km altitude would take around 4.8 days on average. Hydrogen balloon transportation cost is estimated at 0.08 USD/kg of hydrogen which is around 12 times smaller than the cost of transporting liquified hydrogen from the USA to Europe. Due to its reduced energy consumption and capital cost in some locations hydrogen balloon transportation might be a viable option for shipping hydrogen compared to liquefied hydrogen and other transport technologies.
Heat and Mass Transfer Modeling of Vacuum Insulated Vessel Storing Cryogenic Liquid in Loss of Vacuum Accident
Sep 2023
Publication
Cryogenic liquid is often stored in a vacuum insulated Dewar vessel for a high efficiency of thermal insulation. Multi-layer insulation (MLI) can be further applied in the double-walled vacuum space to reduce the heat transfer from the environment to the stored cryogenic fluid. However in loss-of-vacuum accident (LOVA) scenarios heat flux across the MLI will raise to orders of magnitudes larger than with an intact vacuum shield. The cryogenic liquid will boil intensively and pressurize the vessel due to the heat ingress. The pressurization endangers the integrity of the vessel and poses an extra catastrophic risk if the vapor is flammable e.g. hydrogen. Therefore safety valves have to be designed and installed appropriately to make sure the pressure is limited to acceptable levels. In this work the dynamic process of the heat and mass transfers in the LOVA scenarios is studied theoretically. The mass deposition - desublimation of gaseous nitrogen on cryogenic surfaces is modeled as it provides the dominant contribution of the thermal load to the cryogenic fluid. The conventional heat convection and radiation are modeled too although they play only secondary roles as realized in the course of the study. The temperature dependent thermal properties of e.g. gaseous and solid nitrogen and stainless steel are used to improve the accuracy of calculation in the cryogenic temperature range. Presented methodology enabling the computation of thermodynamic parameters in the cryogenic storage system during LOVA scenarios provides further support for the future risk assessment and safety system design.
Mathematical Optimization Modeling for Scenario Analysis of Integrated Steelworks Transitioning Towards Hydrogen-based Reduction
Jul 2024
Publication
To reduce carbon dioxide emissions from the steel industry efforts are made to introduce a steelmaking route based on hydrogen reduction of iron ore instead of the commonly used cokebased reduction in a blast furnace. Changing fundamental pieces of steelworks affects the functions of most every system unit involved and thus warrants the question of how such a transition could optimally take place over time and no rigorous attempts have until now been made to tackle this problem mathematically. This article presents a steel plant optimization model written as a mixed-integer non-linear programming problem where aging blast furnaces and basic oxygen furnaces could potentially be replaced with shaft furnaces and electric arc furnaces minimizing costs or emissions over a long-term time horizon to identify possible transition pathways. Example cases show how various parameters affect optimal investment pathways stressing the necessity of appropriate planning tools for analyzing diverse cases.
Influence of Air Changes Per Hour on Hydrogen Leaks in Mechanically Ventilated Enclosures
Mar 2024
Publication
The integration of hydrogen energy systems into nearly zero-emission buildings (nZEB) is emerging as a viable strategy to curtail greenhouse gas emissions associated with energy use in these buildings. However the indoor or outdoor placement of certain hydrogen system components or equipment necessitates stringent safety measures particularly in confined environments. This study aims to investigate the dynamics of hydrogen dispersion within an enclosure featuring forced ventilation analyzing the interplay between leakage flow rates and ventilation efficiency both experimentally and numerically. To simulate hydrogen's behavior helium gas which shares similar physical characteristics with hydrogen was utilized in experiments conducted at leakage flows of 4 8 and 10 L/min alongside a ventilation rate of 30 air changes per hour (ACH). The experiments revealed that irrespective of the leakage rate the oxygen concentration returned to its initial level approximately 11 min post-leakage at a ventilation rate of 30 ACH. This study also encompasses a numerical analysis to validate the experimental findings and assess the congruence between helium and hydrogen behaviors. Additionally the impact of varying ACH rates (30 45 60 75) on the concentrations of oxygen and hydrogen was quantified through numerical analysis for different hydrogen leakage rates (4 8 10 20 L/min). The insights derived from this research offer valuable guidance for building facility engineers on designing ventilation systems that ensure hydrogen and oxygen concentrations remain within safe limits in hydrogen-utilizing indoor environments.
Techno‑Economic Comparative Analysis of Two Hybrid Renewable Energy Systems for Powering a Simulated House, including a Hydrogen Vehicle Load at Jeju Island
Nov 2023
Publication
This work undertakes a techno‑economic comparative analysis of the design of photo‑ voltaic panel/wind turbine/electrolyzer‑H2 tank–fuel cell/electrolyzer‑H2 tank (configuration 1) and photovoltaic panel/wind turbine/battery/electrolyzer‑H2 tank (configuration 2) to supply electricity to a simulated house and a hydrogen‑powered vehicle on Jeju Island. The aim is to find a system that will make optimum use of the excess energy produced by renewable energies to power the hydrogen vehicle while guaranteeing the reliability and cost‑effectiveness of the entire system. In addition to evaluating the Loss of Power Supply Probability (LPSP) and the Levelized Cost of Energy (LCOE) the search for achieving that objective leads to the evaluation of two new performance indicators: Loss of Hydrogen Supply Probability (LHSP) and Levelized Cost of Hydrogen (LCOH). After anal‑ ysis for 0 < LPSP < 1 and 0 < LHSP < 1 used as the constraints in a multi‑objective genetic algorithm configuration 1 turns out to be the most efficient loads feeder with an LCOE of 0.3322 USD/kWh an LPSP of 0% concerning the simulated house load an LCOH of 11.5671 USD/kg for a 5 kg hydrogen storage and an LHSP of 0.0043% regarding the hydrogen vehicle load.
Acidification-based Direct Electrolysis of Treated Wastewater for Hydrogen Production and Water Reuse
Oct 2023
Publication
This report describes the direct electrolysis of treated wastewater (as a catholyte) to produce hydrogen and potentially reuse the water. To suppress the negative shift of the cathodic potential due to an increase in pH by the hydrogen evolution reaction (HER) the treated wastewater is acidified using the synergetic effect of protons generated from the bipolar membrane and inor ganic precipitation occurred at the surface of the cathode during the HER. Natural seawater as an accessible source for Mg2+ ions was added to the treated wastewater because the concentration of Mg2+ ions contained in the original wastewater was too low for acidification to occur. The mixture of treated wastewater with seawater was acidified to pH 3 allowing the initial cathode potential to be maintained for more than 100 h. The amount of inorganic precipitates formed on the cathode surface is greater than that in the control case (adding 0.5 M NaCl instead of seawater) but does not adversely affect the cathodic potential and Faradaic efficiency for H2 production. Additionally it was confirmed that less organic matter was adsorbed to the inorganic deposits under acidic conditions. These indicate that acidification plays an important role in improving the performance and stability of low-grade water electrolysis. Considering that the treated wastewater is discharged near the ocean acidification-based electrolysis of the effluent with seawater can be a water reuse technology for green hydrogen production enhancing water resilience and contributing to the circular economy of water resources.
Key Components and Design Strategy for a Proton Exchange Membrane Water Electrolyzer
Oct 2022
Publication
As the most attractive energy carrier hydrogen production through electro-chemical water splitting (EWS) is promising for resolving the serious environ-mental problems derived from the rapid consumption of fossil fuels globally. Theproton exchange membrane water electrolyzer (PEMWE) is one of the mostpromising EWS technologies and has achieved great advancements. To offer atimely reference for the progress of the PEMWE system the latest advancementsand developments of PEMWE technology are systematically reviewed. The keycomponents including the electrocatalysts PEM and porous transport layer(PTL) as well as bipolar plate (BPP) are first introduced and discussed followedby the membrane electrode assembly and cell design. The highlights are put onthe design of the electrocatalyst and the relationship of each component on theperformance of the PEMWE. Moreover the current challenges and future per-spectives for the development of PEMWE are also discussed. There is a hope thatthis review can provide a timely reference for future directions in PEMWEchallenges and perspectives.
A Study on Hydrogen Embrittlement of a High-strength Pipeline Steel Weldment after Microstructure Manipulation by Targeted Heat Treatments
Dec 2024
Publication
Hydrogen embrittlement (HE) is a major concern when steel pipelines are used for hydrogen transportation and storage. The weldments of steel pipelines are of particular concern because they are reported to have higher HE susceptibility compare to the base metal. In this work targeted heat treatments were used to manipulate the microstructure in a pipeline steel weldment to examine the effects of different microstructural features on HE susceptibility. Complementary analyses of the microstructure mechanical testing and fracture surface identified inclusions and ferrite morphology as the most dominant microstructural features that affect the susceptibility to HE. Specimens with different microstructures but sharing similar Ti-rich inclusions exhibited significant re ductions in elongation to failure after hydrogen charging and showed brittle fracture surfaces decorated with multiple ‘fish-eye’ features. In addition co-existence of bainitic microstructure with Ti-rich inclusions resulted in the highest susceptibility to HE.
An Overview of Hydrogen Storage Technologies - Key Challenges and Opportunities
Jul 2024
Publication
Hydrogen energy has been proposed as a reliable and sustainable source of energy which could play an integral part in demand for foreseeable environmentally friendly energy. Biomass fossil fuels waste products and clean energy sources like solar and wind power can all be employed for producing hydrogen. This comprehensive review paper provides a thorough overview of various hydrogen storage technologies available today along with the benefits and drawbacks of each technology in context with storage capacity efficiency safety and cost. Since safety concerns are among the major barriers to the broad application of H2 as a fuel source special attention has been paid to the safety implications of various H2 storage techniques. In addition this paper highlights the key challenges and opportunities facing the development and commercialization of hydrogen storage technologies including the need for improved materials enhanced system integration increased awareness and acceptance. Finally recommendations for future research and development with a particular focus on advancing these technologies towards commercial viability.
Computational Fluid Dynamic (CFD) Analysis of a Cold-adsorbed Hydrogen Tank During Refilling
Sep 2023
Publication
Hydrogen has the potential to be an important source of clean energy but the development of efficient and cost-effective methods for storing hydrogen is a key challenge that needs to be addressed in order to make widespread use of hydrogen as a possible energy sourc. There are different methods for storing hydrogen (i.e. compressed it at high pressures liquefied by cooling the hydrogen to a temperature of -253°C and stored with a chemical compound) each with its own advantages and disadvantages.<br/>MAST3RBoost (Maturing the Production Standards of Ultraporous Structures for High Density Hydrogen Storage Bank Operating on Swinging Temperatures and Low Compression) is a European project which aims to provide a solid benchmark of cold-adsorbed H2 storage (CAH2) at low compression (100 bar or below) by maturation of a new generation of ultraporous materials for mobility applications i.e. H2-powered vehicles including road and railway air-borne and waterborne transportation. Based on a new generation of Machine Learning-improved ultraporous materials – such as Activated Carbons (ACs) and high-density MOFs (Metal-organic Frameworks) – MAST3RBoost project will enable a disruptive path to meet the industry goals by developing the first worldwide adsorption-based demonstrator at the kg-scale.<br/>The design of the tank is supported by numerical investigation by mean of the use of Computational Fluid Dynamic (CFD) commercial code. In this a paper a preliminary analysis of the refilling of tank is presented focused on the effect of different tank configurations on the hydrogen temperature and on the hydrogen adsorption.
Advancing "Carbon Peak" and "Carbon Neutrality" in China: A Comprehensive Review of Current Global Research on Carbon Capture, Utilization, and Storage Technology and its Implications
Nov 2023
Publication
Carbon capture utilization and storage (CCUS) technology plays a pivotal role in China’s “Carbon Peak” and “Carbon Neutrality” goals. This approach offers low-carbon zero-carbon and even negative-carbon solutions. This paper employs bibliometric analysis using the Web of Science to comprehensively review global CCUS progress and discuss future development prospects in China. The findings underscore it as a prominent research focus attracting scholars from both domestic and international arenas. China notably leads the global landscape in terms of research paper output with the Chinese Academy of Sciences holding a prominent position in total published papers. The research predominantly centers on refining geological storage techniques and optimizing oil and gas recovery rates. Among the CCUS pathways enhanced oil recovery technology stands out due to its relative maturity and commercial applicability particularly within the conventional oil and gas reservoirs. The application potential of enhanced gas recovery technology especially in the Sichuan and Ordos Basins in China necessitates robust research and demonstration efforts. Within China’s current energy landscape “Blue Hydrogen” emerges as the primary solution for hydrogen production in conjunction with CCUS technology. The underground coal gasification approach holds significant promise as a hydrogen production avenue albeit with inherent ecological and environmental challenges tied to geological storage that require meticulous consideration. The establishment of effective risk identification and evaluation methodologies for geological storage is imperative. The trajectory ahead involves a strategic convergence of policy technology and market dynamics to enhance China’s CCUS policy framework legislative framework standardization initiatives and pioneering technological advancements. These collective efforts converge to outline an exclusive development pathway in China. This study assumes a pivotal role in accelerating CCUS technology research and deployment enhancing oil and gas recovery efficiency and ultimately realizing the overarching goals of a “Dual Carbon” future.
Hydrogen Fuel Quality for Transport - First Sampling and Analysis Comparison in Europe on Hydrogen Refuelling Station (70 Mpa) According to ISO 14687 and EN 17124
Jan 2021
Publication
Fuel cell electric vehicles are getting deployed exponentially in Europe. Hydrogen fuel quality regulations are getting into place in order to protect customers and ensure end-users satisfactory experiences. It became critical to have the capability to sample and analyse accurately hydrogen fuel delivered by hydrogen refuelling stations in Europe. This study presents two separate comparisons: the first bilateral comparison between two sampling systems (H2 Qualitizer) and (“H2 Sampling System” of Air Liquide) and the interlaboratory comparison between NPL and Air Liquide on hydrogen fuel quality testing according to EN 17124. The two sampling systems showed equivalent results for all contaminants for sampling at 70 MPa hydrogen refuelling stations. The two laboratories showed good agreement at 95% confidence level. Even if the study is limited due to the low number of samples it demonstrates the equivalence of two sampling strategies and the ability of two laboratories to perform accurate measurement of hydrogen fuel quality.
Assessment of Hydrogen Transport Aircraft
Sep 2022
Publication
Zero-carbon-dioxide-emitting hydrogen-powered aircraft have in recent decades come back on the stage as promising protagonists in the fght against global warming. The main cause for the reduced performance of liquid hydrogen aircraft lays in the fuel storage which demands the use of voluminous and heavy tanks. Literature on the topic shows that the optimal fuel storage solution depends on the aircraft range category but most studies disagree on which solution is optimal for each category. The objective of this research was to identify and compare possible solutions to the integration of the hydrogen fuel containment system on regional short/medium- and large passenger aircraft and to understand why and how the optimal tank integration strategy depends on the aircraft category. This objective was pursued by creating a design and analysis framework for CS-25 aircraft capable of appreciating the efects that diferent combinations of tank structure fuselage diameter tank layout shape venting pressure and pressure control generate at aircraft level. Despite that no large diferences among categories were found the following main observations were made: (1) using an integral tank structure was found to be increasingly more benefcial with increasing aircraft range/size. (2) The use of a forward tank in combination with the aft one appeared to be always benefcial in terms of energy consumption. (3) The increase in fuselage diameter is detrimental especially when an extra aisle is not required and a double-deck cabin is not feasible. (4) Direct venting has when done efciently a small positive efect. (5) The optimal venting pressure varies with the aircraft confguration performance and mission. The impact on performance from sizing the tank for missions longer than the harmonic one was also quantifed.
Advancing a Hydrogen Economy in Australia: Public Perceptions and Aspirations
Nov 2023
Publication
Supporters of hydrogen energy urge scaling up technology and reducing costs for competitiveness. This paper explores how hydrogen energy technologies (HET) are perceived by Australia’s general population and considers the way members of the public imagine their role in the implementation of hydrogen energy now and into the future. The study combines a nationally representative survey (n = 403) and semi-structured interviews (n = 30). Results show age and gender relationships with self-reported hydrogen knowledge. Half of the participants obtained hydrogen information from televised media. Strong support was observed for renewable hydrogen while coal (26%) and natural gas (41%) versions had less backing. Participants sought more safety-related information (41% expressed concern). Most felt uncertain about influencing hydrogen decisions and did not necessarily recognise they had agency beyond their front fence. Exploring the link between political identity and agency in energy decision-making is needed with energy democracy a potentially productive direction.
CFD Model of Refuelling through the Entire Equipment of a Hydrogen Refuelling Station
Dec 2023
Publication
This paper aims at the development and validation of a computational fluid dynamic (CFD) model for simulations of the refuelling process through the entire equipment of the hydrogen refuelling station (HRS). The absence of such models hinders the design of inherently safer refuelling protocols for an arbitrary combination of HRS equipment hydrogen storage parameters and environmental conditions. The CFD model is validated against the complete process of refuelling lasting 195s in Test No.1 performed by the National Renewable Energy Laboratory (NREL). The test equipment includes high-pressure tanks of HRS pressure control valve (PCV) valves pipes breakaway hose and nozzle all the way up to three onboard tanks. The model accurately reproduced hydrogen temperature and pressure through the entire line of HRS equipment. A standout feature of the CFD model distinguishing it from simplified models is the capability to predict temperature non-uniformity in onboard tanks a crucial factor with significant safety implications.
European Hydrogen Train the Trainer Programme for Responders: The Impact of HyResponder on Training Across Europe
Jan 2025
Publication
Síle Brennan,
Christian Brauner,
Dennis Davis,
Natalie DeBacker,
Alexander Dyck,
César García Hernández,
André Vagner Gaathaug,
Petr Kupka,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Laurent Lecomte,
Eric Maranne,
Pippa Steele,
Paola Russo,
Adolfo Pinilla,
Gerhard Schoepf,
Tom Van Esbroeck and
Vladimir V. Molkov
The impact of the HyResponder project on the training of responders in 10 European countries is described. An overview is presented of training activities undertaken within the project in Austria Belgium Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. National leads with training expertise are given and the longer-term plans in each region are mentioned. Responders from each region took part in a specially tailored “train the trainer” programme and then delivered training within their regions. A flexible approach to training within the HyResponder network has enabled fit for purpose region appropriate activities to be delivered impacting over 1250 individuals during the project and many more beyond. Teaching and learning materials in hydrogen safety for responders have been made available in 8 languages: English Czech Dutch French German Italian Norwegian Spanish. They are being used to inform training within each of the partner countries. Dedicated national working groups focused on hydrogen safety training for responders have been established in Belgium the Czech Republic Italy and Switzerland.
An Up-to-date Perspective of Levelized Cost of Hydrogen for PV-based Grid-connected Power-to-hydrogen Plants Across all Italy
Nov 2024
Publication
Green hydrogen holds potential for decarbonizing the energy sector but high production costs are a major barrier. This study provides a comprehensive techno-economic-financial-environmental analysis of PV-based grid-connected hydrogen production plants targeting hard-to-abate industries having constant hydrogen demand across all Italy. Using real hourly data the Multi Energy System Simulator (MESS) an in-house developed rule-based tool was employed and integrated with Genetic Algorithm for optimal plant sizing. The aim is to minimize the Levelized Cost of Hydrogen (LCOH) while complying with regulatory frameworks for green hydrogen incentives access. Key findings show that hydrogen storage is more advantageous than battery storage for supply-side flexibility and the optimal PV-to-electrolyzer size ratio ranges from 1.8 in Southern Italy to 2.1 in Northern Italy with hydrogen tank designed for daily storage. Considering photovoltaic electrolyzer and battery aging models grid dependence increases by 60 % when comparing the first and worst year of operation and leads to a 7 % increase in LCOH. Transitioning from the strictest (hourly) to the least stringent (annual) temporal correlation increases certified green hydrogen by 22 % while LCOH decreases by only 3 % suggesting that the environmental benefits of stringent temporal requirements outweigh their moderate economic drawbacks. These findings underscore the need for additional national-level incentives to allow the deployment of this technology and achieving cost parity with grey hydrogen.
Numerical Investigation of Hydrogen Production via Methane Steam Reforming in Tubular Packed Bed Reactors Integrated with Annular Metal Foam Gas Channels
Sep 2025
Publication
Methane steam reforming is the most widely adopted hydrogen production technology. To address the challenges associated with the large radial thermal resistance and low mass transfer rates inherent in the tubular packed bed reactors during the MSR process this study proposes a structural design optimization that integrates annular metal foam gas channels along the inner wall of the reforming tubes. Utilizing multi-physics simulation methods and taking the conventional tubular reactor as a baseline a comparative analysis was performed on physical parameters that characterize flow behavior heat transfer and reaction in the reforming process. The integration of the annular channels induces a radially non-uniform distribution of flow resistance in the tubes. Since the metal foam exhibits lower resistance the fluid preferentially flows through the annular channels leading to a diversion effect that enhances both convective heat transfer and mass transfer. The diversion effect redirects the central flow toward the near-wall region where the higher reactant concentration promotes the reaction. Additionally the higher thermal conductivity of the metal foam strengthens radial heat transfer further accelerating the reaction. The effects of operating parameters on performance were also investigated. While a higher inlet velocity tends to hinder the reaction in tubes integrated with annular channels it enhances the diversion effect and convective heat transfer. This offsets the adverse impact maintaining high methane conversion with lower pressure drop and thermal resistance than the conventional tubular reactor does.
Green Hydrogen Production by Water Electrolysis: Current Status and Challenges
Apr 2024
Publication
The scientific and industrial communities worldwide have recently achieved impressive technical advances in developing innovative electrocatalysts and electrolysers for water and seawater splitting. The viability of water electrolysis for commercial applications however remains elusive and the key barriers are durability cost performance materials manufacturing and system simplicity especially with regard to running on practical water sources like seawater. This paper therefore primarily aims to provide a concise overview of the most recent disruptive water-splitting technologies and materials that could reshape the future of green hydrogen production. Starting from water electrolysis fundamentals the recent advances in developing durable and efficient electrocatalysts for modern types of electrolysers such as decoupled electrolysers seawater electrolysers and unconventional hybrid electrolysers have been represented and precisely annotated in this report. Outlining the most recent advances in water and seawater splitting the paper can help as a quick guide in identifying the gap in knowledge for modern water electrolysers while pointing out recent solutions for cost-effective and efficient hydrogen production to meet zero-carbon targets in the short to near term.
Influence of the Initial State of ZrO2 on Genesis, Activity and Stability of Ni/ZrO2 Catalysts for Steam Reforming of Glycerol
Mar 2021
Publication
The effect of the initial state of ZrO2 on properties of Ni/ZrO2 catalysts for hydrogen production in steam reforming of glycerol was investigated. The catalysts were synthesized by impregnating the supports obtained by varying the treatment temperature of ZrO2‧nH2O and introducing Y2O3 as a promoter. All materials were characterized by thermal analysis X-ray diffraction N2 physisorption scanning electron microscopy H2-TPR NH3-TPD and transmission electron microscopy. The mutual influence of NiO and ZrO2 on the genesis of the phase composition pore structure and reducibility was demonstrated. Different catalytic behavior is explained by influence of the initial form of the support on the size morphology of Ni particles and the support thermal stability. The initial activity of Ni/ZrO2is proportional to the monoclinic phase content. The catalysts based on tetragonal ZrO2 displayed the best stability. For the first time the presence of the aldol condensation products in glycerol steam reforming was demonstrated.
Techno-Economic Assessment of Biogas-to-Methanol Processes Coupled with Low-Carbon H2 Production Technologies
Jan 2025
Publication
In order to realize carbon mitigation and the efficient utilization of waste biogas the biogas-to-methanol process is an important method. The syngas produced by the conventional biogas reforming technology is rich in CO2 and CO whereas it is poor in hydrogen. Therefore additional H2 is introduced into the system to adjusted the syngas ratio promoting the efficient conversion of the biogas. However the use of traditional H2 production technologies generally results in considerable carbon emissions. Given these points low-carbon H2 production technologies namely methane pyrolysis technology and chemical looping reforming technology are integrated with the biogas-to-methanol process to enhance carbon conversion carbon reduction and cost-saving potentials. Comprehensive technical and economic comparisons of the integrated processes are conducted. The process coupled with chemical looping reforming technology has a higher carbon conversion efficiency (73.52%) and energy efficiency (70.41%) and lower unit carbon emissions (0.73 t CO2/t methanol). Additionally the process coupled with methane pyrolysis technology has higher product revenue whereas that including chemical looping reforming technology has a lower net production cost (571.33 USD/t methanol). In summary the novel chemical looping reforming technology provides a cleaner and more sustainable pathway with which to promote the efficient conversion of biogas into methanol.
Hybrid Solar PV/PEM Fuel Cell/Diesel Generator Power System for Cruise Ship: A Case Study in Stockholm, Sweden
Jul 2019
Publication
Optimal design and performance analysis of renewable energy system to serve the cruise ship main and auxiliary power in Stockholm Sweden is presented in this paper. The goal is to integrate renewable energy systems in small and large ships for greener and sustainable marine transport. The power load for the cruise ship was determined and modeling and simulation analysis was used to investigate the daily and annual performance of the power system architectures including the efficiency and capacity factors of the energy conversion systems. The total electrical power generated from the solar PV PEM fuel cell and Diesel generator; the cost of electricity; and the greenhouse gas and particulate matter PM emissions were determined. The proposed renewable energy system offers a good penetration of renewable energy system (13.83%) and greenhouse gas and particulate emissions reduction (9.84% emissions reduction compared to baseline system using Diesel engines). The integration of renewable and clean power systems such as solar PV and PEM fuel cell (high electrical efficiency) is very attractive solution for onboard ship power generation. They are economically viable (reduce the cost of Diesel fuel) cleaner than the conventional gas turbine and internal combustion engines and reduce the dependency on fossil fuel.
PyPSA-Earth Sector-coupled: A Global Open-source Multi-energy System Model Showcased for Hydrogen Applications in Countries of the Global South
Jan 2025
Publication
This study presents sector-coupled PyPSA-Earth: a novel global open-source energy system optimization model that incorporates major demand sectors and energy carriers in high spatial and temporal resolution to enable energy transition studies worldwide. The model includes a workflow that automatically downloads and processes the necessary demand supply and transmission data to co-optimize investment and operation of energy systems of countries or regions of Earth. The workflow provides the user with tools to forecast future demand scenarios and allows for custom user-defined data in several aspects. Sector-coupled PyPSA-Earth introduces novelty by offering users a comprehensive methodology to generate readily available sector-coupled data and model of any region worldwide starting from raw and open data sources. The model provides flexibility in terms of spatial and temporal detail allowing the user to tailor it to their specific needs. The capabilities of the model are demonstrated through two showcases for Egypt and Brazil. The Egypt case quantifies the relevant role of PV exceeding 35 GW and electrolysis in Suez and Damietta regions for meeting 16% of the EU hydrogen demand. Complementarily the Brazil case confirms the model’s ability in handling hydrogen planning infrastructure including repurposing of existing gas networks which results in 146 M€ lower costs than building new pipelines. The results prove the suitability of sector-coupled PyPSA-Earth to meet the needs of policymakers developers and scholars in advancing the energy transition. The authors invite the interested individuals and institutions to collaborate in the future developments of the model within PyPSA meets Earth initiative.
A Review of LCA Studies on Marine Alternative Fuels: Fuels, Methodology, Case Studies, and Recommendations
Jan 2025
Publication
Life Cycle Assessment (LCA) methodology can be used to quantitatively assess the greenhouse gas emissions of low- or zero-carbon marine alternative fuels throughout their life cycle (from well to wake) and is an important basis for ensuring a green energy transition in the shipping industry. This paper first clarifies the trends and requirements of low-carbon development in shipping and introduces the major ship emission reduction technologies and evaluation methods. Next the characteristics of various alternative marine fuels (i.e. LNG hydrogen methanol ammonia and biofuels) are comprehensively discussed and analyzed in terms of production storage transportation and ship applications. In addition this work provides a comprehensive overview of LCA methodology including its relevant standards and assessment tools and establishes a framework for LCA of marine alternative fuels. On this basis a literature review of the current research on LCA of marine alternative fuels from the perspectives of carbon emissions pollution emissions and economics is presented. The case review covers 64 alternative-fueled ships and 12 groups of fleets operating in different countries and waters. Finally this paper discusses the main shortcomings that exist in the current research and provides an outlook on the future development of LCA research of marine alternative fuels.
Machine Learning Prediction of Photovoltaic Hydrogen Production Capacity Using Long Short-Term Memory Model
Jan 2025
Publication
The yield of photovoltaic hydrogen production systems is influenced by a number of factors including weather conditions the cleanliness of photovoltaic modules and operational efficiency. Temporal variations in weather conditions have been shown to significantly impact the output of photovoltaic systems thereby influencing hydrogen production. To address the inaccuracies in hydrogen production capacity predictions due to weather-related temporal variations in different regions this study develops a method for predicting photovoltaic hydrogen production capacity using the long short-term memory (LSTM) neural network model. The proposed method integrates meteorological parameters including temperature wind speed precipitation and humidity into a neural network model to estimate the daily solar radiation intensity. This approach is then integrated with a photovoltaic hydrogen production prediction model to estimate the region’s hydrogen production capacity. To validate the accuracy and feasibility of this method meteorological data from Lanzhou China from 2013 to 2022 were used to train the model and test its performance. The results show that the predicted hydrogen production agrees well with the actual values with a low mean absolute percentage error (MAPE) and a high coefficient of determination (R2 ). The predicted hydrogen production in winter has a MAPE of 0.55% and an R2 of 0.985 while the predicted hydrogen production in summer has a slightly higher MAPE of 0.61% and a lower R2 of 0.968 due to higher irradiance levels and weather fluctuations. The present model captures long-term dependencies in the time series data significantly improving prediction accuracy compared to conventional methods. This approach offers a cost-effective and practical solution for predicting photovoltaic hydrogen production demonstrating significant potential for the optimization of the operation of photovoltaic hydrogen production systems in diverse environments.
Modelling the Innovation-decision Process for Hydrogen Homes: An Integrated Model of Consumer Acceptance and Adoption Intention
Nov 2024
Publication
As the global energy transition progresses a range of drivers and barriers will continue to shape consumer attitudes and behavioural intentions towards emerging low-carbon technologies. The innovation-decision process for technologies composing the residential sector such as hydrogen-fuelled heating and cooking appliances is inherently governed by the complex interplay between perceptual cognitive and emotional factors. In response this study responds to the call for an integrated research perspective to advance theoretical and empirical insights on consumer engagement in the domestic hydrogen transition. Drawing on online survey data collected in the United Kingdom where a policy decision on ‘hydrogen homes’ is set for 2026 this study systematically explores whether an integrated modelling approach supports higher levels of explanatory and predictive power. Leveraging the foundations of the unified theory of domestic hydrogen acceptance the analysis suggests that production perceptions public trust perceived relative advantage safety perceptions knowledge and awareness and positive emotions will shape consumer support for hydrogen homes. Conversely perceived disruptive impacts perceived socio-economic costs financial perceptions and negative emotions may impede the domestic hydrogen transition. Consumer acceptance stands to significantly shape deployment prospects for hydrogen boilers and hobs which are perceived to be somewhat advantageous to natural gas appliances from a technological and safety perspective. The study attests to the predictive benefits of adopting an integrated theoretical perspective when modelling the early stages of the innovation-decision process while acknowledging opportunities for leveraging innovative research approaches in the future. As national hydrogen economies gain traction adopting a neuroscience-based approach may help deepen scientific understanding regarding the neural psychological and emotional signatures shaping consumer perspectives towards hydrogen homes.
Advances in Hydrogen Blending and Injection in Natural Gas Networks: A Review
Jan 2025
Publication
With growing concerns about carbon emissions and the need for decarbonization hydrogen is a promising hy pothesis for the replacement of fossil fuels. Blending hydrogen with natural gas and using existing natural gas transmission networks is a strategy that could reduce carbon emissions. However a significant challenge with using hydrogen in transmission networks is its potential to cause embrittlement compromising the structural integrity of pipelines. This paper provides an overview of the complexities involved in blending and injecting hydrogen into natural gas transmission pipelines and discusses methods to enhance system performance and mitigate these challenges by reviewing studies focused on these topics. The paper highlights the multidisciplinary nature of hydrogen injection into natural gas pipelines and discusses ongoing research efforts to address this issue. The study shows significant progress in the technological development of injection strategies mixing solutions sensors and materials. Still challenges remain regarding experimental work sensors capable of operating in high-pressure transmission pipelines and material solutions such as coatings that can inhibit embrittlement and be applied in-situ in operating pipelines. Although numerous numerical studies exist experimental research on mixing and injection systems remains limited. While real-time measurement tech nology is advancing more innovation is needed for high-pressure environments. New coatings and linings have been developed to mitigate embrittlement but their application in operating pipelines requires further investigation.
A Comparative Science-Based Viability Assessment Among Current and Emerging Hydrogen Production Technologies
Jan 2025
Publication
This research undertakes a comparative analysis of current and emerging hydrogen (H2) production technologies evaluating them based on quantitative and qualitative decision criteria. The quantitative criteria include cost of H2 production (USD/kg H2) energy consumption (MJ/kg H2) global warming potential (kg CO2-eq/kg H2) and technology energy efficiency (%). The qualitative criteria encompass technology readiness level (TRL) and availability of supply chain materials (classified as low medium or high). To achieve these objectives an extensive literature review has been conducted systematically assessing the selected H2 production technologies against the aforementioned criteria. The insights synthesized from the literature provide a foundation for an informed science-based evaluation of the potentials and techno-economic challenges that these technologies face in achieving the 1-1-1 goal set by the U.S. Department of Energy (DOE) in 2021. This target aims for a H2 production cost of USD 1/kg H2 within one decade (by 2031) including costs associated with production delivery and dispensing at H2 fueling stations (HRSs). Also the DOE established an interim goal of USD 2/kg H2 by 2026. This research concludes that among the examined H2 production technologies water electrolysis and biomass waste valorization emerge as the most promising near-term solutions to meet the DOE’s goal.
Multi-timescale Coordinated Planning of BESS, Seasonal Hydrogen Storage, and Dynamic DR for Unbalanced RES-rich Microgrids
Sep 2025
Publication
Nowadays integrating renewable energy sources (RESs) poses significant challenges due to the deterioration of performance indices especially in cold-climate unbalanced microgrids. Beyond network unbalance harsh conditions with low irradiance weak wind speeds and low temperatures necessitate hydrogen storage systems (HSSs) to address seasonal mismatches between RES generation and demand. This paper proposes a two-stage multi-timescale planning framework that integrates RESs plug-in electric vehicles (PEVs) battery energy storage systems (BESSs) seasonal HSSs and a dynamic demand response (DDR) program. In the short term BESSs are coordinated under slow and fast charging/discharging modes for responding to daily load shifting and peak shaving or sudden demand fluctuations. Smart converters with active/reactive power control are equipped with RES and BESS for local voltage regulation. Furthermore the proposed DDR program which combines load reduction and valley filling strategies enables consumer flexibility based on real-time market signals across seasonal variations. Seasonal HSSs are designed to store excess hydrogen produced from RESs for long-term use across different seasons. The proposed strategy is validated in two stages. The first stage guarantees multitimescale coordination of BESSs seasonal HSSs and the DDR. In turn the second stage optimally plans RESs BESSs and HSSs in a unified manner to reduce voltage unbalance and line congestion while maximizing microgrid RES hosting capacity. Simulation results for six interconnected microgrids demonstrate a 12.5% reduction in voltage unbalance 21% alleviation of line congestion and a 108% increase in hosting capacity highlighting the effectiveness of the proposed planning approach for unbalanced RES-rich microgrids.
A Multi-model Assessment of the Global Warming Potential of Hydrogen
Jun 2023
Publication
With increasing global interest in molecular hydrogen to replace fossil fuels more attention is being paid to potential leakages of hydrogen into the atmosphere and its environmental consequences. Hydrogen is not directly a greenhouse gas but its chemical reactions change the abundances of the greenhouse gases methane ozone and stratospheric water vapor as well as aerosols. Here we use a model ensemble of five global atmospheric chemistry models to estimate the 100-year time-horizon Global Warming Potential (GWP100) of hydrogen. We estimate a hydrogen GWP100 of 11.6 ± 2.8 (one standard deviation). The uncertainty range covers soil uptake photochemical production of hydrogen the lifetimes of hydrogen and methane and the hydroxyl radical feedback on methane and hydrogen. The hydrogeninduced changes are robust across the different models. It will be important to keep hydrogen leakages at a minimum to accomplish the benefits of switching to a hydrogen economy.
Multi-Seasonal Risk Assessment of Hydrogen Leakage, Diffusion, and Explosion in Hydrogen Refueling Station
Aug 2025
Publication
To reveal the influence mechanisms of seasonal climatic factors (wind speed wind direction temperature) and leakage direction on hydrogen dispersion and explosion behavior from single-source leaks at typical risk locations (hydrogen storage tanks compressors dispensers) in hydrogen refueling stations (HRSs) this work established a full-scale 1:1 three-dimensional numerical model using the FLACS v22.2 software based on the actual layout of an HRS in Xichang Sichuan Province. Through systematic simulations of 72 leakage scenarios (3 equipment types × 4 seasons × 6 leakage directions) the coupled effects of climatic conditions equipment layout and leakage direction on hydrogen dispersion patterns and explosion risks were quantitatively analyzed. The key findings indicate the following: (1) Downward leaks (−Z direction) from storage tanks tend to form large-area ground-hugging hydrogen clouds representing the highest explosion risk (overpressure peak: 0.25 barg; flame temperature: >2500 K). Leakage from compressors (±X/−Z directions) readily affects adjacent equipment. Dispenser leaks pose relatively lower risks but specific directions (−Y direction) coupled with wind fields may drive significant hydrogen dispersion toward station buildings. (2) Southeast/south winds during spring/summer promote outward migration of hydrogen clouds reducing overall station risk but causing localized accumulation near storage tanks. Conversely north/northwest winds in autumn/winter intensify hydrogen concentrations in compressor and station building areas. (3) An empirical formula integrating climatic parameters leakage conditions and spatial coordinates was proposed to predict hydrogen concentration (error < 20%). This model provides theoretical and data support for optimizing sensor placement dynamically adjusting ventilation strategies and enhancing safety design in HRSs.
Advances in Hydrogen Storage Technologies
Jan 2025
Publication
Gaseous hydrogen storage is the most mature technology for fuel cell vehicles. The main safety concern is the catastrophic consequences of tank rupture in a fire i.e. blast waves fireballs and projectiles. This paper sum marises research on the development and validation of the breakthrough microleaks-no-burst (μLNB) safety technology of explosion-free in any fire self-venting Type IV tanks that do not require a thermally-activate pressure relief device (TPRD). The invention implies the melting of the hydrogen-tight liner of the Type IV tank before the hydrogen-leaky double-composite wall loses load-bearing ability. Hydrogen then flows through the natural microchannels in the composites and burns in microflames or together with resin. The unattainable to competitive products feature of the technology is the ability to withstand any fire from smouldering to extreme impinging hydrogen jet fires. Innovative 70 MPa tanks made of carbon-carbon carbon-glass and carbon-basalt composites were tested in characteristic for gasoline/diesel spill fires with a specific heat release rate of HRR/A = 1 MW/m2 . Standard unprotected Type III and IV tanks will explode in such intensity fire. The technology excludes hydrogen accumulation in naturally ventilated enclosures. It reduces the risk of hydrogen vehicles to an acceptable level below that of fossil fuel cars including underground parking tunnels etc. The performance of self-venting tanks is studied for fire intervention scenarios: removal from fire and fire extinction by water. It is concluded that novel tanks allow standard fire intervention strategies and tactics. Self-venting operation of the 70 MPa tank is demonstrated in extreme jet fire conditions under impinging hydrogen jet fire (70 MPa) with huge HRR/A = 19.5 MW/m2 . This technology excludes tank rupture in fires onboard trains ships and planes where hazard distances cannot be implemented i.e. provides an unprecedented level of life safety and property protection.
Safety Equipment Planning Through Experimental Analysis of Hydrogen Leakage and Ventilation in Enclosed Spaces
Aug 2025
Publication
In South Korea securing ground space for installing hydrogen refueling stations in urban areas is challenging due to limited ground space and high-density development. Safety concerns for hydrogen systems in enclosed urban environments also require careful consideration. To address this issue this study explored a method of undergrounding hydrogen infrastructure as a solution for urban hydrogen charging stations. This study examined the characteristics of hydrogen diffusion and concentration reduction under leakage conditions within a confined hydrogen infrastructure focusing on key safety systems including emergency shut-off valves (ESVs) and ventilation fans. We discovered that the ESV reduced hydrogen concentration by over 80%. Installing two or more ventilation fans arranged horizontally improves airflow and enhances ventilation efficiency. Moreover increasing the number of fans reduces stagnant zones within the space effectively lowering the average hydrogen concentration.
Retrofitted Hydrogen-Electric Propulsion Aircraft: Performance Simulation of Critical Operating Conditions
Jan 2025
Publication
Retrofitting regional turboprop aircraft with hydrogen (H2)-electric powertrains using fuel cell systems (FCSs) has gained interest in the last decade. This type of powertrain eliminates CO2 NOx and fine particle emissions during flight as FCSs only emit water. In this context the “Hydrogen Aircraft Powertrain and Storage Systems” (HAPSS) project targets the development of a H2-electric propulsion system for retrofitting Dash 8- 300 series aircraft. The purpose of the study described in this paper is to analyze the performance of the retrofitted H2-electric aircraft during critical operating conditions. Takeoff as well as climb cruise and go-around performances are addressed. The NLR in-house tool MASS (Mission Aircraft and Systems Simulation) was used for the performance analyses. The results show that the retrofitted H2-electric aircraft has a slightly increased takeoff distance compared to the Dash 8-300 and it requires a maximum rated shaft power of 1.9 MW per propeller. A total rated FCS output power of 3.1 MW is sufficient to satisfy the takeoff requirements at the cost of lower cruise altitude and reduced cruise speed as compared to the Dash 8-300. Furthermore a higher-rated FCS is required to achieve the climb performance required for the typical climb profile of the Dash 8-300.
A Techno-economic Analysis of Hydrogen Refuelling and Electric Fast-charging Stations: Effects on Cost-competitiveness of Zero-emission Trucks
Jun 2025
Publication
Hydrogen fuel cell electric trucks and battery electric trucks can significantly contribute to the decarbonisation of the heavy-duty vehicles transport segment. Nonetheless a paucity of hydrogen refuelling and fast-charging stations can represent a hindrance to the development of zero-emission vehicles. This work aims to provide a techno-economic analysis with a view to comparing the costs of hydrogen refuelling and electric charging and evaluating their effects on the total cost of ownership of zero-emission trucks. Thus a comprehensive analysis has been conducted on off-site compressed (CH2) cryo-compressed subcooled hydrogen refuelling stations in conjunction with a fast-charging station. The resulting levelized costs of hydrogen and charging have been incorporated into the total cost of ownership analysis. Thus it has been demonstrated that battery electric trucks are more costeffective than hydrogen-fuel cell electric trucks. The findings of this study indicate that the costs associated with electric charging and hydrogen refuelling are comparable and the economic profitability is contingent upon a number of techno-economic variables. Therefore it is not possible to determine a priori whether one solution is more economically competitive than the other. A mixed infrastructure can represent an opportunity for the transport sector decarbonisation whereby electric-charging and hydrogen-refuelling are not mutually exclusive.
Environmental Implications of Solid Oxide Fuel Cell System for Hydrogen Sustainability
Jan 2025
Publication
Hydrogen known for its high energy content and clean combustion is promising in the energy transition. This study explores the environmental impact of a solid oxide fuel cell (SOFC) system. 1 kg of hydrogen production at 1 bar serves as the functional unit. The SOFC system generates hydrogen electricity and heat across five modes. Results indicate that the SOFC system achieves a global warming potential of 0.17–9.50 kg CO2 -eq/FU using the system expansion method. Regional analysis shows that areas with high renewable electricity shares experience increased CO2 emissions due to functional unit decision. The exergy allocation method is less sensitive to electricity sources and seasonal emission profiles than system expansion. Comparing eight production routes the SOFC system using biomethane (−5.46 kg CO2 -eq/FU) outperforms steam methane reforming (11 kg CO2 -eq/FU) and biomass gasification (1.49 kg CO2 -eq/FU). These insights are valuable for advancing renewable energy initiatives and effectively mitigating climate change.
Numerical Study on the Characteristics of Hydrogen Leakage, Diffusion and Ventilation in Ships
Jan 2025
Publication
Hydrogen is a promising environmentally friendly fuel with the potential for zero-carbon emissions particularly in maritime applications. However owing to its wide flammability range (4–75%) significant safety concerns persist. In confined spaces hydrogen leaks can lead to explosions posing a risk to both lives and assets. This study conducts a numerical analysis to investigate hydrogen flow within hydrogen storage rooms aboard ships with the goal of developing efficient ventilation strategies. Through simulations performed using ANSYS-CFX this research evaluates hydrogen diffusion stratification and ventilation performance. A vertex angle of 120◦ at the ceiling demonstrated superior ventilation efficiency compared to that at 177◦ while air inlets positioned on side-wall floors or mid-sections proved more effective than those located near the ceiling. The most efficient ventilation occurred at a velocity of 1.82 m/s achieving 20 air exchanges per hour. These findings provide valuable insights for the design of safer hydrogen vessel operations.
Post-mortem Analysis as a Method to Identify Degradation of PEM Fuel Cells Affecting their Durability in Maritime Applications
Sep 2025
Publication
Proton exchange membrane fuel cells (PEMFCs) present great potential for the decarbonization of the maritime sector but their durability in harsh marine environments remains a critical challenge. This review focuses on post-mortem analysis techniques as a tool to understand the degradation mechanisms of PEMFCs under stressors relevant to marine applications. In further detail the application of various imaging (SEM TEM) structural (XRD) electrochemical (CV) and elemental analysis (EDS) methods to characterize the effects of key stressors such as salt spray mechanical vibration and operational cycling was examined. By analyzing degraded PEMFC components post-mortem analysis reveals critical insights into catalyst layer degradation membrane damage and the impact of impurities enabling the identification of failure modes and the development of effective mitigation strategies for the establishment of PEMFCs in the maritime sector.
Will Hydrogen and Synthetic Fuels Energize our Future? Their Role in Europe's Climate-neutral Energy System and Power System Dynamics
Aug 2024
Publication
This study evaluates the technoeconomic impacts of direct and indirect electrification on the EU's net-zero emissions target by 2050. By linking the JRC-EU-TIMES long-term energy system model with PLEXOS hourly resolution power system model this research offers a detailed analysis of the interactions between electricity hydrogen and synthetic fuel demand production technologies and their effects on the power sector. It highlights the importance of high temporal resolution power system analysis to capture the synergistic effects of these components often overlooked in isolated studies. Results indicate that direct electrification increases significantly and unimpacted by biomass CCS and nuclear energy assumptions. However indirect electrification in the form of hydrogen varies significantly between 1400 and 2200 TWhH2 by 2050. Synthetic fuels are essential for sector coupling making up 6–12% of total energy consumption by 2050 with the power sector supplying most hydrogen and CO2 for their production. Varying levels of indirect electrification impact electrolysers renewable energy and firm capacities. Higher indirect electrification increases electrolyser capacity factors by 8% leading to more renewable energy curtailment but improves system reliability by reducing 11 TWh unserved energy and increasing flexibility options. These insights inform EU energy policies stressing the need for a balanced approach to electrification biomass use and CCS to achieve a sustainable and reliable net-zero energy system by 2050. We also explore limitations and sensitivities.
Modeling and Technical-Economic Analysis of a Hydrogen Transport Network for France
Feb 2025
Publication
This work aims to study the technical and economical feasibility of a new hydrogen transport network by 2035 in France. The goal is to furnish charging stations for fuel cell electrical vehicles with hydrogen produced by electrolysis of water using low-carbon energy. Contrary to previous research works on hydrogen transport for road transport we assume a more realistic assumption of the demand side: we assume that only drivers driving more than 20000 km per year will switch to fuel cell electrical vehicles. This corresponds to a total demand of 100 TWh of electricity for the production of hydrogen by electrolysis. To meet this demand we primarily use surplus electricity production from wind power. This surplus will satisfy approximately 10% of the demand. We assume that the rest of the demand will be produced using surplus from nuclear power plants disseminated in regions. We also assume a decentralized production namely that 100 MW electrolyzers will be placed near electricity production plants. Using an optimization model we define the hydrogen transport network by considering decentralized production. Then we compare it with more centralized production. Our main conclusion is that decentralized production makes it possible to significantly reduce distribution costs particularly due to significantly shorter transport distances.
Advancing Nickel-based Catalysts for Enhanced Hydrogen Production: Innovations in Electrolysis and Catalyst Design
Feb 2025
Publication
Nickel-based catalysts recognized for their cost-efficiency and availability play a critical role in advancing hydrogen production technologies. This study evaluates their optimization in water electrolysis to improve efficiency and system stability. Key findings highlight the enhancement of these catalysts with nickel-iron oxyhydroxide and nickel-molybdenum co-catalysts. Technological innovations such as Perovskite Solar Cells integration for solar-to-hydrogen conversion are explored. The use of nickel foam enhances electrode durability offering valuable insights into designing sustainable and efficient hydrogen production systems.
Electric-thermal Collaborative System and Control for Hydrogen-fuel Cell Passenger Trains in the UK's Winter
Feb 2025
Publication
This paper presents a quantitative study on electric-thermal collaborative system for hydrogen-powered train reutilising the waste heat from fuel cell system for Heating Ventilation and Air Conditioning (HVAC). Firstly a hybrid train simulator is developed to simulate the train’s motion state. Heat generation from fuel cell is estimated using a fuel cell model while a detailed thermodynamic model for railway passenger coach is established to predict the heat demand. Furthermore an electric-thermal collaborative energy management strategy (ETCEMS) is proposed for the system to comprehensively optimise the on-train power distribution considering traction and auxiliary power. Finally comparative analysis is performed among the train with electric heater (EH) heat pump (HP) and heat pump-heat reuse (HP-HR). The results demonstrate that over a round trip the proposed HP-HR with ETC-EMS recovers over 22.88% residual heat and saves 16.17% of hydrogen consumption. For the daily operation it reduces hydrogen and energy consumption by 12.06% and 12.82 % respectively. The findings indicate that collaborative optimisation brings significant improvements on the global energy utilisation. The proposed design with ETC-EMS is potential to further enhance the economic viability of hydrail and contributes to the rail decarbonisation.
Optimizing Hydrogen Production for Sustainable Fuel Cell Electric Vehicles: Grid Impacts in the WECC Region
Jan 2025
Publication
The fuel cell electric vehicle (FCEV) is a promising transportation technology for resolving the air pollution and climate change issues in the United States. However a large-scale penetration of FCEVs would require a sustained supply of hydrogen which does not exist now. Water electrolysis can produce hydrogen reliably and sustainably if the electricity grid is clean but the impacts of FCEVs on the electricity grid are unknown. In this paper we develop a comprehensive framework to model FCEV-driving and -refueling behaviors the water electrolysis process and electricity grid operation. We chose the Western Electricity Coordinating Council (WECC) region for this case study. We modeled the existing WECC electricity grids and accounted for the additional electricity loads from FCEVs using a Production Cost Model (PCM). Additionally the hydrogen need for five million FCEVs leads to a 3% increase in electricity load for WECC. Our results show that an inflexible hydrogen-producing process leads to a 1.55% increase to the average cost of electricity while a flexible scenario leads to only a 0.9% increase. On the other hand oversized electrolyzers could take advantage of cheaper electricity generation opportunities thus lowering total system costs.
Ammonia Marine Engine Design for Enhanced Efficiency and Reduced Greenhouse Gas Emissions
Mar 2024
Publication
Pilot-diesel-ignition ammonia combustion engines have attracted widespread attentions from the maritime sector but there are still bottleneck problems such as high unburned NH3 and N2O emissions as well as low thermal efficiency that need to be solved before further applications. In this study a concept termed as in-cylinder reforming gas recirculation is initiated to simultaneously improve the thermal efficiency and reduce the unburned NH3 NOx N2O and greenhouse gas emissions of pilot-diesel-ignition ammonia combustion engine. For this concept one cylinder of the multi-cylinder engine operates rich of stoichiometric and the excess ammonia in the cylinder is partially decomposed into hydrogen then the exhaust of this dedicated reforming cylinder is recirculated into the other cylinders and therefore the advantages of hydrogen-enriched combustion and exhaust gas recirculation can be combined. The results show that at 3% diesel energetic ratio and 1000 rpm the engine can increase the indicated thermal efficiency by 15.8% and reduce the unburned NH3 by 89.3% N2O by 91.2% compared to the base/traditional ammonia engine without the proposed method. At the same time it is able to reduce carbon footprint by 97.0% and greenhouse gases by 94.0% compared to the traditional pure diesel mode.
Techno-economic Analysis and Dynamic Operation of Green Hydrogen-integrated Microgrid: An Application Study
Aug 2025
Publication
The shift to renewable energy sources requires systems that are not only environmentally sustainable but also cost-effective and reliable. Mitigating the inherent intermittency of renewable energy optimally managing the hybrid energy storage efficiently integrating the microgrid with the power grid and maximizing the lifespan of system components are the significant challenges that need to be addressed. With this aim the paper proposes an economic viability assessment framework with an optimized dynamic operation approach to determine the most stable cost-effective and environmentally sound system for a specific location and demand. The green integrated hybrid microgrid combines photovoltaic (PV) generation battery storage an electrolyzer a hydrogen tank and a fuel cell tailored for deployment in remote areas with limited access to conventional infrastructure. The study’s control strategy focuses on managing energy flows between the renewable energy resources battery and hydrogen storage systems to maximize autonomy considering real-time changes in weather conditions load variations and the state of charge of both the battery and hydrogen storage units. The core system’s components include the interlinking converter which transfers power between AC and DC grids and the decentralized droop control approach which adjusts the converter’s output to ensure balanced and efficient power sharing particularly during overload conditions. A cloud-based Internet of Things (IoT) platform has been employed allowing continuous monitoring and data analysis of the green integrated microgrid to provide insights into the system's health and performance during the dynamic operation. The results presented in this paper confirmed that the proposed framework enabled the strategic use of energy storage particularly hydrogen systems. The optimal operational control of green hydrogen-integrated microgrid can indeed mitigate voltage and frequency fluctuations caused by variable solar input ensuring stable power delivery without reliance on the main grid or fossil fuel backups.
Optimization of the Design of Underground Hydrogen Storage in Salt Caverns in Southern Ontario, Canada
Jan 2025
Publication
With the issue of energy shortages becoming increasingly serious the need to shift to sustainable and clean energy sources has become urgent. However due to the intermittent nature of most renewable energy sources developing underground hydrogen storage (UHS) systems as backup energy solutions offers a promising solution. The thick and regionally extensive salt deposits in Unit B of Southern Ontario Canada have demonstrated significant potential for supporting such storage systems. Based on the stratigraphy statistics of unit B this study investigates the feasibility and stability of underground hydrogen storage (UHS) in salt caverns focusing on the effects of cavern shape geometric parameters and operating pressures. Three cavern shapes—cylindrical cone-shaped and ellipsoid-shaped—were analyzed using numerical simulations. Results indicate that cylindrical caverns with a diameter-to-height ratio of 1.5 provide the best balance between storage capacity and structural stability while ellipsoid-shaped caverns offer reduced stress concentration but have less storage space posing practical challenges during leaching. The results also indicate that the optimal pressure range for maintaining stability and minimizing leakage lies between 0.4 and 0.7 times the vertical in situ stress. Higher pressures increase storage capacity but lead to greater stress displacements and potential leakage risks while lower pressure leads to internal extrusion tendency for cavern walls. Additionally hydrogen leakage rate drops with the maximum working pressure yet total leakage mass keeps a growing trend.
Performance Assessment and Economic Perspectives of Integrated PEM Fuel Cell and PEM Electrolyzer for Electric Power Generation
Mar 2021
Publication
The study presents a complete one-dimensional model to evaluate the parameters that describe the operation of a Proton Exchange Membrane (PEM) electrolyzer and PEM fuel cell. The mathematical modeling is implemented in Matlab/Simulink® software to evaluate the influence of parameters such as temperature pressure and overpotentials on the overall performance. The models are further merged into an integrated electrolyzer-fuel cell system for electrical power generation. The operational description of the integrated system focuses on estimating the overall efficiency as a novel indicator. Additionally the study presents an economic assessment to evaluate the cost-effectiveness based on different economic metrics such as capital cost electricity cost and payback period. The parametric analysis showed that as the temperature rises from 30 to 70 C in both devices the efficiency is improved between 5-20%. In contrast pressure differences feature less relevance on the overall performance. Ohmic and activation overpotentials are highlighted for the highest impact on the generated and required voltage. Overall the current density exhibited an inverse relation with the efficiency of both devices. The economic evaluation revealed that the integrated system can operate at variable load conditions while maintaining an electricity cost between 0.3-0.45 $/kWh. Also the capital cost can be reduced up to 25% while operating at a low current density and maximum temperature. The payback period varies between 6-10 years for an operational temperature of 70 C which reinforces the viability of the system. Overall hydrogen-powered systems stand as a promising technology to overcome energy transition as they provide robust operation from both energetic and economic viewpoints.
Performance and Emissions Characteristics of Hydrogen-diesel Dual-fuel Combustion for Heavy-duty Engines
Jan 2025
Publication
This study investigates hydrogen-diesel dual-fuelling specifically for a modern 4.4L 4-cylinder heavy-duty diesel engine using extensive one-dimensional combustion modelling in Ricardo WAVE. Parametric analyses from 900 to 2200 rpm speeds and 0 to 17.5% hydrogen fractions introduced via port injection are undertaken to assess the effect of exhaust gas recirculation (EGR) for controlling NOx. Moreover impacts on key indicators like brake power torque thermal efficiency and emissions are also evaluated. Results revealed that the benefits of hydrogen enrichment are highly dependent on operating conditions. At speeds above 1700 rpm and hydrogen mass fraction of 17.5% remarkable gains were attained increasing brake power and torque by up to 17% and 16.5% respectively. Brake-specific diesel consumption (BSDC) improves by 29% at higher speeds due to hy drogen’s larger energy content. NOx emissions display a trade-off decreasing substantially by 96% at lower speeds but increasing by 43% at 2200 rpm with 17.5% hydrogen.
Minimizing the Environmental Impact of Aircraft Engines with the Use of Sustainable Aviation Fuel (SAF) and Hydrogen
Jan 2025
Publication
Adverse climate change has forced a deeper reflection on the scale of pollution related to human activity including in the aviation industry. As a result fundamental questions have arisen about the characteristics of these pollutants the mechanisms of their formation and potential strategies for reducing them. This paper provides a comprehensive overview of key technical solutions to minimize the environmental impact of aircraft engines. The solutions presented range from fuel innovations to advanced design changes and drive concepts. Particular attention was paid to sustainable aviation fuels (SAFs) which are currently an important element of the environmental strategy regulated by the European Union. It also discusses the potential use of hydrogen as a potential alternative fuel to replace traditional aviation fuels in the long term. The analysis in the article made it possible to characterize in detail possible modifications in the functioning of aircraft engines based both on the current state of technical knowledge and on the anticipated directions of its development which has not been a frequent issue in comprehensive research so far. The analysis shows that the type of raw material used to create SAF has a strong impact on its physical and chemical parameters and the degree of greenhouse gas emissions. This necessitates a broader analysis of the legitimacy of using a given type of fuel from the SAF group in the direction of selected air operations and areas with a higher risk of severe atmospheric pollution. These results provide the basis for further research into sustainable solutions in the aviation sector that can contribute to significantly reducing its impact on climate change.
A Model-Based Systems Engineering Approach for Effective Decision Support of Modern Energy Systems Depicted with Clean Hydrogen Production
Aug 2024
Publication
A holistic approach to decision-making in modern energy systems is vital due to their increase in complexity and interconnectedness. However decision makers often rely on narrowlyfocused strategies such as economic assessments for energy system strategy selection. The approach in this paper helps considers various factors such as economic viability technological feasibility environmental impact and social acceptance. By integrating these diverse elements decision makers can identify more economically feasible sustainable and resilient energy strategies. While existing focused approaches are valuable since they provide clear metrics of a potential solution (e.g. an economic measure of profitability) they do not offer the much needed system-as-a-whole understanding. This lack of understanding often leads to selecting suboptimal or unfeasible solutions which is often discovered much later in the process when a change may not be possible. This paper presents a novel evaluation framework to support holistic decision-making in energy systems. The framework is based on a systems thinking approach applied through systems engineering principles and model-based systems engineering tools coupled with a multicriteria decision analysis approach. The systems engineering approach guides the development of feasible solutions for novel energy systems and the multicriteria decision analysis is used for a systematic evaluation of available strategies and objective selection of the best solution. The proposed framework enables holistic multidisciplinary and objective evaluations of solutions and strategies for energy systems clearly demonstrates the pros and cons of available options and supports knowledge collection and retention to be used for a different scenario or context. The framework is demonstrated in case study evaluation solutions for a novel energy system of clean hydrogen generation.
Developing Hydrogen Energy Hubs: The Role of H2 Prices, Wind Power and Infrastructure Investments in Northern Norway
Aug 2024
Publication
Hydrogen is seen as a key energy carrier to reduce CO2 emissions. Two main production options for hydrogen with low CO2 intensity are water electrolysis and natural gas reforming with Carbon Capture and Storage known as green and blue hydrogen. Northern Norway has a surplus of renewable energy and natural gas availability from the Barents Sea which can be used to produce hydrogen. However exports are challenging due to the large distances to markets and lack of energy infrastructure. This study explores the profitability of hydrogen exports from this Arctic region. It considers necessary investments in hydrogen technology and capacity expansions of wind farms and the power grid. Various scenarios are investigated with different assumptions for investment decisions. The critical question is how exogenous factors shape future regional hydrogen production and export. The results show that production for global export may be profitable above 90 €/MWh excluding costs for storage and transport with blue hydrogen being cheaper than green. Depending on the assumptions a combination of liquid hydrogen and ammonia export might be optimal for seaborne transport. Exports to Sweden can be profitable at prices above 60 €/MWh transported by pipelines. Expanding power generation capacity can be crucial and electricity and hydrogen exports are unlikely to co-exist.
Using Hydro-Pneumatic Energy Storage for Improving Offshore Wind-Driven Green Hydrogen Production—A Preliminary Feasibility Study in the Central Mediterranean Sea
Aug 2025
Publication
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant concept without energy storage both under central Mediterranean wind conditions. Numerical simulations were conducted at high temporal resolution capturing 10-min fluctuations of open field measured wind speeds at an equivalent offshore wind turbine (WT) hub height over a full 1-year seasonal cycle. Key findings demonstrate that the HPES system of choice namely the Floating Liquid Piston Accumulator with Sea Water under Compression (FLASC) system significantly reduces Proton Exchange Membrane (PEM) electrolyser (PEMEL) On/Off cycling (with a 66% reduction in On/Off events) while maintaining hydrogen production levels despite the integration of the energy storage system which has a projected round-trip efficiency of 75%. The FLASC-integrated HGE solution also marginally reduces renewable energy curtailment by approximately 0.3% during the 12-month timeframe. Economic analysis reveals that while the FLASC HPES system does introduce an additional capital cost into the energy chain it still yields substantial operational savings exceeding EUR 3 million annually through extended PEM electrolyser lifetime and improved operational efficiency. The Levelized Cost of Hydrogen (LCOH) for the FLASC-integrated HGE system which is estimated to be EUR 18.83/kg proves more economical than a direct wind-to-hydrogen approach with a levelized cost of EUR 21.09/kg of H2 produced. This result was achieved through more efficient utilisation of wind energy interfaced with energy storage as it mitigated the natural intermittency of the wind and increased the lifecycle of the equipment especially that of the PEM electrolysers. Three scenario models were created to project future costs. As electrolyser technologies advance cost reductions would be expected and this was one of the scenarios envisaged for the future. These scenarios reinforce the technical and economic viability of the HGE concept for offshore green hydrogen production particularly in the Mediterranean and in regions having similar moderate wind resources and deeper seas for offshore hybrid sustainable energy systems.
Comparative Socio-economic Analysis and Green Transition Perspectives in the Green Hydrogen Economy of Sub-Saharan Africa and South America Countries
Sep 2025
Publication
The global shift toward a green hydrogen economy requires diversifying production beyond the Middle East and North Africa where political logistical and water constraints limit long-term supply. This study provides a comparative socio-economic assessment of Sub-Saharan African and South American countries focusing on their readiness for large-scale green hydrogen development. A Green Economy Index (GEI) was developed integrating political/regulatory efficiency socio-economic status infrastructure and sustainability indicators. In addition public perception was examined through a survey conducted in Nigeria. Results show GEI scores ranging from 0.328 to 0.744 with Germany as the benchmark. Brazil Uruguay and Namibia emerge as the most promising cases due to strong renewable energy potential socio-economic stability and supportive policies though each faces specific challenges such as transport logistics (Brazil and Uruguay) or water scarcity (Namibia). Nigeria demonstrates significant potential but is constrained by weak infrastructure and public safety concerns. Cameroon Angola and Gabon display moderate performance but require policy and investment reforms. By combining macro-level readiness analysis with social acceptance insights the study highlights opportunities and barriers for diversifying global hydrogen supply chains and advancing sustainable energy transitions in emerging regions.
Energy Storage and Management of Offshore Wind-Based Green Hydrogen Production
Feb 2025
Publication
The coupling of offshore wind energy with hydrogen production involves complex energy flow dynamics and management challenges. This study explores the production of hydrogen through a PEM electrolyzer powered by offshore wind farms and Lithium-ion batteries. A digital twin is developed in Python with the aim of supporting the sizing and carrying out a techno-economic analysis. A controller is designed to manage energy flows on an hourly basis. Three scenarios are analyzed by fixing the electrolyzer capacity to meet a steel plant’s hydrogen demand while exploring different wind farm configurations where the electrolyzer capacity represents 40% 60% and 80% of the wind farm. The layout is optimized to account for the turbine wake. Results reveal that when the electrolyzer capacity is 80% of the wind farm a better energy balance is achieved with 87.5% of the wind production consumed by the electrolyzer. In all scenarios the energy stored is less than 5% highlighting its limitation as a storage solution in this application. LCOE and LCOH differ minimally between scenarios. Saved emissions from wind power reach 268 ktonCO2 /year while those from hydrogen production amount to 520 ktonCO2 /year underlying the importance of hydrogen in hard-to-abate sectors.
Feasible Route Towards Decarbonising Marine Transport with Flexible, Hydrogen-enriched, Reactivity Controll Compression Ignition Mid-speed Engines
Feb 2025
Publication
Hydrogen (H2) admixing in Reactivity Controlled Compression Ignition (RCCI) technology engines is touted to enhance indicated efficiency (ITE>50%) optimize combustion and reduce greenhouse gas emissions. However many pending issues remain regarding engine durability nitrogen oxide (NOX) emissions and blending limits. These issues are addressed by employing a novel performance-oriented model which simulates under 3 min combustion physics with similar predictivity (>95% accuracy) as computational fluid dynamic results. This socalled multizone model is parameterized to real-world operating cycles from a dual-fuel mid-speed marine engine. By considering port-fuel injected H2 the simulations show that combustion phasing advances at an average rate of 0.3⁰CA/% H2 accompanied by a peak reduction in methane slip of 80% achievable at 25% H2 energy share. Also engine control oriented issues are addressed by demonstrating either intake temperature or diesel fuel share optimization to negate the drawbacks of combustion harshness and NOX emissions while improving ITE 1–1.5pp over baseline operation.
Development of Hydrogen Fuel Cell–Battery Hybrid Multicopter System Thermal Management and Power Management System Based on AMESim
Jan 2025
Publication
Urban Air Mobility (UAM) is gaining attention as a solution to urban population growth and air pollution. Hydrogen fuel cells are applied to overcome the limitations of battery-based UAM utilizing a PEMFC (Polymer Electrolyte Membrane Fuel Cell) with batteries in a hybrid system to enhance responsiveness. Power management improves efficiency through effective power distribution under varying loads while thermal management maintains optimal stack temperatures to prevent degradation. This study developed a hydrogen fuel cell–battery hybrid multicopter system using AMESim consisting of a 138 kW fuel cell stack 60 kW battery DC–DC converters and thrust motors. A rule-based power management system was implemented to define power distribution strategies based on SOC and load demand. The system’s operating range was designed to allocate power according to battery SOC and load variations. For an initial SOC of 45% the power management system distributed power for flight and the results showed that the state machine control system reduced hydrogen consumption by 5.85% and parasitic energy by 1.63% compared to the rule-based system.
An Advanced Design to Generate Power and Hydrogen with CO2 Capturing and Storage for Cleaner Applications
Nov 2024
Publication
The present study aims to conduct a thermodynamic analysis of a novel concept that synergistically integrates clean hydrogen and power production with a liquified natural gas (LNG) regasification system. The designed integrated energy system aims to achieve hydrogen production power production liquified natural gas regasification carbon capture storage and in situ recirculation. Hydrogen sulfide (H2S) from industrial waste streams is used as a major feedstock and filtration combustion of H2S is employed as a hydrogen production method. CO2 obtained from the combustion process is liquified and pumped at a high pressure to recirculated back to the CO2 cycle power generation combustion process. The flu gas obtained after expansion on the turbine is condensed and CO2 is captured and pressurized. The entire plant is simulated in the Aspen Plus simulation environment and a comprehensive thermodynamic assessment including the energy and exergy analysis is conducted. Additionally several parametric studies and assessments of various factors influencing the system's performance are conducted. From the sensitivity analyses it is found that at 20% CO2 recirculation the hydrogen production rate decreases by 31.81% when the operating pressure is increased from 0.05 bar to 3 bar. The adiabatic temperature is reduced by 39.72% 35.37% and 32.85% when 50% 60% and 70% CO2 is recirculated in the oxidant stream at an oxygen to natural gas (ONG) ratio of 0.5. The energy and exergy efficiencies of the system are found to be 71.48% and 60.69% respectively. The present system avoids 2571.94 tons/yr of CO2 emissions for clean hydrogen production and 1426.27 tons/yr of CO2 for clean power production which would otherwise be emitted from steam methane reforming and coal gasification.
Green Hydrogen as a Sustainable Operations Strategy: A Socio-economic Perspective
Nov 2024
Publication
Hydrogen is an energy carrier that can support the development of sustainable and flexible energy systems. However decarbonization can occur when green sources are used for energy production and appropriate water use is manifested. This work aims to propose a socio-economic analysis of hydrogen production from an integrated wind and electrolysis plant in southern Italy. The estimated production amounts to about 1.8 million kg and the LCOH is calculated to be 3.60 €/kg in the base scenario. Analyses of the alternative scenarios allow us to observe that with a high probability the value ranges between 3.20-4.00 €/kg and that the capacity factor is the factor that most affects the economic results. Social analysis conducted through an online survey shows a strong knowledge gap as only 27.5% claim to know the difference between green and grey hydrogen. There is a slight propensity to install systems near their homes but this tends to increase due to increased knowledge on the topic. Respondents state sustainable behaviours and this study suggests that these aspects should also be transformed into the energy choices that are implemented every day. The study suggests information to policy-makers businesses and citizens as it outlines that green hydrogen is an operations strategy that moves toward sustainable development.
Experimental and Numerical Research on Temperature Evolution during the Fast-Filling Process of a Type III Hydrogen Tank
May 2022
Publication
The temperature rises hydrogen tanks during the fast-filling process could threaten the safety of the hydrogen fuel cell vehicle. In this paper a 2D axisymmetric model of a type III hydrogen for the bus was built to investigate the temperature evolution during the fast-filling process. A test rig was carried out to validate the numerical model with air. It was found significant temperature rise occurred during the filling process despite the temperature of the filling air being cooled down due to the throttling effect. After verification the 2D model of the hydrogen tank was employed to study the temperature distribution and evolution of hydrogen during the fast-filling process. Thermal stratification was observed along the axial direction of the tank. Then the effects of filling parameters were examined and a formula was fitted to predict the final temperature based on the simulated results. At last an effort was paid on trying the improve the temperature distribution by increasing the injector length of the hydrogen tank. The results showed the maximal temperature and mass averaged temperature decreased by 2 K and 3.4 K with the length of the injector increased from 50 mm to 250 mm.
Design of the Converter Prototype for Powering the Hydrogen Electrolyzer
Feb 2025
Publication
Electrolysis which uses direct current is the most common way to produce hydrogen gas. However its efficiency is very low about 70%. The method used when current pulses are used by electrolysis is called pulse electrolysis. According to other studies this method can increase the efficiency of the production of hydrogen gas by the electrolysis of water. The main objective of this paper is to present a prototype of a converter that provides current pulses with specific parameters. This converter can produce positive and negative pulse-modulated current pulses of defined amplitude and duty. Also the number of positive and negative pulses in one working cycle is adjustable. This converter’s design enables us to research pulse water electrolysis its electrical behavior and the possibilities of increasing the efficiency of the electrolysis process. While this paper focuses on the development of the prototype for future research the technology could be extended to other applications requiring precise current pulse control.
Analysis of Corporate Acceptance of Hydrogen Energy Technology Based on the Extended Technology Acceptance Model
Feb 2025
Publication
Hydrogen holds an important strategic position in the energy systems of many countries. Many studies have analyzed the acceptance of hydrogen energy technology from the public’s perspective but few have examined it from the corporate perspective. This paper establishes a technology acceptance model and employs structural equation modeling to investigate the factors affecting the acceptance of hydrogen energy technology within enterprises. After conducting questionnaire surveys among employees of energy enterprises electric power companies and new energy vehicle manufacturers the results indicate that while most of the interviewed enterprises have positive attitudes towards hydrogen technology their willingness to develop hydrogen business does not appear to be correspondingly positive. In addition government trust perceived benefit and social influence positively impact corporate acceptability indirectly whereas perceived risk exhibits a negative indirect effect on corporate acceptance. Finally this paper discusses the results of the above studies and makes corresponding policy recommendations.
Formic Acid as a Hydrogen Energy Carrier
Dec 2016
Publication
The high volumetric capacity (53 g H2/L) and its low toxicity and flammability under ambient conditions make formic acid a promising hydrogen energy carrier. Particularly in the past decade significant advancements have been achieved in catalyst development for selective hydrogen generation from formic acid. This Perspective highlights the advantages of this approach with discussions focused on potential applications in the transportation sector together with analysis of technical requirements limitations and costs.
Green Hydrogen, a Solution for Replacing Fossil Fuels to Reduce CO2 Emissions
Aug 2024
Publication
The article examines the role of green hydrogen in reducing CO2 emissions in the transition to climate neutrality highlighting both its benefits and challenges. It starts by discussing the production of green hydrogen from renewable sources and provides a brief analysis of primary resource structures for energy production in European countries including Romania. Despite progress there remains a significant reliance on fossil fuels in some countries. Economic technologies for green hydrogen production are explored with a note that its production alone does not solve all issues due to complex and costly compression and storage operations. The concept of impure green hydrogen derived from biomass gasification pyrolysis fermentation and wastewater purification is also discussed. Economic efficiency and future trends in green hydrogen production are outlined. The article concludes with an analysis of hydrogen-methane mixture combustion technologies offering a conceptual framework for economically utilizing green hydrogen in the transition to a green hydrogen economy.
Hydrogen Admixture Effects on Natural Gas-Oxygen Burner for Glass-melting: Flame Imaging, Temperature Profiles, Exhaust Gas Analysis, and False Air Impact
Jan 2025
Publication
An experimental investigation is carried out to evaluate the effect of introducing hydrogen into natural gas flames on the combustion process (different temperature profiles flame locations and burning velocity) in glass melting furnaces. This work considers the fundamental changes in a non-premixed natural gas-oxygen flame (referred to as oxyfuel flame) with varying levels of hydrogen admixtures ranging from 0 to 100 vol%. To facilitate meaningful data comparisons the burner power output is maintained at a constant thermal power of 20 kW during the entire series of tests. At first the flow field of the oxyfuel burner is measured by using laser doppler anemometry (LDA). Then the burner is tested in a multi-segment combustion chamber with optical accesses. A camera system is employed to visually observe the combustion zone capturing signals in both the visible (VIS) and ultraviolet (UV) wavelengths. The chemiluminescence of the OH* radicals could be determined over the entire flame length. Notably the study reveals variations in flame position especially with higher hydrogen concentrations. Furthermore radial and axial flame temperature profiles are recorded at various po sitions. The analysis extends to major exhaust gas components (CO2 NOx O2) at different fuel compositions and multiple equivalence ratios. In addition a study is being carried out to investigate the influence of false air impacts. The obtained results indicate that the flame temperature increases slightly with pure hydrogen. The NOx values in the overall exhaust gas also show an increase with a higher hydrogen admixture. In particular the influence of false air can lead to a significant rise in NOx levels.
Design and Optimization Strategy of a Net-Zero City Based on a Small Modular Reactor and Renewable Energy
Aug 2025
Publication
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs) renewable energy sources and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy storage systems SMRs provide a reliable and flexible baseload power source. Sector coupling systems—such as hydrogen production and heat generation—enhance grid stability by absorbing surplus energy and supporting the decarbonization of non-electric sectors. The core contribution of this study lies in its real-time data emulation framework which overcomes a critical limitation in the current energy landscape: the absence of operational data for future technologies such as SMRs and their coupled hydrogen production systems. As these technologies are still in the pre-commercial stage direct physical integration and validation are not yet feasible. To address this the researchers leveraged real-time data from an existing commercial microgrid specifically focusing on the import of grid electricity during energy shortfalls and export during solar surpluses. These patterns were repurposed to simulate the real-time operational behavior of future SMRs (ProxySMR) and sector coupling loads. This physically grounded simulation approach enables highfidelity approximation of unavailable technologies and introduces a novel methodology to characterize their dynamic response within operational contexts. A key element of the SSNC control logic is a day–night strategy: maximum SMR output and minimal hydrogen production at night and minimal SMR output with maximum hydrogen production during the day—balancing supply and demand while maintaining high SMR utilization for economic efficiency. The SSNC testbed was validated through a seven-day continuous operation in Busan demonstrating stable performance and approximately 75% SMR utilization thereby supporting the feasibility of this proxy-based method. Importantly to the best of our knowledge this study represents the first publicly reported attempt to emulate the real-time dynamics of a net-zero city concept based on not-yet-commercial SMRs and sector coupling systems using live operational data. This simulation-based framework offers a forward-looking data-driven pathway to inform the development and control of next-generation carbon-neutral energy systems.
A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances
Aug 2024
Publication
Climate change is a major concern for the sustainable development of global energy systems. Hydrogen produced through water electrolysis offers a crucial solution by storing and generating renewable energy with minimal environmental impact thereby reducing carbon emissions in the energy sector. Our research evaluates current hydrogen production technologies such as alkaline water electrolysis (AWE) proton exchange membrane water electrolysis (PEMWE) solid oxide electrolysis (SOEC) and anion exchange membrane water electrolysis (AEMWE). We systematically review life cycle assessments (LCA) for these technologies analyzing their environmental impacts and recent technological advancements. This study fills essential gaps by providing detailed LCAs for emerging technologies and evaluating their scalability and environmental footprints. Our analysis outlines the strengths and weaknesses of each technology guiding future research and assisting stakeholders in making informed decisions about integrating hydrogen production into the global energy mix. Our approach highlights operational efficiencies and potential sustainability enhancements by employing comparative analyses and reviewing advancements in membrane technology and electrocatalysts. A significant finding is that PEMWE when integrated with renewable energy sources offers rapid response capabilities that are vital for adaptive energy systems and reducing carbon footprints.
Life Cycle Assessment and Exergoenvironmental Analysis of a Double-Effect Vapor Absorption Chiller Using Green Hydrogen, Natural Gas, and Biomethane
Dec 2024
Publication
This study conducts a life cycle assessment and exergoenvironmental evaluation of a double-effect vapor absorption chiller (DEAC) with a cooling capacity of 352 kW employing three different energy sources: natural gas biomethane and green hydrogen. The main objectives of this paper are as follows: (i) provide an exergoenvironmental model for DEAC technologies (ii) evaluation of a case-study where a DEAC is used to cover the cooling demand of a specific university building in the Northeast of Brazil and (iii) evaluate the scenario where the DEAC is fed by green hydrogen (GH2) and compare it with conventional energy resources (natural gas and biomethane). In order to develop the exergoenvironmental model two methodologies are essential: a thermodynamic analysis and a Life Cycle Assessment (LCA). The thermodynamic analysis was carried out using the Engineering Equation Solver (EES: 10.998) software. The LCA has been developed through the open-source software openLCA version 1.10.3 with the Ecoinvent 3.7.1 life cycle inventory database whereas the chosen life cycle inventory assessment (LCIA) method was the ReCiPe Endpoint LCA method (Humanitarian medium weighting–H A). The main results indicate that green hydrogen provides a 99.84% reduction in environmental impacts compared to natural gas during the operational phase while biomethane reduces these impacts by 54.21% relative to natural gas. In the context of life cycle assessment (LCA) green hydrogen decreases fossil resource depletion by 18% and climate change-related emissions by 33.16% compared to natural gas. This study contributes to enhancing the understanding of the environmental and exergoenvironmental impacts of a double-effect vapor absorption chiller by varying the fuel usage during the operational phase.
A Novel Hydrogen Leak Detection Method for PEM Fuel Cells Using Active Thermography
Feb 2025
Publication
Hydrogen leakage in Proton Exchange Membrane (PEM) fuel cells poses critical safety efficiency and operational reliability risks. This study introduces an innovative infrared (IR) thermography-based methodology for detecting and quantifying hydrogen leaks towards the outside of PEM fuel cells. The proposed method leverages the catalytic properties of a membrane electrode assembly (MEA) as an active thermal tracer facilitating real-time visualisation and assessment of hydrogen leaks. Experimental tests were conducted on a single-cell PEM fuel cell equipped with intact and defective gaskets to evaluate the method’s effectiveness. Results indicate that the active tracer generates distinct thermal signatures proportional to the leakage rate overcoming the limitations of hydrogen’s low IR emissivity. Comparative analysis with passive tracers and baseline configurations highlights the active tracer-based approach’s superior positional accuracy and sensitivity. Additionally the method aligns detected thermal anomalies with defect locations validated through pressure distribution maps. This novel non-invasive technique offers precise reliable and scalable solutions for hydrogen leak detection making it suitable for dynamic operational environments and industrial applications. The findings significantly advance hydrogen’s safety diagnostics supporting the broader adoption of hydrogen-based energy systems.
Strategy Development for Hydrogen-Conversion Businesses in Côte d’Ivoire
Aug 2024
Publication
Côte d’Ivoire has substantially neglected crop residues from farms in rural areas so this study aimed to provide strategies for the sustainable conversion of these products to hydrogen. The use of existing data showed that in the Côte d’Ivoire there were up to 16801306 tons of crop residues from 11 crop types in 2019 from which 1296424.84 tons of hydrogen could potentially be derived via theoretical gasification and dark fermentation approaches. As 907497.39 tons of hydrogen is expected annually the following estimations were derived. The three hydrogen-project implementation scenarios developed indicate that Ivorian industries could be supplied with 9026635 gigajoules of heat alongside 17910 cars and 4732 buses in the transport sector. It was estimated that 817293.95 tons of green ammonia could be supplied to farmers. According to the study 5727992 households could be expected to have access to 1718.40 gigawatts of electricity. Due to these changes in the transport energy industry and agricultural sectors a reduction of 1644722.08 tons of carbon dioxide per year could theoretically be achieved. With these scenarios around 263276.87 tons of hydrogen could be exported to other countries. The conversion of crop residues to hydrogen is a promising opportunity with environmental and socio-economic impacts. Therefore this study requires further extensive research.
The H2Excellence Project-Fuel Cells and Green Hydrogen Centers of Vocational Excellence Towards Achieving Affordable, Secure, and Sustainable Energy for Europe
Feb 2025
Publication
The demand for green hydrogen (H2) and related technologies is expected to increase in the coming years driven by climate changes and energy security of supply issues amid the European and global energy crises. The European Green Deal and REpowerEU Plan have identified H2 as a key pillar for reaching climate neutrality by 2050 and for the intensification of hydrogen delivery targets bringing the large-scale adoption of hydrogen production and applications and stressing the need for a skilled workforce in emergent H2 markets. To that end the H2Excellence project will establish a Platform of Vocational Excellence in the field of fuel cells and green hydrogen technologies with an educational and training scheme to tackle identified skill gaps and to implement life-long learning opportunities. This project aims to become a European benchmark in training and knowledge transfer incorporating the entire hydrogen value chain. The work is supported by the Knowledge Triangle Model integrating education research and innovation efforts to build a dynamic ecosystem in the green hydrogen sector. In this work activities conducted so far by LNEG as a project partner and expected impacts are highlighted. Those activities are based on a stakeholder needs assessment conducted by project partners and on the knowledge and experience accumulated in research activities developed in the Materials for Energy research area.
Experimental Investigation of Hydrogen Enriched Natural Gas Combustion with a Focus on Nitrogen Oxide Formation on a Semi-industrial Scale
Mar 2024
Publication
Combustion of hydrogen-enriched natural gas is a valuable short-term strategy for reducing CO2 emissions from high temperature industrial heating. This paper presents several experiments on combustion characteristics and the formation of nitrogen oxides. The experiments included hydrogen contents up to 100% and fuel heat inputs up to 75 kW. Water-cooled lances were used to influence the furnace temperature. The analysis includes the distribution of furnace temperatures the composition of flue gas the cooling capacity of the lances under steady-state operating conditions and OH*-chemiluminescence imaging of the near burner region. The presented results demonstrate the dependence of furnace conditions and NOX formation on various factors such as different air inlet fluxes furnace temperature and fuel composition for constant heat inputs. Efficiency increased by up to 5.5% and significant changes in flame shaped along with a maximum increase in NOX emissions when comparing natural gas to hydrogen was measured at 167%.
Prediction of Efficiency, Performance, and Emissions Based on a Validated Simulation Model in Hydrogen–Gasoline Dual-Fuel Internal Combustion Engines
Nov 2024
Publication
This study explores the performance and emissions characteristics of a dual-fuel internal combustion engine operating on a blend of hydrogen and gasoline. This research began with a baseline simulation of a conventional gasoline engine which was subsequently validated through experimental testing on an AVL testbed. The simulation results closely matched the testbed data confirming the accuracy of the model with deviations within 5%. Building on this validated model a hydrogen–gasoline dual-fuel engine simulation was developed. The predictive simulation revealed an approximately 5% increase in overall engine efficiency at the optimal operating point primarily due to hydrogen’s combustion properties. Additionally the injected gasoline mass and CO2 emissions were reduced by around 30% across the RPM range. However the introduction of hydrogen also resulted in a slight reduction (~10%) in torque attributed to the lower volumetric efficiency caused by hydrogen displacing intake air. While CO emissions were significantly reduced NOx emissions nearly doubled due to the higher combustion temperatures associated with hydrogen. This research demonstrates the potential of hydrogen–gasoline dual-fuel systems in reducing carbon emissions while highlighting the need for further optimization to balance performance with environmental impact.
Hybrid Renewable Multi-generation System Optimization: Attaining Sustainable Development Goals
Jan 2025
Publication
The optimization of hybrid renewable multi-generation systems is crucial for enhancing energy efficiency reducing costs and ensuring sustainable power generation. These factors can be significantly affected by system designs optimization methods climate changes and varying energy demands. The optimization of a stand-alone hybrid renewable energy system (HRES) that integrates various combinations of electricity heating cooling hydrogen and freshwater needs has not been reported in a single comprehensive study. Additionally there has been insufficient attention given to the impact of temporal resolution the recovery of excess energy usage and aligning these efforts with the sustainable development goals (SDGs). This study reviews the recent state-of-theart studies on the stand-alone HRES options for meeting electric heating cooling hydrogen electric vehicles and freshwater demands with various combinations. This study further contributes by examining contemporary literature on sizing optimization reliability analysis sensitivity analysis control techniques detailed modelling and techno-environmental-economic features. It also provides justification for selecting configurations suitable for specific geographical locations along with an analysis of the choice of algorithms and power management systems required to meet the various load demands of a self-sufficient community. By highlighting the im provements and potentials of HRES to achieve various United Nations SDGs this review study aims to bridge existing research gaps.
Hydrogen Valley in Cyprus: Insights and Strategies for Citizen Engagement
Jan 2025
Publication
: In remote areas or islands like Cyprus the isolated energy system high energy consumption in the transport sector and projected excess electricity production from solar sources create favourable conditions for establishing a hydrogen valley. But even after addressing technological managerial economic and financial challenges the success of a hydrogen valley hinges on the acceptance and engagement of the local population. The role of citizens is under-researched by academia and overlooked by policymakers. Our paper’s contribution is unique data from a purposefully developed survey of Cypriot residents. The findings reveal robust support for the renewable energy transition in principle with 90% expressing supportive views of which 57% ‘strongly support’ the transition and notably middle-aged more educated and fully employed individuals showing the strongest support. At the same time our results show that 62% are unfamiliar with the concept of a hydrogen economy. The promising finding is that 80% of citizens are ‘very likely’ (25%) or ‘somewhat likely’ (55%) to engage in discussions or activities related to the creation of a hydrogen valley in Cyprus. Gender differences in the willingness to engage are however evident: 32% of males indicated they are ‘very likely’ to participate versus 23% of females. We conclude that the prevailing citizen behaviour in Cyprus is “Seeking Information” and we make policy suggestions outlining the top ten engagement tools to foster awareness among the general population and the top ten strategies targeting active supporters of hydrogen in Cyprus to elevate their involvement to ‘Action’ and ‘Advocacy’ levels of engagement.
Hydrogen 5.0: Interdisciplinary Development of a Proof-of-Concept Smart System for Green Hydrogen Leak Detection
Feb 2025
Publication
Green hydrogen is a promising energy vector for industrial applications. However hydrogen leaks can occur causing greenhouse effects and posing safety risks for operators and local communities potentially leading to legal liabilities. Industry 4.0 focuses on digital industrial modernization while Industry 5.0 emphasizes collaborative humancentered and sustainable processes. This study developed and analyzed an Industry 5.0 proof of concept as an additional safety layer for hydrogen leak management. The proof of concept was implemented using Raspberry Pi microcomputers integrated computer vision and OpenAI GPT-3 for dynamic email communication. A legal liability analysis for Chile and Spain identified potential challenges in transitioning the system into a marketready product. The findings suggest the system should act as a complementary safety layer rather than a primary detection system to mitigate legal liability risks as operational deployment without full certification and validation could lead to malfunctions. This study illustrated how hydrogen detection and management can be integrated into Industry 5.0 smart systems. With growing global interest in sustainable engineering and AI regulation as reflected in Regulation (EU) 2024/1689 legal considerations over technologies like the one presented in this study are becoming increasingly relevant.
Numerical Study of the Filling Process of a Liquid Hydrogen Storage Tank under Different Sloshing Conditions
Aug 2020
Publication
Cryogenic vessels are widely used in many areas such as liquefied natural gas (LNG) aerospace and medical fields. A suitable filling method is one of the prerequisites for the effective use of cryogenic containers. In this study the filling process for the sloshing condition of a liquid hydrogen storage tank is numerically simulated and analyzed by coupling the sloshing model and the phase-change model. The effects of different sloshing conditions during the filling process are investigated by changing the amplitude and frequency of the sloshing. Within the scope of this study there is a critical value for the effect of sloshing conditions on the pressure curve during the filling process. The critical value corresponds to a frequency f equal to 3 Hz and an amplitude A equal to 0.03 m. According to the simulation results when the sloshing exceeds the critical value the internal pressure curve of the storage tank increases significantly. Under microgravity conditions within the scope of this study the pressure curve changes less than the normal gravity even if the amplitude and frequency increase. The sloshing makes it easier for the liquid to spread along the wall during the filling process. This also further weakens the temperature stratification in the storage tank.
A Moving Window Method for Time Series Optimisation, with Applications to Energy Storage and Hydrogen Production
Jan 2025
Publication
Temporal decomposition methods aim to solve optimisation problems by converting one problem over a large time series into a series of subproblems over shorter time series. This paper introduces one such method where subproblems are defined over a window that moves back and forth repeatedly over the length of the large time series creating a convergent sequence of solutions and mitigating some of the boundary considerations prevalent in other temporal decomposition methods. To illustrate this moving window method it is applied to two models: an energy storage facility trading electricity in a market; and a hydrogen electrolyser powered by renewable electricity produced and potentially stored onsite. The method is simple to implement and it is found that for large optimisation problems it consistently requires less computation time than the base optimisation algorithm used in this study (by factors up to 100 times). In addition it is analytically demonstrated that decomposition methods in which a minimum is attained for each subproblem need not attain a minimum for the overall problem.
Feasibility of Retrofitting a Conventional Vessel with Hydrogen Power Systems: A Case Study in Australia
Feb 2025
Publication
As the pursuit of greener energy solutions continues industries worldwide are turning away from fossil fuels and exploring the development of sustainable alternatives to meet their energy requirements. As a signatory to the Paris Agreement Australia has committed to reducing greenhouse gas emission by 43% by 2030 and reaching net-zero emissions by 2050. Australia’s domestic maritime sector should align with these targets. This paper aims to contribute to ongoing efforts to achieve these goals by examining the technical and commercial considerations involved in retrofitting conventional vessels with hydrogen power. This includes but is not limited to an analysis of cost risk and performance and compliance with classification society rules international codes and Australian regulations. This study was conducted using a small domestic commercial vessel as a reference to explore the feasibility of implementation of hydrogen-fuelled vessels (HFVs) across Australia. The findings indicate that Australia’s existing hydrogen infrastructure requires significant development for HFVs to meet the cost risk and performance benchmarks of conventional vessels. The case study identifies key determining factors for feasible hydrogen retrofitting and provides recommendations for the success criteria.
Hydrogen as a Renewable Fuel of Non-Biological Origins in the European Union—The Emerging Market and Regulatory Framework
Jan 2025
Publication
The European Union continues to lead global efforts toward climate neutrality by developing a cohesive regulatory and market framework for alternative fuels including renewable hydrogen. This review article critically examines the recent evolution of the EU’s policy landscape specifically for hydrogen as a renewable fuel of non-biological origin (RFNBO) highlighting its growing importance in hard-to-abate sectors such as industry and transportation. We assess the interplay of market-based mechanisms (e.g. EU ETS II) direct mandates (e.g. FuelEU Maritime RED III) and support auction-based measures (e.g. the European Hydrogen Bank) that collectively shape both the demand and the supply of hydrogen as RFNBO fuel. The article also addresses emerging cost capacity and technical barriers—ranging from constrained electrolyzer deployment to complex certification requirements—that hinder large-scale adoption and market rollout. The article aims to discuss advancing and changing regulatory and market environment for the development of infrastructure and market for hydrogen as RFNBO fuel in the EU in 2019–2024. Synthesizing current research and policy developments we propose targeted recommendations including enhanced cross-border coordination and capacity-based incentives to accelerate investment and infrastructure development. This review informs policymakers industry stakeholders and researchers on critical success factors for integrating hydrogen as a cornerstone of the EU’s climate neutrality efforts.
RES-electrolyser Coupling witin TRIERES Hydrogen Valley - A Flexible Technoeconomic Assessment Tool
Jan 2025
Publication
The escalating urgency to address climate change has sparked unprecedented interest in green hydrogen as a clean energy carrier. The intermittent nature of Renewable Energy Sources (RES) like wind and solar can introduce unpredictability into the energy supply potentially causing mismatches in the power grid. To this end green hydrogen production can provide a solution by enhancing system flexibility thereby accommodating the fluctuations and stochastic characteristics of RES. Furthermore green hydrogen could play a pivotal role in decarbonizing hard-to-abate sectors and promoting sector coupling. This research article endeavors to delve into this subject by developing a dynamic techno-economic analysis tool capable of flexibly assessing the optimal setup of Alkaline (AEL) electrolysis coupled with RES in a specific region or hub. The focus lies on achieving costeffectiveness efficiency and sustainable production of green hydrogen. The tool leverages a comprehensive dataset covering a full year of hourly data on both renewable electricity production from intermittent RES and wholesale electricity market prices alongside customizable inputs from users. It can be applied across various scenarios including direct coupling with dedicated RES plants and hybrid configurations utilizing the electricity grid as a backup source. The model optimizes RES electrolyser and hydrogen storage capacities to minimize the Levelized Cost of Hydrogen (LCOH) and/or the operational Carbon Intensity (CI) of hydrogen produced. The tool is applied within a real-world application study in the framework of the TRIERES Hydrogen Valley Project which is taking shape in Peloponnese Greece. For the various configurations analysed the LCOH ranges from 7.75 to 12.68 €/kgH2. The cost-optimal system configuration featuring a hybrid RES power supply of 12 MW solar and 19 MW wind energy alongside with 3.5 tonnes of hydrogen storage leads to a minimum LCOH of 7.75 €/kgH2. Subsidies on electrolyser stack and balance of plant CAPEX can reduce LCOH by up to 0.6 €/kgH2.
Modeling of Hydrogen Dispersion, Jet Fires and Explosions Caused by Hydrogen Pipeline Leakage
Dec 2023
Publication
Accidental hydrogen releases from pipelines pose significant risks particularly with the expanding deployment of hydrogen infrastructure. Despite this there has been a lack of thorough investigation into hydrogen leakage from pipelines especially under complex real-world conditions. This study addresses this gap by modeling hydrogen gas dispersion jet fires and explosions based on practical scenarios. Various factors influencing accident consequences such as leak hole size wind speed wind direction and trench presence were systematically examined. The findings reveal that both hydrogen dispersion distance and jet flame thermal radiation distance increase with leak hole size and wind speed. Specifically the longest dispersion and radiation distances occur when the wind direction aligns with the trench which is 110 m where the hydrogen concentration is 4% and 76 m where the radiation is 15.8 kW/m2 in the case of a 325 mm leak hole and wind under 10 m/s. Meanwhile pipelines lacking trenching exhibit the shortest distances 0.17 m and 0.98 m at a hydrogen concentration of 4% and 15.8 kW/m2 radiation with a leak hole size of 3.25 mm and no wind. Moreover under relatively higher wind speeds hydrogen concentration stratification occurs. Notably the low congestion surrounding the pipeline results in an explosion overpressure too low to cause damage; namely the highest overpressure is 8 kPa but this lasts less than 0.2 s. This comprehensive numerical study of hydrogen pipeline leakage offers valuable quantitative insights serving as a vital reference for facility siting and design considerations to eliminate the risk of fire incidents.
Operable Range Extension of Ammonia Direct Injection Spark Ignition Engine by Hydrogen Addition
Feb 2024
Publication
Ammonia is gaining attention as a non-carbon environmental-friendly fuel due to its superior storage capability compared to hydrogen. However its high minimum ignition energy and slow laminar flame speed make it unsuitable for application in combustion-based energy conversion devices. In particular when applied to internal combustion engines issues such as combustion instability and limitations in operational range exist. Therefore the intention is to address these issues by adding hydrogen which has a wider flammable range and a faster laminar flame speed to ammonia. In this study the extension of the operable range of ammonia-fueled spark ignition engine by hydrogen addition was mainly discussed. Ammonia was injected directly in the cylinder and hydrogen was supplied into the intake port. The result showed that operable range of ammonia fueled combustion with hydrogen addition could be extended from 0.2 to 1.4 MPa with relatively stable combustion i.e. CoV of gIMEP
Deploying Green Hydrogen to Decarbonize China's Coal Chemical Sector
Dec 2023
Publication
China’s coal chemical sector uses coal as both a fuel and feedstock and its increasing greenhouse gas (GHG) emissions are hard to abate by electrification alone. Here we explore the GHG mitigation potential and costs for onsite deployment of green H2 and O2 in China’s coal chemical sector using a lifecycle assessment and techno-economic analyses. We estimate that China’s coal chemical production resulted in GHG emissions of 1.1 gigaton CO2 equivalent (GtCO2eq) in 2020 equal to 9% of national emissions. We project GHG emissions from China’s coal chemical production in 2030 to be 1.3 GtCO2eq ~50% of which can be reduced by using solar or wind power-based electrolytic H2 and O2 to replace coal-based H2 and air separation-based O2 at a cost of 10 or 153 Chinese Yuan (CNY)/tCO2eq respectively. We suggest that provincial regions determine whether to use solar or wind power for water electrolysis based on lowest cost options which collectively reduce 53% of the 2030 baseline GHG emissions at a cost of 9 CNY/tCO2eq. Inner Mongolia Shaanxi Ningxia and Xinjiang collectively account for 52% of total GHG mitigation with net cost reductions. These regions are well suited for pilot policies to advance demonstration projects.
Green Hydrogen Credit Subsidized Renewable Energy-hydrogen Business Models for Achieving the Carbon Netural Future
Feb 2024
Publication
The global resurgence of hydrogen as a clean energy source particularly green hydrogen derived from renewable energy is pivotal for achieving a carbon-neutral future. However scalability poses a significant challenge. This research proposes innovative business models leveraging the low-emission property of green hydrogen to reduce its financial costs thereby fostering its widespread adoption. Key components of the business workflow are elaborated mathematical formulations of market parameters are derived and case studies are presented to demonstrate the feasibility and efficiency of these models. Results demonstrate that the substantial costs associated with the current hydrogen industry can be effectively subsidized via the implementation of proposed business models. When the carbon emission price falls within the range of approximately 86–105 USD/ton free access to hydrogen becomes a viable option for end-users. This highlights the significance and promising potential of the proposed business models within the green hydrogen credit framework.
Safety Aspects Related to the Underground Hydrogen Storage
Sep 2023
Publication
The transition from fossil fuels to the renewable energies (wind solar) is a key factor to face climate change and build a sustainable reliable and secure energy system. To balance the intermittent energy demand and supply affecting the renewable sources the surplus of electrical energy may be converted in hydrogen and then storage in geological formations. While the risks associated to the natural gas storage in the sub-surface are well known from decades those associated with hydrogen underground storage (UHS) are relatively underexplored. This paper presents an inventory of risks related to large H2-storage in depleted gas and oil fields salt caverns and aquifers. Different issues such as integrity and durability of materials H2 leakages and interaction with the reservoir H2 uncontrolled outflow from the wellhead with potential combustion of air-hydrogen mixture (fire and explosion) soil subsidence and induced seismicity are analyzed.
Influence of Capillary Threshold Pressure and Injection Well Location on the Dynamic CO2 and H2 Storage Capacity for the Deep Geological Structure
Jul 2021
Publication
The subject of this study is the analysis of influence of capillary threshold pressure and injection well location on the dynamic CO2 and H2 storage capacity for the Lower Jurassic reservoir of the Sierpc structure from central Poland. The results of injection modeling allowed us to compare the amount of CO2 and H2 that the considered structure can store safely over a given time interval. The modeling was performed using a single well for 30 different locations considering that the minimum capillary pressure of the cap rock and the fracturing pressure should not be exceeded for each gas separately. Other values of capillary threshold pressure for CO2 and H2 significantly affect the amount of a given gas that can be injected into the reservoir. The structure under consideration can store approximately 1 Mt CO2 in 31 years while in the case of H2 it is slightly above 4000 tons. The determined CO2 storage capacity is limited; the structure seems to be more prospective for underground H2 storage. The CO2 and H2 dynamic storage capacity maps are an important element of the analysis of the use of gas storage structures. A much higher fingering effect was observed for H2 than for CO2 which may affect the withdrawal of hydrogen. It is recommended to determine the optimum storage depth particularly for hydrogen. The presented results important for the assessment of the capacity of geological structures also relate to the safety of use of CO2 and H2 underground storage space.
Sudden Releases of Hydrogen into a Tunnel
Sep 2023
Publication
This paper presents work undertaken by the HSE as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces. The sudden failure of a pressurised hydrogen vessel was identified as a scenario of concern due to the severity of the consequences associated with such an event. In order to investigate this scenario experimentally HSE designed a bespoke and reusable ‘sudden release’ vessel. This paper presents an overview of the vessel and the results of a series of 13 tests whereby hydrogen was released from the bespoke vessel into a tunnel at pressures up to 65 MPa. The starting pressure and the volume of hydrogen in the vessel were altered throughout the campaign. Four of the tests also included congestion in the tunnel. The tests reliably autoignited. Overpressure measurements and flame arrival times measured with exposed-tip thermocouples enabled analysis of the severity of the events. A high-pressure fast-acting pressure transducer in the body of the vessel showed the pressure decay in the vessel which shows that 90% of the hydrogen was evacuated in between 1.8 and 3.2 ms (depending on the hydrogen inventory). Schlieren flow imagery was also used at the release point of the hydrogen showing the progression of the shock front following initiation of the tests. An assessment of the footage shows an estimated initial velocity of Mach 3.9 at 0.4 m from the release point. Based on this an ignition mechanism is proposed based upon the temperature behind the initial shock front.
Hydrogen Production by Methane Pyrolysis in Molten Binary Copper Alloys
Sep 2023
Publication
The utilization of hydrogen as an energy carrier and reduction agent in important industrial sectors is considered a key parameter on the way to a sustainable future. Steam reforming of methane is currently the most industrially used process to produce hydrogen. One major drawback of this method is the simultaneous generation of carbon dioxide. Methane pyrolysis represents a viable alternative as the basic reaction produces no CO2 but solid carbon besides hydrogen. The aim of this study is the investigation of different molten copper alloys regarding their efficiency as catalytic media for the pyrolysis of methane in an inductively heated bubble column reactor. The conducted experiments demonstrate a strong influence of the catalyst in use on the one hand on the conversion rate of methane and on the other hand on the properties of the produced carbon. Optimization of these parameters is of crucial importance to achieve the economic competitiveness of the process.
Assessing the Potential of Decarbonization Options for Industrial Sectors
Jan 2024
Publication
Industry emits around a quarter of global greenhouse gas (GHG) emissions. This paper presents the first comprehensive review to identify the main decarbonization options for this sector and their abatement potentials. First we identify the important GHG emitting processes and establish a global average baseline for their current emissions intensity and energy use. We then quantify the energy and emissions reduction potential of the most significant abatement options as well as their technology readiness level (TRL). We find that energy-intensive industries have a range of decarbonization technologies available with medium to high TRLs and mature options also exist for decarbonizing low-temperature heat across a wide range of industrial sectors. However electrification and novel process change options to reduce emissions from high-temperature and sector-specific processes have much lower TRLs in comparison. We conclude by highlighting important barriers to the deployment of industrial decarbonization options and identifying future research development and demonstration needs.
No more items...