Publications
Perspective on the Hydrogen Economy as a Pathway to Reach Net-zero CO2 Emissions in Europe
Jan 2022
Publication
The envisioned role of hydrogen in the energy transition – or the concept of a hydrogen economy – has varied through the years. In the past hydrogen was mainly considered a clean fuel for cars and/or electricity production; but the current renewed interest stems from the versatility of hydrogen in aiding the transition to CO2 neutrality where the capability to tackle emissions from distributed applications and complex industrial processes is of paramount importance. However the hydrogen economy will not materialise without strong political support and robust infrastructure design. Hydrogen deployment needs to address multiple barriers at once including technology development for hydrogen production and conversion infrastructure co-creation policy market design and business model development. In light of these challenges we have brought together a group of hydrogen researchers who study the multiple interconnected disciplines to offer a perspective on what is needed to deploy the hydrogen economy as part of the drive towards net-zero-CO2 societies. We do this by analysing (i) hydrogen end-use technologies and applications (ii) hydrogen production methods (iii) hydrogen transport and storage networks (iv) legal and regulatory aspects and (v) business models. For each of these we provide key take home messages ranging from the current status to the outlook and needs for further research. Overall we provide the reader with a thorough understanding of the elements in the hydrogen economy state of play and gaps to be filled.
Reduction Kinetics of Hematite Powder in Hydrogen Atmosphere at Moderate Temperatures
Sep 2018
Publication
Hydrogen has received much attention in the development of direct reduction of iron ores because hydrogen metallurgy is one of the effective methods to reduce CO2 emission in the iron and steel industry. In this study the kinetic mechanism of reduction of hematite particles was studied in a hydrogen atmosphere. The phases and morphological transformation of hematite during the reduction were characterized using X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. It was found that porous magnetite was formed and the particles were degraded during the reduction. Finally sintering of the reduced iron and wüstite retarded the reductive progress. The average activation energy was extracted to be 86.1 kJ/mol and 79.1 kJ/mol according to Flynn-Wall-Ozawa (FWO) and Starink methods respectively. The reaction fraction dependent values of activation energy were suggested to be the result of multi-stage reactions during the reduction process. Furthermore the variation of activation energy value was smoothed after heat treatment of hematite particles.
A Review of the Use of Electrolytic Cells for Energy and Environmental Applications
Feb 2023
Publication
There is a significant push to reduce carbon dioxide (CO2) emissions and develop low-cost fuels from renewable sources to replace fossil fuels in applications such as energy production. As a result CO2 conversion has gained widespread attention as it can reduce the accumulation of CO2 in the atmosphere and produce fuels and valuable industrial chemicals including carbon monoxide alcohols and hydrocarbons. At the same time finding ways to store energy in batteries or energy carriers such as hydrogen (H2) is essential. Water electrolysis is a powerful technology for producing high-purity H2 with negligible emission of greenhouse gases and compatibility with renewable energy sources. Additionally the electrolysis of organic compounds such as lignin is a promising method for localised H2 production as it requires lower cell voltages than conventional water electrolysis. Industrial wastewater can be employed in those organic electrolysis systems due to their high organic content decreasing industrial pollution through wastewater disposal. Electrocoagulation indirect electrochemical oxidation anodic oxidation and electro-Fenton are effective electrochemical methods for treating industrial wastewater. Furthermore bioenergy technology possesses a remarkable potential for producing H2 and other value-added chemicals (e.g. methane formic acid hydrogen peroxide) along with wastewater treatment. This paper comprehensively reviews these approaches by analysing the literature in the period 2012–2022 pointing out the high potential of using electrolytic cells for energy and environmental applications.
Strategic Transport Fleet Analysis of Heavy Goods Vehicle Technology for Net-zero Targets
Jul 2022
Publication
This paper addresses the decarbonisation of the heavy-duty transport sector and develops a strategy towards net-zero greenhouse gas (GHG) emissions in heavy-goods vehicles (HGVs) by 2040. By conducting a literature review and a case study on the vehicle fleet of a large UK food and consumer goods retailer the feasibilities of four alternative vehicle technologies are evaluated from environmental economic and technical perspectives. Socio-political factors and commercial readiness are also examined to capture non-technical criteria that influences decision-makers. Strategic analysis frameworks such as PEST-SWOT models were developed for liquefied natural gas biomethane electricity and hydrogen to allow a holistic comparison and identify their long-term deployment potential. Technology innovation is needed to address range and payload limitations of electric trucks whereas government and industry support are essential for a material deployment of hydrogen in the 2030s. Given the UK government’s plan to phase out new diesel HGVs by 2040 fleet operators should commence new vehicle trials by 2025 and replace a considerable amount of their lighter diesel trucks with zero-emission vehicles by 2030 and the remaining heavier truck fleet by 2035.
System Analysis and Requirements Derivation of a Hydrogen-electric Aircraft Powertrain
Sep 2022
Publication
In contrast to sustainable aviation fuels for use in conventional combustion engines hydrogen-electric powertrains constitute a fundamentally novel approach that requires extensive effort from various engineering disciplines. A transient system analysis has been applied to a 500 kW shaft-power-class powertrain. The model was fed with high-level system requirements to gain a fundamental understanding of the interaction between sub-systems and components. Transient effects such as delays in pressure build up heat transfer and valve operation substantially impact the safe and continuous operation of the propulsion system throughout a typical mission profile which is based on the Daher TBM850. The lumped-parameters network solver provides results quickly which are used to derive requirements for subsystems and components which support their in-depth future development. E.g. heat exchanger transfer rates and pressure drop of the motor's novel hydrogen cooling system are established. Furthermore improvements to the system architecture such as a compartmentalization of the tank are identified.
Energy and Exergy Analysis of a Geothermal Sourced Multigeneration System for Sustainable City
Feb 2023
Publication
The issue of depleting fossil fuels has emphasized the use of renewable energy. Multigeneration systems fueled by renewables such as geothermal biomass solar etc. have proven to be cutting-edge technologies for the production of different valuable by-products. This study proposes a multigeneration system using a geothermal source of energy. The main outputs include power space heating cooling fresh and hot water dry air and hydrogen. The system includes a regenerative Rankine cycle a double effect absorption cycle and a double flash desalination cycle. A significant amount of electrical power hydrogen and fresh water is generated which can be used for commercial or domestic purposes. The power output is 103 MW. The thermal efficiency is 24.42% while energetic and exergetic efficiencies are 54.22% and 38.96% respectively. The COPen is found to be 1.836 and the COPex is found to be 1.678. The hydrogen and fresh water are produced at a rate of 0.1266 kg/s and 37.6 kg/s respectively.
Conditions for Profitable Operation of P2X Energy Hubs to Meet Local Demand Under Energy Market Access
Feb 2023
Publication
This paper analyzes the operation of an energy hub on a community level with an integrated P2X facility and with access to energy markets. In our case P2X allows converting power to hydrogen heat methane or back to power. We consider the energy hub as a large prosumer who can be both a producer and consumer in the markets with the novelty that P2X technology is available. We investigate how such a P2X energy hub trades optimally in the electricity market and satisfies local energy demand under the assumption of a long-term strong climate scenario in year 2050. For numerical analysis a case study of a mountain village in Switzerland is used. One of the main contributions of this paper is to quantify key conditions for profitable operations of such a P2X energy hub. In particular the analysis includes impacts of influencing factors on profits and operational patterns in terms of different degrees of self-sufficiency and different availability of local renewable resources. Moreover the access to real-time wholesale market electricity price signals and a future retail hydrogen market is assessed. The key factors for the successful operation of a P2X energy hub are identified to be sufficient local renewable resources and access to a retail market of hydrogen. The results also show that the P2X operation leads to an increased deployment of local renewables especially in the case of low initial deployment; on the other hand seasonal storage plays a subordinated role. Additionally P2X lowers for the community the wholesale electricity market trading volumes.
The Role of Hydrogen in the Visegrad Group Approach to Energy Transition
Oct 2022
Publication
Hydrogen is an energy carrier in which hopes are placed for an easier achievement of climate neutrality. Together with electrification energy efficiency development and RES hydrogen is expected to enable the ambitious energy goals of the European Green Deal. Hence the aim of the article is to query the development of the hydrogen economy in the Visegrad Group countries (V4). The study considers six diagnostic features: sources of hydrogen production hydrogen legislation financial mechanisms objectives included in the hydrogen strategy environmental impact of H2 and costs of green hydrogen investments. The analysis also allowed to indicate the role that hydrogen will play in the energy transition process of the V4 countries. The analysis shows that the V4 countries have similar approaches to the development of the hydrogen market but the hydrogen strategies published by each of the Visegrad countries are not the same. Each document sets goals based on the hydrogen production to date and the specifics of the domestic energy and transport sectors as there are no solutions that are equally effective for all. Poland’s hydrogen strategy definitely stands out the strongest.
Levelised Cost of Transmission Comparison for Green Hydrogen and Ammonia in New-build Offshore Energy Infrastructure: Pipelines, Tankers, and HVDC
Mar 2024
Publication
As the global market develops for green hydrogen and ammonia derived from renewable electricity the bulk transmission of hydrogen and ammonia from production areas to demand-intensive consumption areas will increase. Repurposing existing infrastructure may be economically and technically feasible but increases in supply and demand will necessitate new developments. Bulk transmission of hydrogen and ammonia may be effected by dedicated pipelines or liquefied fuel tankers. Transmission of electricity using HVDC lines to directly power electrolysers producing hydrogen near the demand markets is another option. This paper presents and validates detailed cost models for newly-built dedicated offshore transmission methods for green hydrogen and ammonia and carries out a techno-economic comparison over a range of transmission distances and production volumes. New pipelines are economical for short distances while new HVDC interconnectors are suited to medium-large transmission capacities over a wide range of distances and liquefied gas tankers are best for long distances.
THyGA - Tightness Testing of Gas Distribution Components in 40%H2+60%CH4
Aug 2022
Publication
The present work is concerned with the evaluation of the tightness of the components located on domestic and commercial gas lines from the gas meter to the end user appliance in presence of a mixture 40%H2+60%CH4 at 35 mbar. The components were taken from installations being used currently in Germany Denmark Belgium and France. The current standard methods to evaluate natural gas distribution tightness propose testing duration of several minutes. In this work the components tightness was first evaluated using such standard methods before carrying out tests on longer period of time and evaluate the potential influence of time and the results were compared to admissible leakage rates for natural gas in distribution network and in appliances.
Fuel-Cell Electric Vehicles: Plotting a Scientific and Technological Knowledge Map
Mar 2020
Publication
The fuel-cell electric vehicle (FCEV) has been defined as a promising way to avoid road transport greenhouse emissions but nowadays they are not commercially available. However few studies have attempted to monitor the global scientific research and technological profile of FCEVs. For this reason scientific research and technological development in the field of FCEV from 1999 to 2019 have been researched using bibliometric and patent data analysis including network analysis. Based on reports the current status indicates that FCEV research topics have reached maturity. In addition the analysis reveals other important findings: (1) The USA is the most productive in science and patent jurisdiction; (2) both Chinese universities and their authors are the most productive in science; however technological development is led by Japanese car manufacturers; (3) in scientific research collaboration is located within the tri-polar world (North America–Europe–Asia-Pacific); nonetheless technological development is isolated to collaborations between companies of the same automotive group; (4) science is currently directing its efforts towards hydrogen production and storage energy management systems related to battery and hydrogen energy Life Cycle Assessment and greenhouse gas (GHG) emissions. The technological development focuses on technologies related to electrically propelled vehicles; (5) the International Journal of Hydrogen Energy and SAE Technical Papers are the two most important sources of knowledge diffusion. This study concludes by outlining the knowledge map and directions for further research.
Cushion Gas in Hydrogen Storage—A Costly CAPEX or a Valuable Resource for Energy Crises?
Dec 2022
Publication
The geological storage of hydrogen is a seasonal energy storage solution and the storage capacity of saline aquifers is most appropriately defined by quantifying the amount of hydrogen that can be injected and reproduced over a relevant time period. Cushion gas stored in the reservoir to support the production of the working gas is a CAPEX which should be reduced to decrease implementation cost for gas storage. The cushion gas to working gas ratio provides a sufficiently accurate reflection of the storage efficiency with higher ratios equating to larger initial investments. This paper investigates how technical measures such as well configurations and adjustments to the operational size and schedule can reduce this ratio and the outcomes can inform optimisation strategies for hydrogen storage operations. Using a simplified open saline aquifer reservoir model hydrogen storage is simulated with a single injection and production well. The results show that the injection process is more sensitive to technical measures than the production process; a shorter perforation and a smaller well diameter increases the required cushion gas for the injection process but has little impact on the production. If the storage operation capacity is expanded and the working gas volume increased the required cushion gas to working gas ratio increases for injection reducing the efficiency of the injection process. When the reservoir pressure has more time to equilibrate less cushion gas is required. It is shown that cushion gas plays an important role in storage operations and that the tested optimisation strategies impart only minor effects on the production process however there is significant need for careful optimisation of the injection process. It is suggested that the recoverable part of the cushion gas could be seen as a strategic gas reserve which can be produced during an energy crisis. In this scenario the recoverable cushion gas could be owned by the state and the upfront costs for gas storage to the operator would be reduced making the implementation of more gas storage and the onset of hydrogen storage more attractive to investors.
On the Way to Utilizing Green Hydrogen as an Energy Carrier—A Case of Northern Sweden
Mar 2024
Publication
Low or even zero carbon dioxide emissions will be an essential requirement for energy supplies in the near future. Besides transport and electricity generation industry is another large carbon emitter. Hydrogen produced by renewable energy provides a flexible way of utilizing that energy. Hydrogen as an energy carrier could be stored in a large capacity compared to electricity. In Sweden hydrogen will be used to replace coal for steel production. This paper discusses how the need for electricity to produce hydrogen will affect the electricity supply and power flow in the Swedish power grid and whether it will result in increased emissions in other regions. Data of the Swedish system will be used to study the feasibility of implementing the hydrogen system from the power system viewpoint and discuss the electricity price and emission issues caused by the hydrogen production in different scenarios. This paper concludes that the Swedish power grid is feasible for accommodating the additional electricity capacity requirement of producing green hydrogen for the steel industry. The obtained results could be references for decision makers investors and power system operators.
Everything About Hydrogen Podcast: Where Does Hydrogen Fit in the Global Energy Transition?
Apr 2022
Publication
On this episode the EAH team discusses the role of hydrogen in the energy transition with Michael Liebreich Chairman and CEO of Liebreich Associates. Michael is an acknowledged thought leader on clean energy mobility technology climate sustainability and finance. He is the founder and senior contributor to Bloomberg New Energy Finance a member of numerous industry governmental and multilateral advisory boards an angel investor a former member of the board of Transport for London and an Advisor to the UK Board of Trade.
The podcast can be found on their website
The podcast can be found on their website
Impact of Grid Gas Requirements on Hydrogen Blending Levels
Oct 2021
Publication
The aim of the article is to determine what amount of hydrogen in %mol can be transferred/stored in the Estonian Latvian and Lithuanian grid gas networks based on the limitations of chemical and physical requirements technical requirements of the gas network and quality requirements. The main characteristics for the analysis of mixtures of hydrogen and natural gas are the Wobbe Index relative density methane number and calorific value. The calculation of the effects of hydrogen blending on the above main characteristics of a real grid gas is based on the principles described in ISO 6976:2016 and the distribution of the grid gas mole fraction components from the grid gas quality reports. The Wärtsila methane number calculator was used to illustrate the effects of hydrogen blending on the methane number of the grid gas. The calculation results show that the maximum hydrogen content in the grid gas (hydrogen and natural gas mix) depending on the grid gas quality parameters (methane number gross heat of combustion specific gravity and the Wobbe Index) is in the range of 5–23 %mol H2. The minimum hydrogen content (5 %mol H2) is limited by specific gravity (>0.55). The next limitation is at 12 %mol H2 and is related to the gross heat of combustion (>9.69 kWh/m3). It is advisable to explore the readiness of gas grids and consumers in Estonia Latvia and Lithuania before switching to higher hydrogen blend levels. If the applicability and safety of hydrogen blends above 5 %mol is approved then it is necessary to analyse the possible reduction of the minimum requirements for the quality of the grid gas and evaluate the associated risks (primarily related to specific gravity).
Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization
Mar 2023
Publication
The use of green hydrogen as a fuel source for marine applications has the potential to significantly reduce the carbon footprint of the industry. The development of a sustainable and cost-effective method for producing green hydrogen has gained a lot of attention. Water electrolysis is the best and most environmentally friendly method for producing green hydrogen-based renewable energy. Therefore identifying the ideal operating parameters of the water electrolysis process is critical to hydrogen production. Three controlling factors must be appropriately identified to boost hydrogen generation namely electrolysis time (min) electric voltage (V) and catalyst amount (µg). The proposed methodology contains the following two phases: modeling and optimization. Initially a robust model of the water electrolysis process in terms of controlling factors was established using an adaptive neuro-fuzzy inference system (ANFIS) based on the experimental dataset. After that a modern pelican optimization algorithm (POA) was employed to identify the ideal parameters of electrolysis duration electric voltage and catalyst amount to enhance hydrogen production. Compared to the measured datasets and response surface methodology (RSM) the integration of ANFIS and POA improved the generated hydrogen by around 1.3% and 1.7% respectively. Overall this study highlights the potential of ANFIS modeling and optimal parameter identification in optimizing the performance of solar-powered water electrocatalysis systems for green hydrogen production in marine applications. This research could pave the way for the more widespread adoption of this technology in the marine industry which would help to reduce the industry’s carbon footprint and promote sustainability.
Efficiency, Economic and Environmental Impact Assessment of a Newly Developed Rail Engine using Hydrogen and Other Sustainable Fuel Blends
Jan 2023
Publication
Locomotives still use antiqued engines such as internal combustion engines operated by fossil fuels which cause global warming due to their significant emissions. This paper continues investigating the newly hybridized locomotive engine containing a gas turbine system solid oxide fuel cell system energy saving system and on-board hydrogen production system. This new engine is operated using five fuel blends composed of five alternative fuels such as hydrogen methane methanol ethanol and dimethyl ether. The current investigation involves exergy analysis exergo-economic analysis and exergo-environmental analysis to assess the engine from three perspectives: efficiency/irreversibility cost and environmental impact. The study results show that the net power of this new engine is 4948.6 kW and it has an exergetic efficiency of 62.7% according to the fuel and product principle. This engine weighs about 9 tons and costs about $10.2M with a levelized cost rate of 147 $/h and 14.06 mPt/h of overall component-related environmental rate. The average overall specific fuel and product exergy costs are about 37 $/GJ and 60 $/GJ and the minimum values are 13.3 $/GJ and 21.8 $/GJ using methane and hydrogen blend respectively. Also the average overall specific fuel and product exergo-environmental impact are about 15 and 23 mPt/MJ respectively. The on-board hydrogen production has an average exergy cost of 274 $/GJ and an environmental impact of 52 mPt/MJ. Hydrogen blended with methane or methanol is found to be more economic and has less environmental impact.
Solid Oxide Fuel Cell-Based Polygeneration Systems in Residential Applications: A Review of Technology, Energy Planning and Guidelines for Optimizing the Design
Oct 2022
Publication
Solid oxide fuel cells are an emerging energy conversion technology suitable for high-temperature power generation with proper auxiliary heat. Combining SOFCs and polygeneration has produced practical applications for modern energy system designs. Even though many researchers have reviewed these systems’ technologies opportunities and challenges reviews regarding the optimal strategy for designing and operating the systems are limited. Polygeneration is more complicated than any other energy generation type due to its ability to generate many types of energy from various prime movers. Moreover integration with other applications such as vehicle charging and fueling stations increases the complication in making the system optimally serve the loads. This study elaborates on the energy planning and guidelines for designing a polygeneration system especially for residential applications. The review of polygeneration technologies also aligns with the current research trend of developing green technology for modern and smart homes in residential areas. The proposed guideline is expected to solve the complication in other applications and technologies and design the polygeneration system optimally.
Cost and Thermodynamic Analysis of Wind-Hydrogen Production via Multi-energy Systems
Mar 2024
Publication
With rising temperatures extreme weather events and environmental challenges there is a strong push towards decarbonization and an emphasis on renewable energy with wind energy emerging as a key player. The concept of multi-energy systems offers an innovative approach to decarbonization with the potential to produce hydrogen as one of the output streams creating another avenue for clean energy production. Hydrogen has significant potential for decarbonizing multiple sectors across buildings transport and industries. This paper explores the integration of wind energy and hydrogen production particularly in areas where clean energy solutions are crucial such as impoverished villages in Africa. It models three systems: distinct configurations of micro-multi-energy systems that generate electricity space cooling hot water and hydrogen using the thermodynamics and cost approach. System 1 combines a wind turbine a hydrogen-producing electrolyzer and a heat pump for cooling and hot water. System 2 integrates this with a biomass-fired reheat-regenerative power cycle to balance out the intermittency of wind power. System 3 incorporates hydrogen production a solid oxide fuel cell for continuous electricity production an absorption cooling system for refrigeration and a heat exchanger for hot water production. These systems are modeled with Engineering Equation Solver and analyzed based on energy and exergy efficiencies and on economic metrics like levelized cost of electricity (LCOE) cooling (LCOC) refrigeration (LCOR) and hydrogen (LCOH) under steady-state conditions. A sensitivity analysis of various parameters is presented to assess the change in performance. Systems were optimized using a multiobjective method with maximizing exergy efficiency and minimizing total product unit cost used as objective functions. The results show that System 1 achieves 79.78 % energy efficiency and 53.94 % exergy efficiency. System 2 achieves efficiencies of 55.26 % and 27.05 % respectively while System 3 attains 78.73 % and 58.51 % respectively. The levelized costs for micro-multi-energy System 1 are LCOE = 0.04993 $/kWh LCOC = 0.004722 $/kWh and LCOH = 0.03328 $/kWh. For System 2 these values are 0.03653 $/kWh 0.003743 $/kWh and 0.03328 $/kWh. In the case of System 3 they are 0.03736 $/kWh 0.004726 $/kWh and 0.03335 $/kWh and LCOR = 0.03309 $/kWh. The results show that the systems modeled here have competitive performance with existing multi-energy systems powered by other renewables. Integrating these systems will further the sustainable and net zero energy system transition especially in rural communities.
Analysis of the Combustion Process in a Hydrogen-Fueled CFR Engine
Mar 2023
Publication
Green hydrogen produced using renewable energy is nowadays one of the most promising alternatives to fossil fuels for reducing pollutant emissions and in turn global warming. In particular the use of hydrogen as fuel for internal combustion engines has been widely analyzed over the past few years. In this paper the authors show the results of some experimental tests performed on a hydrogen-fueled CFR (Cooperative Fuel Research) engine with particular reference to the combustion. Both the air/fuel (A/F) ratio and the engine compression ratio (CR) were varied in order to evaluate the influence of the two parameters on the combustion process. The combustion duration was divided in two parts: the flame front development (characterized by laminar flame speed) and the rapid combustion phase (characterized by turbulent flame speed). The results of the hydrogen-fueled engine have been compared with results obtained with gasoline in a reference operating condition. The increase in engine CR reduces the combustion duration whereas the opposite effect is observed with an increase in the A/F ratio. It is interesting to observe how the two parameters CR and A/F ratio have a different influence on the laminar and turbulent combustion phases. The influence of both A/F ratio and engine CR on heat transfer to the combustion chamber wall was also evaluated and compared with the gasoline operation. The heat transfer resulting from hydrogen combustion was found to be higher than the heat transfer resulting from gasoline combustion and this is probably due to the different quenching distance of the two fuels.
Stoichiometric Equilibrium Model based Assessment of Hydrogen Generation through Biomass Gasification
Sep 2016
Publication
Hydrogen produced from renewable energy sources is clean and sustainable. Biomass gasification has a significant role in the context of hydrogen generation from biomass. Assessment of the performance of biomass gasification process regarding the product gas yield and composition can be performed using mathematical models. Among the different mathematical models thermodynamic equilibrium models are simple and useful tools for the first estimate and preliminary comparison and assessment of gasification process. A stoichiometric thermodynamic equilibrium model is developed here and its performance is validated for steam gasification and air-steam gasification. The model is then used to assess the feasibility of different biomass feedstock for gasification based on hydrogen yield and lower heating value.
Hydrogen Addition to Natural Gas in Cogeneration Engines: Optimization of Performances Through Numerical Modeling
Aug 2021
Publication
A numerical study of the energy conversion process occurring in a lean-charge cogenerative engine designed to be powered by natural gas is here conducted to analyze its performances when fueled with mixtures of natural gas and several percentages of hydrogen. The suitability of these blends to ensure engine operations is proven through a zero–one-dimensional engine schematization where an original combustion model is employed to account for the different laminar propagation speeds deriving from the hydrogen addition. Guidelines for engine recalibration are traced thanks to the achieved numerical results. Increasing hydrogen fractions in the blend speeds up the combustion propagation achieving the highest brake power when a 20% of hydrogen fraction is considered. Further increase of this last would reduce the volumetric efficiency by virtue of the lower mixture density. The formation of the NOx pollutants also grows exponentially with the hydrogen fraction. Oppositely the efficiency related to the exploitation of the exhaust gases’ enthalpy reduces with the hydrogen fraction as shorter combustion durations lead to lower temperatures at the exhaust. If the operative conditions are shifted towards leaner air-to-fuel ratios the in-cylinder flame propagation speed decreases because of the lower amount of fuel trapped in the mixture reducing the conversion efficiencies and the emitted nitrogen oxides at the exhaust. The link between brake power and spark timing is also highlighted: a maximum is reached at an ignition timing of 21° before top dead center for hydrogen fractions between 10 and 20%. However the exhaust gases’ temperature also diminishes for retarded spark timings. Lastly an optimization algorithm is implemented to individuate the optimal condition in which the engine is characterized by the highest power production with the minimum fuel consumption and related environmental impact. As a main result hydrogen addition up to 15% in volume to natural gas in real cogeneration systems is proven as a viable route only if engine operations are shifted towards leaner air-to-fuel ratios to avoid rapid pressure rise and excessive production of pollutant emissions.
Hydrogen Production by Solar Thermochemical Water-Splitting Cycle via a Beam Down Concentrator
May 2021
Publication
About 95% of the hydrogen presently produced is from natural gas and coal and the remaining 5% is generated as a by-product from the production of chlorine through electrolysis1 . In the hydrogen economy (Crabtree et al. 2004; Penner 2006; Marbán and Valdés-Solís 2007) hydrogen is produced entirely from renewable energy. The easiest approach to advance renewable energy production is through solar photovoltaic and electrolysis a pathway of high technology readiness level (TRL) suffering however from two downfalls. First of all electricity is already an energy carrier and transformation with a penalty into another energy carrier hydrogen is in principle flawed. The second problem is that the efficiency of commercial solar panels is relatively low. The cadmium telluride (CdTe) thin-film solar cells have a solar energy conversion efficiency of 17%. Production of hydrogen using the current best processes for water electrolysis has an efficiency of ∼70%. As here explained the concentrated solar energy may be used to produce hydrogen using thermochemical water-splitting cycles at much global higher efficiency (fuel energy to incident sun energy). This research and development (R&D) effort is therefore undertaken to increase the TRL of this approach as a viable and economical option.
Biological CO2-Methanation: An Approach to Standardization
May 2019
Publication
Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However these studies are difficult to compare because they lack a coherent nomenclature. In this article we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis we derive system parameters providing information on the methanation system its performance the biology and cost aspects. As a result three different standards are provided as a blueprint matrix for use in academia and industry applicable to both biological and catalytic methanation. Hence this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes.
Aspects of an Experimental Study of Hydrogen Use at Automotive Diesel Engine
Feb 2023
Publication
Hydrogen may represents a good alternative fuel that can be used to fuel internal combustion engines in order to ameliorate energetic and emissions performance. The paper presents some experimental aspects registered at hydrogen use to fuel a diesel engine different substitute ratios being use in the area of 18–34% at 40% engine load and speed of 2000 rev/min. The engine is equipped with an open ECU and the control of the cyclic dosses of diesel fuel and hydrogen are adjusted in order to maintain the engine power performance. The in-cylinder pressure diagrams show the increase of the maximum pressure with 17% from 78.5 bar to 91.8 bar for the maximum substitute ratio. Also values of maximum pressure rise rate start to increase for hydrogen addition in correlation with the increase of fuel amount burned into the premixed stage without exceed the normal values with assure the normal and reliable engine operation. Higher Lower Heating Value and combustion speed of hydrogen assure the increase in thermal efficiency the brake specific energy consumption decreases with 5.4%–7.8% at substitute ratios of 20–27%. The CO2 emission level decreases with 20% for maximum hydrogen cyclic dose. In terms of pollutant emission level at hydrogen use the emission level of the NOx decreases with 50% and the smoke number decreases with 73.8% comparative to classic fuelling at the maximum hydrogen cyclic dose.
Methane Pyrolysis for CO2-Free H2 Production: A Green Process to Overcome Renewable Energies Unsteadiness
Aug 2020
Publication
The Carbon2Chem project aims to convert exhaust gases from the steel industry into chemicals such as methanol to reduce CO2 emissions. Here H2 is required for the conversion of CO2 into methanol. Although much effort is put to produce H2 from renewables the use of fossil fuels especially natural gas seems to be fundamental in the short term. For this reason the development of clean technologies for the processing of natural gas with a low environmental impact has become a topic of utmost importance. In this context methane pyrolysis has received special attention to produce CO2-free H2.
Review of Power-to-X Demonstration Projects in Europe
Sep 2020
Publication
At the heart of most Power-to-X (PtX) concepts is the utilization of renewable electricity to produce hydrogen through the electrolysis of water. This hydrogen can be used directly as a final energy carrier or it can be converted into for example methane synthesis gas liquid fuels electricity or chemicals. Technical demonstration and systems integration are of major importance for integrating PtX into energy systems. As of June 2020 a total of 220 PtX research and demonstration projects in Europe have either been realized completed or are currently being planned. The central aim of this review is to identify and assess relevant projects in terms of their year of commissioning location electricity and carbon dioxide sources applied technologies for electrolysis capacity type of hydrogen post-processing and the targeted field of application. The latter aspect has changed over the years. At first the targeted field of application was fuel production for example for hydrogen buses combined heat and power generation and subsequent injection into the natural gas grid. Today alongside fuel production industrial applications are also important. Synthetic gaseous fuels are the focus of fuel production while liquid fuel production is severely under-represented. Solid oxide electrolyzer cells (SOECs) represent a very small proportion of projects compared to polymer electrolyte membranes (PEMs) and alkaline electrolyzers. This is also reflected by the difference in installed capacities. While alkaline electrolyzers are installed with capacities between 50 and 5000 kW (2019/20) and PEM electrolyzers between 100 and 6000 kW SOECs have a capacity of 150 kW. France and Germany are undertaking the biggest efforts to develop PtX technologies compared to other European countries. On the whole however activities have progressed at a considerably faster rate than had been predicted just a couple of years ago.
On Green Hydrogen Generation Technologies: A Bibliometric Review
Mar 2024
Publication
Green hydrogen produced by water electrolysis with renewable energy plays a crucial role in the revolution towards energy sustainability and it is considered a key source of clean energy and efficient storage. Its ability to address the intermittency of renewable sources and its potential to decarbonize sectors that are difficult to electrify make it a strategic component in climate change mitigation. By using a method based on a bibliometric review of scientific publications this paper represents a significant contribution to the emerging field of research on green hydrogen and provides a detailed review of electrolyzer technologies identifying key areas for future research and technology development. The results reflect the immaturity of a technology which advances with different technical advancements waiting to find the optimal technical solution that allows for its massive implementation as a source of green hydrogen generation. According to the results found in this article alkaline (ALK) and proton exchange membrane (PEM) electrolyzers seem to be the ones that interest the scientific community the most. Similarly in terms of regional analysis Europe is clearly committed to green hydrogen in view of the analysis of its scientific results on materials and electrolyzer capacity forecasts for 2030.
Optimal Capacity Planning of Power to Hydrogen in Integrated Electricity–Hydrogen–Gas Energy Systems Considering Flexibility and Hydrogen Injection
Apr 2022
Publication
With increasing penetration of renewable energy it is important to source adequate system flexibility to maintain security of supply and minimize renewable generation curtailment. Power to hydrogen (P2H) plays an important role in the low-carbon renewable dominated energy systems. By blending green hydrogen produced from renewable power into the natural gas pipelines it is possible to help integrate large-scale intermittent generation and smooth the variability of renewable power output through the interconnection of the natural gas network hydrogen energy network and electric network. A two-stage stochastic mixed-integer nonlinear planning framework for P2H sizing and siting is proposed in this paper considering system flexibility requirements. The problem is then reduced to a mixed-integer second-order cone (MISOC) model through convex transformation techniques in order to reduce the computation burden. Then a distributed algorithm based on Bender’s decomposition is applied to obtain the optimal solution. A modified hybrid IEEE 33-node and Gas 20-node system is then used for simulation tests. The results showed that investment of P2H can significantly reduce the total capital and operational costs with lower renewable generation curtailment and electricity demand shedding. Numerical tests demonstrated to demonstrate the validity of the proposed MISOC model.
Effective Thermal Conductivity of Insulation Materials for Cryogenic LH2 Storage Tanks: A Review
Nov 2022
Publication
An accurate estimation of the effective thermal conductivity of various insulation materials is essential in the evaluation of heat leak and boil-off rate from liquid hydrogen storage tanks. In this work we review the existing experimental data and various proposed correlations for predicting the effective conductivity of insulation systems consisting of powders foams fibrous materials and multilayer systems. We also propose a first principles-based correlation that may be used to estimate the dependence of the effective conductivity as a function of temperature interstitial gas composition pressure and structural properties of the material. We validate the proposed correlation using available experimental data for some common insulation materials. Further improvements and testing of the proposed correlation using laboratory scale data obtained using potential LH2 tank insulation materials are also discussed.
In the Green? Perceptions of Hydrogen Production Methods Among the Norwegian Public
Feb 2023
Publication
This article presents findings from a representative survey fielded through the Norwegian Citizen Panel examining public perceptions of hydrogen fuel and its different production methods. Although several countries including Norway have strategies to increase the production of hydrogen fuel our results indicate that hydrogen as an energy carrier and its different production methods are still unknown to a large part of the public. A common misunderstanding seems to be confusing ‘hydrogen fuel’ in general with environmentally friendly ‘green hydrogen’. Results from a survey experiment (N = 1906) show that production method is important for public acceptance. On a five-point acceptance scale respondents score on average 3.9 for ‘green’ hydrogen which is produced from renewable energy sources. The level of acceptance is significantly lower for ‘blue’ (3.2) and ‘grey’ (2.3) hydrogen when respondents are informed that these are produced from coal oil or natural gas. Public support for hydrogen fuel in general as well as the different production methods is also related to their level of worry about climate change gender and political affiliation. Widespread misunderstandings regarding ‘green’ hydrogen production could potentially fuel public resistance as new ‘blue’ or ‘grey’ projects develop. Our results indicate a need for clearer communication from the government and developers regarding production methods to avoid distrust and potential public backfire.
Solar Water Splitting by Photovoltaic-electrolysis with a Solar-to-hydrogen Efficiency over 30%
Oct 2016
Publication
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.
Hydrogen Energy as Future of Sustainable Mobility
May 2022
Publication
Conventional fuels for vehicular applications generate hazardous pollutants which have an adverse effect on the environment. Therefore there is a high demand to shift towards environment-friendly vehicles for the present mobility sector. This paper highlights sustainable mobility and specifically sustainable transportation as a solution to reduce GHG emissions. Thus hydrogen fuel-based vehicular technologies have started blooming and have gained significance following the zero-emission policy focusing on various types of sustainable motilities and their limitations. Serving an incredible deliverance of energy by hydrogen fuel combustion engines hydrogen can revolution various transportation sectors. In this study the aspects of hydrogen as a fuel for sustainable mobility sectors have been investigated. In order to reduce the GHG (Green House Gas) emission from fossil fuel vehicles researchers have paid their focus for research and development on hydrogen fuel vehicles and proton exchange fuel cells. Also its development and progress in all mobility sectors in various countries have been scrutinized to measure the feasibility of sustainable mobility as a future. This paper is an inclusive review of hydrogen-based mobility in various sectors of transportation in particular fuel cell cars that provides information on various technologies adapted with time to add more towards perfection. When compared to electric vehicles with a 200-mile range fuel cell cars have a lower driving cost in all of the 2035 and 2050 scenarios. To stimulate the use of hydrogen as a passenger automobile fuel the cost of a hydrogen fuel cell vehicle (FCV) must be brought down to at least the same level as an electric vehicle. Compared to gasoline cars fuel cell vehicles use 43% less energy and generate 40% less CO2.
Effect of Relative Permeability Hysteresis on Reservoir Simulation of Underground Hydrogen Storage in an Offshore Aquifer
Mar 2023
Publication
Underground hydrogen storage (UHS) in porous media is proposed to balance seasonal fluctuations between demand and supply in an emerging hydrogen economy. Despite increasing focus on the topic worldwide the understanding of hydrogen flow in porous media is still not adequate. In particular relative permeability hys teresis and its impact on the storage performance require detailed investigations due to the cyclic nature of H2 injection and withdrawal. We focus our analysis on reservoir simulation of an offshore aquifer setting where we use history matched relative permeability to study the effect of hysteresis and gas type on the storage efficiency. We find that omission of relative permeability hysteresis overestimates the annual working gas capacity by 34 % and the recovered hydrogen volume by 85 %. The UHS performance is similar to natural gas storage when using hysteretic hydrogen relative permeability. Nitrogen relative permeability can be used to model the UHS when hysteresis is ignored but at the cost of the accuracy of the bottom-hole pressure predictions. Our results advance the understanding of the UHS reservoir modeling approaches.
Recent Advances of Metal Borohydrides for Hydrogen Storage
Aug 2022
Publication
Hydrogen energy is an excellent carrier for connecting various renewable energy sources and has many advantages. However hydrogen is flammable and explosive and its density is low and easy to escape which brings inconvenience to the storage and transportation of hydrogen. Therefore hydrogen storage technology has become one of the key steps in the application of hydrogen energy. Solid-state hydrogen storage method has a very high volumetric hydrogen density compared to the traditional compressed hydrogen method. The main issue of solid-state hydrogen storage method is the development of advanced hydrogen storage materials. Metal borohydrides have very high hydrogen density and have received much attention over the past two decades. However high hydrogen sorption temperature slow kinetics and poor reversibility still severely restrict its practical applications. This paper mainly discusses the research progress and problems to be solved of metal borohydride hydrogen storage materials for solid-state hydrogen storage.
Coal Decarbonization: A State-of-the-art Review of Enhanced Hydrogen Production in Underground Coal Gasification
Aug 2022
Publication
The world is endowed with a tremendous amount of coal resources which are unevenly distributed in a few nations. While sustainable energy resources are being developed and deployed fossil fuels dominate the current world energy consumption. Thus low-carbon clean technologies like underground coal gasification (UCG) ought to play a vital role in energy supply and ensuring energy security in the foreseeable future. This paper provides a state-of-the-art review of the world's development of UCG for enhanced hydrogen production. It is revealed that the world has an active interest in decarbonizing the coal industry for hydrogen-oriented research in the context of UCG. While research is ongoing in multiple coal-rich nations China dominates the world's efforts in both industrial-scale UCG pilots and laboratory experiments. A variety of coal ranks were tested in UCG for enhanced hydrogen output and the possibilities of linking UCG with other prospective technologies had been proposed and critically scrutinized. Moreover it is found that transborder collaborations are in dire need to propel a faster commercialization of UCG in an ever-more carbon-conscious world. Furthermore governmental and financial support is necessary to incentivize further UCG development for large-scale hydrogen production.
Sustainable Ammonia Production Processes
Mar 2021
Publication
Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier many studies have recently attempted to find the most environmentally benign energy efficient and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions surpassing 2.16 kgCO2-eq/kg NH3 and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover for production of 1 tonne of hydrogen 9 tonnes of water is required. Based on this data for the production of the same amount of ammonia through water electrolysis 233.6 million tonnes/yr of water is required. In this paper a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur.
Chile and its Potential Role Among the Most Affordable Green Hydrogen Producers in the World
Jul 2022
Publication
As result of the adverse effects caused by climate change the nations have decided to accelerate the transition of the energy matrix through the use of non-conventional sources free of polluting emissions. One of these alternatives is green hydrogen. In this context Chile stands out for the exceptional climate that makes it a country with a lot of renewable resources. Such availability of resources gives the nation clear advantages for hydrogen production strong gusts of wind throughout the country the most increased solar radiation in the world lower cost of production of electrical supplies among others. Due to this the nation would be between the lowest estimated cost for hydrogen production i.e. 1.5 USD/kg H2 approximately scenario that would place it as one of the cheapest green hydrogen producer in the world.
Assessing the Social Acceptance of Key Technologies for the German Energy Transition
Jan 2022
Publication
Background: The widespread use of sustainable energy technologies is a key element in the transformation of the energy system from fossil-based to zero-carbon. In line with this technology acceptance is of great importance as resistance from the public can slow down or hinder the construction of energy technology projects. The current study assesses the social acceptance of three energy technologies relevant for the German energy transition: stationary battery storage biofuel production plants and hydrogen fuel station. Methods: An online survey was conducted to examine the public’s general and local acceptance of energy technologies. Explored factors included general and local acceptance public concerns trust in relevant stakeholders and attitudes towards financial support. Results: The results indicate that general acceptance for all technologies is slightly higher than local acceptance. In addition we discuss which public concerns exist with regard to the respective technologies and how they are more strongly associated with local than general acceptance. Further we show that trust in stakeholders and attitudes towards fnancial support is relatively high across the technologies discussed. Conclusions: Taken together the study provides evidence for the existence of a “general–local” gap despite measuring general and local acceptance at the same level of specifcity using a public sample. In addition the collected data can provide stakeholders with an overview of worries that might need to be addressed when planning to implement a certain energy project.
The Effects of Fuel Type and Cathode Off-gas Recirculation on Combined Heat and Power Generation of Marine SOFC Systems
Dec 2022
Publication
An increasing demand in the marine industry to reduce emissions led to investigations into more efficient power conversion using fuels with sustainable production pathways. Solid Oxide Fuel Cells (SOFCs) are under consideration for long-range shipping because of its high efficiency low pollutant emissions and fuel flexibility. SOFC systems also have great potential to cater for the heat demand in ships but the heat integration is not often considered when assessing its feasibility. This study evaluates the electrical and heat efficiency of a 100 kW SOFC system for marine applications fuelled with methane methanol diesel ammonia or hydrogen. In addition cathode off-gas recirculation (COGR) is investigated to tackle low oxygen utilisation and thus improve heat regeneration. The software Cycle Tempo is used to simulate the power plant which uses a 1D model for the SOFCs. At nominal conditions the highest net electrical efficiency (LHV) was found for methane (58.1%) followed by diesel (57.6%) and ammonia (55.1%). The highest heat efficiency was found for ammonia (27.4%) followed by hydrogen (25.6%). COGR resulted in similar electrical efficiencies but increased the heat efficiency by 11.9% to 105.0% for the different fuels. The model was verified with a sensitivity analysis and validated by comparison with similar studies. It is concluded that COGR is a promising method to increase the heat efficiency of marine SOFC systems.
Thermocatalytic Hydrogen Production Through Decomposition of Methane-A Review
Oct 2021
Publication
Consumption of fossil fuels especially in transport and energy-dependent sectors has led to large greenhouse gas production. Hydrogen is an exciting energy source that can serve our energy purposes and decrease toxic waste production. Decomposition of methane yields hydrogen devoid of COx components thereby aiding as an eco-friendly approach towards large-scale hydrogen production. This review article is focused on hydrogen production through thermocatalytic methane decomposition (TMD) for hydrogen production. The thermodynamics of this approach has been highlighted. Various methods of hydrogen production from fossil fuels and renewable resources were discussed. Methods including steam methane reforming partial oxidation of methane auto thermal reforming direct biomass gasification thermal water splitting methane pyrolysis aqueous reforming and coal gasification have been reported in this article. A detailed overview of the different types of catalysts available the reasons behind their deactivation and their possible regeneration methods were discussed. Finally we presented the challenges and future perspectives for hydrogen production via TMD. This review concluded that among all catalysts nickel ruthenium and platinum-based catalysts show the highest activity and catalytic efficiency and gave carbon-free hydrogen products during the TMD process. However their rapid deactivation at high temperatures still needs the attention of the scientific community.
The Hydrogen Bike: Communicating the Production and Safety of Green Hydrogen
Mar 2021
Publication
As the international community aims to reduce its reliance on fossil fuels green hydrogen has great potential to replace methane as a clean source of fuel. A novel public engagement activity The Hydrogen Bike has been developed to demonstrate the production and use of green hydrogen from water. The aim of the activity is to educate entertain and inform young people and adults so that they have an opportunity to form an opinion about the use of hydrogen as a fuel. Using a novel two-part data collection system participants are briefly surveyed for their opinion on hydrogen before and after participating in The Hydrogen Bike activity. Through this we have found that most participants (73%) are considered to have no opinion or a neutral opinion on hydrogen before participating in The Hydrogen Bike activity. After participation 88% of those who were originally neutral or had no opinion on hydrogen self-reported a positive feeling about hydrogen. The method of data collection was quick intuitive and suitable for an audience attracted from passing footfall.
Risk Perception of an Emergent Technology: The Case of Hydrogen Energy
Jan 2006
Publication
Although hydrogen has been used in industry for many years as a chemical commodity its use as a fuel or energy carrier is relatively new and expert knowledge about its associated risks is neither complete nor consensual. Public awareness of hydrogen energy and attitudes towards a future hydrogen economy are yet to be systematically investigated. This paper opens by discussing alternative conceptualisations of risk then focuses on issues surrounding the use of emerging technologies based on hydrogen energy. It summarises expert assessments of risks associated with hydrogen. It goes on to review debates about public perceptions of risk and in doing so makes comparisons with public perceptions of other emergent technologies—Carbon Capture and Storage (CCS) Genetically Modified Organisms and Food (GM) and Nanotechnology (NT)—for which there is considerable scientific uncertainty and relatively little public awareness. The paper finally examines arguments about public engagement and "upstream" consultation in the development of new technologies. It is argued that scientific and technological uncertainties are perceived in varying ways and different stakeholders and different publics focus on different aspects or types of risk. Attempting to move public consultation further "upstream" may not avoid this because the framing of risks and benefits is necessarily embedded in a cultural and ideological context and is subject to change as experience of the emergent technology unfolds.
Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany
Nov 2022
Publication
The use of hydrogen exists in various sectors in Poland and Germany. Hydrogen can be used in industry transport decarbonisation of the Polish steel industry and as one of the low-emission alternatives to the existing coal applications in this sector. Limiting climate change requires efforts on a global scale from all countries of the world. Significant economic benefits will be realized by stimulating the development of new technologies to deal with climate change. The scenarios show an increasing demand for industrial hydrogen in the future. The key is to replace gray hydrogen with green and to convert industrial processes which will create additional hydrogen demand. The condition for the development of a green hydrogen economy is access to adequate installed capacity in renewable energy. Germany will become the leading market in the era of energy transformation in the coming years. The implementation of the hydrogen assumptions in Poland is possible to a greater extent by the efforts of entrepreneurs
Evidence Base Utilised to Justify a Hydrogen Blend Gas Network Safety Case
Sep 2021
Publication
Blending hydrogen with natural gas up to 20 % mol/mol has been identified as a key enabler of hydrogen deployment within the UK gas network. This work outlines the evidence base generated to form the basis of safety submitted to the Health and Safety Executive (HSE) to justify a demonstration of hydrogen blending on a live public gas network within the UK supplying a hydrogen blend to 668homes over the course of 10 months. An evidence base to demonstrate that gas users are not prejudiced by the addition of hydrogen is required by the Gas Safety (Management) Regulations [1] to allow hydrogen distribution above the 0.1 mol% limit specified within the regulations. The technical evidence generated to support the safety case presented to the HSE concerned the implications of introducing a hydrogen blend on appliance operation materials gas characteristics and operational procedures. The outputs of the technical evidence workstreams provided input data to a Quantitative Risk Assessment (QRA) of the GB gas distribution network. The QRA was developed in support of the safety case to allow a causal understanding of public risk to be understood where harm due to gas usage was defined as risk to life caused either by carbon monoxide poisoning or as a result of fires/explosions. Public records were used to calibrate and validate the base risk model to understand the dynamics of public risk due to natural gas usage. The experimental and analytical results of the technical workstreams were then used to derive risk model inputs relating to a hydrogen blend. This allowed a quantified comparison of risk to be understood to demonstrate parity of safety between natural gas and a hydrogen blend. This demonstration of risk parity is a condition precedent of allowing the distribution and utilisation of hydrogen blends within the GB gas network.
Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction
Mar 2023
Publication
The growth of population gross domestic product (GDP) and urbanization have led to an increase in greenhouse gas (GHG) emissions in the Kingdom of Saudi Arabia (KSA). The leading GHG-emitting sectors are electricity generation road transportation cement chemicals refinery iron and steel. However the KSA is working to lead the global energy sustainability campaign to reach net zero GHG emissions by 2060. In addition the country is working to establish a framework for the circular carbon economy (CCE) in which hydrogen acts as a transversal facilitator. To cut down on greenhouse gas emissions the Kingdom is also building several facilities such as the NEOM green hydrogen project. The main objective of the article is to critically review the current GHG emission dynamics of the KSA including major GHG emission driving forces and prominent emission sectors. Then the role of hydrogen in GHG emission reduction will be explored. Finally the researchers and decision makers will find the helpful discussions and recommendations in deciding on appropriate mitigation measures and technologies.
Analysis of Hydrogen Gas Injection at Various Compositions in an Existing Natural Gas Pipeline
Jul 2021
Publication
The lack of hydrogen (H2) transportation infrastructure restricts the development of the H2 industry. Owing to the high investment of building specific facilities using existing natural gas (NG) pipelines to transport a blend of H2 and NG (H2NG) is a viable means of transportation and approach for large-scale long-time storage. However variation in the thermo-physical properties of an H2NG blend will impact the performance of pipeline appliances. To address the gaps in H2 transmission via an NG system in the context of energy consumption in the present paper a one-dimensional pipeline model is proposed to predict the blended flow in a real existing pipeline (Shan–Jing I China). The data of NG components were derived from real gas fields. Furthermore the influence of H2 fractions on pipeline energy coefficient and the layout of pressurization stations are comprehensively analyzed. In addition the case of intermediate gas injection is investigated and the effects of injection positions are studied. This study serves as a useful reference for the design of an H2NG pipeline system. The present study reveals that with the increasing in H2 fraction the distance between pressure stations increases. Furthermore when the arrangement of original pressure stations is maintained overpressure occur. Intermediate gas injection results in the inlet pressure of subsequent pressurization stations reducing. Using existing pipeline network to transport H2NG it is necessary to make appropriate adjustment.
Techno Environmental Assessment of Flettner Rotor as Assistance Propulsion System for LH2 Tanker Ship Fuelled by Hydrogen
Nov 2022
Publication
This study presents a novel design and development of a 280000 m3 liquefied hydrogen tanker ship by implementing a set of 6 Flettner rotors as an assistance propulsion system in conjunction with a combined-cycle gas turbine fuelled by hydrogen as a prime mover. The study includes assessment of the technical and environmental aspects of the developed design. Furthermore an established method was applied to simulate the LH2 tanker in different voyages and conditions to investigate the benefits of harnessing wind energy to assist combined-cycle gas turbine in terms of performance and emission reduction based on engine behaviour for different voyages under loaded and unloaded normal as well as 6 % degraded engine and varying ambient conditions. The results indicate that implementing a set of 6 Flettner rotors for the LH2 tanker ship has the potential to positively impact the performance and lead to environmental benefits. A maximum contribution power of around 1.8 MW was achieved in the winter season owing to high wind speed and favourable wind direction. This power could save approximately 3.6 % of the combined-cycle gas turbine total output power (50 MW) and cause a 3.5 % reduction in NOx emissions.
Hydrogen Compatability of Structural Materials in Natural Gas Networks
Sep 2021
Publication
There is growing interest in utilizing existing infrastructure for storage and distribution of hydrogen. Gaseous hydrogen for example could be added to natural gas in the short-term whereas entire systems can be converted to transmission and distribution networks for hydrogen. Many active programs around the world are exploring the safety and feasibility of adding hydrogen to these networks. Concerns have been raised about the structural integrity of materials in these systems when exposed to hydrogen. In general the effects of hydrogen on these materials are grossly misunderstood. Hydrogen unequivocally degrades fatigue and fracture resistance of structural steels in these systems even for low hydrogen partial pressure (-l bar). In most systems however hydrogen effects will not be apparent because the stresses in these systems remain very low. Another misunderstanding results from the kinetics of the hydrogen effects: hydrogen degrades fatigue and fracture properties immediately upon exposure to gaseous hydrogen and those effects disappear when the hydrogen environment is removed even after prolonged exposure. There is also a misperception that materials selection can mitigate hydrogen effects. While some classes of materials perform better in hydrogen environments than other classes for most practical circumstances the range of response for a given class of material in gaseous hydrogen environments is rather narrow. These observations can be systematically characterized by considering the intersection of materials environmental and mechanical variables associated with the service application. Indeed any safety assessment of a hydrogen pressure system must quantitatively consider these aspects. In this report we quantitatively evaluate the importance of the materials environmental and mechanical variables in the context of hydrogen additions to natural gas piping and pipeline systems with the aim of providing an informed perspective on parameters relevant for assessing structural integrity of natural gas systems in the presence of gaseous hydrogen.
Review and Harmonization of the Life-Cycle Global Warming Impact of PV-Powered Hydrogen Production by Electrolysis
Sep 2021
Publication
This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries system sizes evaluation methods and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review full identification of the sources of discrepancies (methods applied assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems.
No more items...