Publications
HyDeploy Report: Summary of European Hydrogen Blending Projects
Jun 2018
Publication
Across Europe permitted blend levels of hydrogen blending into the gas grid are appreciably higher than that currently permitted in the UK up to 12% mol/mol compared with 0.1% mol/mol. Whilst there is some routine blending undertaking – typically power to gas applications three major projects have been undertaken to demonstrate operation of a gas distribution network at higher blend levels of hydrogen.<br/>A Dutch project was completed in 2011 which demonstrated successful operation into a network with new appliances at 20% mol/mol. A German project was completed in 2015 which demonstrated successful operation into an existing gas network with existing appliances at their permitted level of 10% mol/mol. In France an extensive programme is underway to inject hydrogen into a network at 20% mol/mol due to commence injection in 2018.<br/>Each of these projects undertook extensive pre-trial activities and operational data was collected during the Dutch and German trials. The programme of pre-trial work for the French project was particularly extensive and mirrored the work done by HyDeploy. This led to a permit being granted for the French project at 20% mol/mol with injection into the network imminent.<br/>The HyDeploy team has engaged with each of the project teams who have been very co-operative; this has enabled scientific sharing of best practice. In all cases the projects were successful. The participants in the Dutch project were particularly keen to have been able to undertake a similar trial to HyDeploy; a larger trial into existing appliances. However political changes in Holland have precluded that at this time such progress was not limited by technical findings from the work.<br/>A high level overview of the projects and the data provided is summarised in this report. More detailed information is referenced and covered in more detail where required in the appropriate individual topic reports supporting the Exemption.<br/>Click on supplements tab to view the other documents from this report
New Insights into Hydrogen Uptake on Porous Carbon Materials via Explainable Machine Learning
Apr 2021
Publication
To understand hydrogen uptake in porous carbon materials we developed machine learning models to predict excess uptake at 77 K based on the textural and chemical properties of carbon using a dataset containing 68 different samples and 1745 data points. Random forest is selected due to its high performance (R2 > 0.9) and analysis is performed using Shapley Additive Explanations (SHAP). It is found that pressure and Brunauer-Emmett-Teller (BET) surface area are the two strongest predictors of excess hydrogen uptake. Surprisingly this is followed by a positive correlation with oxygen content contributing up to ∼0.6 wt% additional hydrogen uptake contradicting the conclusions of previous studies. Finally pore volume has the smallest effect. The pore size distribution is also found to be important since ultramicropores (dp < 0.7 nm) are found to be more positively correlated with excess uptake than micropores (dp < 2 nm). However this effect is quite small compared to the role of BET surface area and total pore volume. The novel approach taken here can provide important insights in the rational design of carbon materials for hydrogen storage applications.
Graphene Oxide @ Nickel Phosphate Nanocomposites for Photocatalytic Hydrogen Production
Mar 2021
Publication
The graphene oxide @nickel phosphate (GO:NPO) nanocomposites (NCs) are prepared by using a one-pot in-situ solar energy assisted method by varying GO:NPO ratio i.e. 0.00 0.25 0.50 0.75 1.00 1.25 1.50 and 2.00 without adding any surfactant or a structure-directing reagent. As produced GO:NPO nanosheets exhibited an improved photocatalytic activity due to the spatial seperation of charge carriers through interface where photoinduced electrons transferred from NiPO4 to the GO sheets without charge-recombination. Out of the series the system 1.00 GO:NPO NC show the optimum hydrogen production activity (15.37 μmol H2 h−1) towards water splitting under the visible light irradiation. The electronic environment of the nanocomposite GO-NiO6/NiO4-PO4 elucidated in the light of advance experimental analyses and theoretical DFT spin density calculations. Structural advanmcement of composites are well correlated with their hydrogen production activity.
Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources
Jan 2023
Publication
To become sustainable the production of electricity has been oriented towards the adoption of local and renewable sources. Distributed electric and thermal energy generation is more suitable to avoid any possible waste and the Micro Gas Turbine (MGT) can play a key role in this scenario. Due to the intrinsic properties and the high flexibility of operation of this energy conversion system the exploitation of alternative fuels and the integration of the MGT itself with other energy conversion systems (solar field ORC fuel cells) represent one of the most effective strategies to achieve higher conversion efficiencies and to reduce emissions from power systems. The present work aims to review the results obtained by the researchers in the last years. The different technologies are analyzed in detail both separately and under a more complete view considering two or more solutions embedded in micro-grid configurations.
Energy Management of Heavy-duty Fuel Cell Vehicles in Real-world Driving Scenarios: Robust Design of Strategies to Maximize the Hydrogen Economy and System Lifetime
Feb 2021
Publication
Energy management is a critical issue for the advancement of fuel cell vehicles because it significantly influences their hydrogen economy and lifetime. This paper offers a comprehensive investigation of the energy management of heavy-duty fuel cell vehicles for road freight transportation. An important and unique contribution of this study is the development of an extensive and realistic representation of the vehicle operation which includes 1750 hours of real-world driving data and variable truck loading conditions. This framework is used to analyze the potential benefits and drawbacks of heuristic optimal and predictive energy management strategies to maximize the hydrogen economy and system lifetime of fuel cell vehicles for road freight transportation. In particular the statistical evaluation of the effectiveness and robustness of the simulation results proves that it is necessary to consider numerous and realistic driving scenarios to validate energy management strategies and obtain a robust design. This paper shows that the hydrogen economy can be maximized as an individual target using the available driving information achieving a negligible deviation from the theoretical limit. Furthermore this study establishes that heuristic and optimal strategies can significantly reduce fuel cell transients to improve the system lifetime while retaining high hydrogen economies. Finally this investigation reveals the potential benefits of predictive energy management strategies for the multi-objective optimization of the hydrogen economy and system lifetime.
Reversible Hydrogenation of AB2-type Zr–Mg–Ni–V Based Hydrogen Storage Alloys
Feb 2021
Publication
The development of hydrogen energy is hindered by the lack of high-efficiency hydrogen storage materials. To explore new high-capacity hydrogen storage alloys reversible hydrogen storage in AB2-type alloy is realized by using A or B-side elemental substitution. The substitution of small atomic-radius element Zr and Mg on A-side of YNi2 and partial substitution of large atomic-radius element V on B-side of YNi2 alloy was investigated in this study. The obtained ZrMgNi4 ZrMgNi3V and ZrMgNi2V2 alloys remained single Laves phase structure at as-annealed hydrogenated and dehydrogenated states indicating that the hydrogen-induced amorphization and disproportionation was eliminated. From ZrMgNi4 to ZrMgNi2V2 with the increase of the degree of vanadium substitution the reversible hydrogen storage capacity increased from 0.6 wt% (0.35H/M) to 1.8 wt% (1.0H/M) meanwhile the lattice stability gradually increased. The ZrMgNi2V2 alloy could absorb 1.8 wt% hydrogen in about 2 h at 300 K under 4 MPa H2 pressure and reversibly desorb the absorbed hydrogen in approximately 30 min at 473 K without complicated activation process. The prominent properties of ZrMgNi2V22 elucidate its high potential for hydrogen storage application.
A Novel Self-Assembly Strategy for the Fabrication of Nano-Hybrid Satellite Materials with Plasmonically Enhanced Catalytic Activity
Jun 2021
Publication
The generation of hydrogen from water using light is currently one of the most promising alternative energy sources for humankind but faces significant barriers for large-scale applications due to the low efficiency of existing photo-catalysts. In this work we propose a new route to fabricate nano-hybrid materials able to deliver enhanced photo-catalytic hydrogen evolution combining within the same nanostructure a plasmonic antenna nanoparticle and semiconductor quantum dots (QDs). For each stage of our fabrication process we probed the chemical composition of the materials with nanometric spatial resolution allowing us to demonstrate that the final product is composed of a silver nanoparticle (AgNP) plasmonic core surrounded by satellite Pt decorated CdS QDs (CdS@Pt) separated by a spacer layer of SiO2 with well-controlled thickness. This new type of photoactive nanomaterial is capable of generating hydrogen when irradiated with visible light displaying efficiencies 300% higher than the constituting photo-active components. This work may open new avenues for the development of cleaner and more efficient energy sources based on photo-activated hydrogen generation.
Irreversible Hydrogen Embrittlement Study of B1500HS High Strength Boron Steel
Dec 2020
Publication
The reversible/irreversible recovery of mechanical properties and the microstructure characteristics of a typical hot-stamped steel B1500HS have been studied under different conditions of hydrogen permeation. Initially all tested specimens were permeated by hydrogen atoms through an electrochemical hydrogen charging scheme. Then the comparisons between different currents and charging time were performed. The influence of different storage time was compared as well. Additionally the effect of the plastic strain introduced by pre-stretching was also investigated. The experimental results showed that the negative impact of hydrogen embrittlement was altered from reversible to irreversible as the magnitude of the charging current increased. The hydrogen blistering and the hydrogen charging-induced cracks were both observed and inspected in the tested samples regarding the irreversible situation. Moreover the adverse influence of hydrogen embrittlement was enhanced by plastic pre-straining or extending the charging period. At the micro-level hydrogen charging-induced cracks generally were generated at defect locations such as the prior austenite grain boundaries and lath martensite interfaces. Particularly crack direction occurred perpendicular to the orientation of lath martensite and transgranular fracture occurred at the prior austenite grains.
Hydrogen Production During Direct Cellulose Fermentation by Mixed Bacterial Culture: The Relationship Between the Key Process Parameters Using Response Surface Methodology
Jun 2021
Publication
Dark fermentation is a promising method to produce hydrogen from lignocellulosic biomass. This study assessed the influence of temperature phosphate buffer concentration and substrate concentration on direct hydrogen production form cellulose using response surface methodology. Mixed bacterial culture was successfully enriched on cellulose and used as an inoculum for hydrogen production. The model indicated that the highest cumulative hydrogen production (CHP) of 2.14 L H2/Lmedium could be obtained at 13.5 gcellulose/L 79.5 mM buffer and 32.6 °C. However hydrogen yield is then only 0.58 mol H2/molhexose due to low substrate conversion efficiency (SCE). Simultaneous optimization of CHP and SCE with desirability function approach resulted in the H2 yield of 2.71 ± 0.1 mol H2/molhexose and 93.8 ± 1.8% SCE at 3.35 gcellulose/L 69 mM buffer and 32.9 °C. Phosphate concentration above 80 mM decreased H2 production but had positive effect on cellulose consumption. The bacterial community analysis showed that Ruminiclostridium papyrosolvens was responsible for cellulose hydrolysis. Lachnoclostridium sp. was positively correlated with ethanol production at high phosphate buffer concentration while Caproiciproducens sp. with caproate production at low buffer concentration. The obtained results opens the possibility of simultaneous hydrogen and caproate production from cellulosic substrates.
Quantitative Monitoring of the Environmental Hydrogen Embrittlement of Al-Zn-Mg-based Aluminum Alloys via Dnyamic Hydrogen Detection and Digital Image Correlation
Mar 2021
Publication
In this study a novel analytical system was developed to monitor the environmental hydrogen embrittlement of Al-Zn-Mg-based aluminum alloys dynamically and quantitatively under atmospheric air pressure. The system involves gas chromatography using a SnO2-based semiconductor hydrogen sensor a digital image correlation step and the use of a slow strain rate testing machine. Use of this system revealed that hydrogen atoms are generated during the plastic deformation of Al-Zn-Mg alloys caused by the chemical reaction between the water vapor in air and the alloy surface without oxide films. Digital image correlation also clarified that the generated hydrogen atoms caused numerous localized grain boundary cracks on the specimen surface resulting in a localized grain boundary fracture. The amount of hydrogen atoms evolved from the embrittled fracture surface was 2.7 times as high as that from the surface without embrittlement.
Labour Implications of the Net-zero Transition and Clean Energy Exports in Australia
Mar 2024
Publication
We examine the employment implications of a domestic net-zero transition and establishment of clean energy export systems for an historically significant energy exporting country through a case study of Australia. The labour impacts of a multi-decadal transition are simulated across both the domestic and export energy systems considering a wide range of energy technologies resources and activities with assessment according to occupation lifecycle stage education and skill requirements. Across all net-zero scenario pathways by mid-century the total gross employment created for the domestic and export sectors comprises 210–490 thousand jobs and 350–510 thousand jobs respectively. This represents a significant expansion of energy sector employment from the current total of 120 thousand across domestic and export sectors an increase from less than 1 % of the total Australian workforce in 2020 to 3–4 % by 2060. The need to build out energy system infrastructure at large-scale over a number of decades results in construction jobs continuing over that timeframe and a subsequent need for a large ongoing operations and maintenance workforce for new energy system assets. Those employed in domestic energy markets work primarily in utility solar PV onshore wind batteries and electricity transmission and distribution activities while export market jobs are dominated by clean hydrogen production and shipping supply chains. Crucially these export jobs are unevenly distributed across the country in regions of highest quality solar resource. All states and territories experience net job growth across each decade to 2060. However in a few sub-state regions net job losses occur in the short-term.
Uncovering the True Cost of Hydrogen Production Routes Using Life Cycle Monetisation
Oct 2020
Publication
Hydrogen has been identified as a potential energy vector to decarbonise the transport and chemical sectors and achieve global greenhouse gas reduction targets. Despite ongoing efforts hydrogen technologies are often assessed focusing on their global warming potential while overlooking other impacts or at most including additional metrics that are not easily interpretable. Herein a wide range of alternative technologies have been assessed to determine the total cost of hydrogen production by coupling life-cycle assessments with an economic evaluation of the environmental externalities of production. By including monetised values of environmental impacts on human health ecosystem quality and resources on top of the levelised cost of hydrogen production an estimation of the “real” total cost of hydrogen was obtained to transparently rank the alternative technologies. The study herein covers steam methane reforming (SMR) coal and biomass gasification methane pyrolysis and electrolysis from renewable and nuclear technologies. Monetised externalities are found to represent a significant percentage of the total cost ultimately altering the standard ranking of technologies. SMR coupled with carbon capture and storage emerges as the cheapest option followed by methane pyrolysis and water electrolysis from wind and nuclear. The obtained results identify the “real” ranges for the cost of hydrogen compared to SMR (business as usual) by including environmental externalities thereby helping to pinpoint critical barriers for emerging and competing technologies to SMR.
How Do Dissolved Gases Affect the Sonochemical Process of Hydrogen Production: An Overview of Thermodynamic and Mechanistic Effects – On the “Hot Spot Theory”
Dec 2020
Publication
Although most of researchers agree on the elementary reactions behind the sonolytic formation of molecular hydrogen (H2) from water namely the radical attack of H2O and H2O2 and the free radicals recombination several recent papers ignore the intervention of the dissolved gas molecules in the kinetic pathways of free radicals and hence may wrongly assess the effect of dissolved gases on the sonochemical production of hydrogen. One may fairly ask to which extent is it acceptable to ignore the role of the dissolved gas and its eventual decomposition inside the acoustic cavitation bubble? The present opinion paper discusses numerically the ways in which the nature of dissolved gas i.e. N2 O2 Ar and air may influence the kinetics of sonochemical hydrogen formation. The model evaluates the extent of direct physical effects i.e. dynamics of bubble oscillation and collapse events if any against indirect chemical effects i.e. the chemical reactions of free radicals formation and consequently hydrogen emergence it demonstrates the improvement in the sonochemical hydrogen production under argon and sheds light on several misinterpretations reported in earlier works due to wrong assumptions mainly related to initial conditions. The paper also highlights the role of dissolved gases in the nature of created cavitation and hence the eventual bubble population phenomena that may prevent the achievement of the sonochemical activity. This is particularly demonstrated experimentally using a 20 kHz Sinaptec transducer and a Photron SA 5 high speed camera in the case of CO2-saturated water where degassing bubbles are formed instead of transient cavitation.
Influence of Microstructural Anisotropy on the Hydrogen-assisted Fracture of Notched Samples of Progressively Drawn Pearlitic Steel
Dec 2020
Publication
In this study fracture surfaces of notched specimens of pearlitic steels subjected to constant extension rate tests (CERTs) are analyzed in an environment causing hydrogen assisted fracture. In order to obtain general results both different notched geometries (to generate quite distinct stress triaxiality distributions in the vicinity of the notch tip) and diverse loading rates were used. The fracture surfaces were classified in relation to four micromechanical models of hydrogen-assisted micro-damage. To this end fractographic analysis in each fracture surface was carried out with a scanning electron microscopy. Generated results increase the number of micromechanical models found in the scientific literature.
Evaluation of Strength and Fracture Toughness of Ferritic High Strength Steels Under Hydrogen Environments
Sep 2017
Publication
The susceptibility of high strength ferritic steels to hydrogen-assisted fracture in hydrogen gas is usually evaluated by mechanical testing in high-pressure hydrogen gas or testing in air after pre-charging the specimens with hydrogen. We have used this second methodology conventionally known as internal hydrogen. Samples were pre-charged in an autoclave under 195 bar of pure hydrogen at 450ºC for 21 hours.<br/>Different chromium-molybdenum steels submitted to diverse quenching and tempering heat treatments were employed. Diverse specimens were also used: small cylindrical samples to measure hydrogen contents and the kinetics of hydrogen egression at room temperature tensile specimens notched tensile specimens with a sharp notch and also compact fracture toughness specimens. Fractographic examination in SEM was finally performed in order to know the way hydrogen modify fracture micromechanisms.<br/>The presence of hydrogen barely affects the conventional tensile properties of the steels but it clearly alters their notched tensile strength and fracture toughness. This is due to the strong effect that stress triaxiality (dependent also on the steel yield strength) has on the accumulation of hydrogen on the notch/crack front region being the displacement rate used in the test another important variable to be controlled due to its influence on hydrogen diffusion to the embrittled process zone. Moreover the modification of fracture micromechanisms was finally determined being ductile (initiation growth and coalescence of microvoids) in the absence of hydrogen and brittle and intergranular under the material conditions of maximum embrittlement.
Dislocation and Twinning Behaviors in High Manganese Steels in Respect to Hydrogen and Aluminum Alloying
Dec 2018
Publication
The dislocation and twinning evolution behaviors in high manganese steels Fe-22Mn-0.6C and Fe-17Mn-1.5Al-0.6C have been investigated under tensile deformation with and without diffusive hydrogen. The notched tensile tests were interrupted once primary cracks were detected using the applied direct current potential drop measurement. In parallel the strain distribution in the vicinity of the crack was characterized by digital image correlation using GOM optical system. The microstructure surrounding the crack was investigated by electron backscatter diffraction. Electron channeling contrast imaging was applied to reveal the evolution of dislocations stacking faults and deformation twins with respect to the developed strain gradient and amount of hydrogen. The results show that the diffusive hydrogen at the level of 26 ppm has a conspicuous effect on initiating stacking faults twin bundles and activating multiple deformation twinning systems in Fe-22Mn-0.6C. Eventually the interactions between deformation twins and grain boundaries lead to grain boundary decohesion in this material. In comparison hydrogen does not obviously affect the microstructure evolution namely the twinning thickness and the amount of activated twinning systems in Fe-17Mn-1.5Al-0.6C. The Al-alloyed grade reveals a postponed nucleation of deformation twins delayed onset of the secondary twinning system and develops finer twinning lamellae in comparison to the Al-free material. These observations explain the improved resistance to hydrogen-induced cracking in Al-alloyed TWIP steels.
Effect of Hydrogen on Short Crack Propagation in SA508 Grade 3 Class I Low Alloy Steel Under Cyclic Loading
Aug 2019
Publication
The effect of hydrogen on short crack propagation under cyclic loading in SA508 Grade 3 Class I low alloy steel is investigated. This low alloy steel is used in manufacturing of pressure vessel installed in Indian nuclear power plants. During operation these pressure vessels are subjected to continuous supply of pressurized hot water at 600 K and hence are susceptible to hydrogen embrittlement. In past research has been conducted on the effect of hydrogen embrittlement on long fatigue crack propagation in this material but the mechanistic understanding and correlation of hydrogen embrittlement with microstructural features in the material can be understood well by studying the effect of hydrogen embrittlement on short fatigue crack propagation. Short fatigue cracks are of the order of 10 µm to 1 mm and unlike long cracks these short cracks strongly interact with the microstructural features in the material such as grain/phase boundaries. The effect of hydrogen embrittlement on short crack propagation is studied by artificial hydrogen charging of the material through electrochemical process. The single edge notch tension (SENT) specimens with an initial notch of the order of 85 to 90 µm are used to study the short crack propagation. The short cracks in hydrogen charged samples initiated from the notch at lower number of loading cycles as compared to the uncharged notched samples for the same value of applied stress range (Δσ). After initiation the short fatigue crack in hydrogen charged samples propagated at higher rate as compared to uncharged samples. This dissimilarity in crack propagation behavior is due to the difference in the interaction of short fatigue crack with the microstructural features for a hydrogen charged and uncharged samples.
Transitioning to Hydrogen - Assessing the Engineering Risks and Uncertainties
Jun 2016
Publication
Transitioning to Hydrogen a joint report from five engineering organisations focuses on the engineering challenges of replacing natural gas in the gas distribution network with hydrogen in order to reduce emissions. The production of this report is timely following the commitment from Government this week to legislate for net zero emissions by 2050. It is expected that hydrogen will play a big part in the reduction of emissions from the heating transport and industrial sectors.<br/><br/>The report concludes that there is no reason why repurposing the gas network to hydrogen cannot be achieved but there are some engineering risks and uncertainties that need to be addressed. In the development of the report many questions were posed and members of IMechE IChemE IET and IGEM were surveyed to better understand the challenges faced by the hydrogen production and gas industries planning to undertake this ambitious transition. Further information was obtained from the Health and Safety Laboratories.<br/><br/>The report also highlights 20 ongoing projects in the UK that are looking at various aspects of hydrogen production distribution and use.
Reversible Hydrogen Storage Using Nanocomposites
Jul 2020
Publication
In the field of energy storage recently investigated nanocomposites show promise in terms of high hydrogen uptake and release with enhancement in the reaction kinetics. Among several carbonaceous nanovariants like carbon nanotubes (CNTs) fullerenes and graphitic nanofibers reveal reversible hydrogen sorption characteristics at 77 K due to their van der Waals interaction. The spillover mechanism combining Pd nanoparticles on the host metal-organic framework (MOF) show room temperature uptake of hydrogen. Metal or complex hydrides either in the nanocomposite form and its subset nanocatalyst dispersed alloy phases illustrate the concept of nanoengineering and nanoconfinement of particles with tailor-made properties for reversible hydrogen storage. Another class of materials comprising polymeric nanostructures such as conducting polyaniline and their functionalized nanocomposites are versatile hydrogen storage materials because of their unique size high specific surface-area pore-volume and bulk properties. The salient features of nanocomposite materials for reversible hydrogen storage are reviewed and discussed.
Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications
Jan 2018
Publication
In the near future the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for e.g. the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs such as the blended-wing-body enable a more flexible integration of new storage technologies and energy converters e.g. cryogenic hydrogen tanks and fuel cells. Against this background a tank-design model is formulated which considers geometrical mechanical and thermal aspects as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass which is further improved by the use of a fuel cell.
Hydrogen Embrittlement in Advanced High Strength Steels and Ultra High Strength Steels: A New Investigation Approach
Dec 2018
Publication
In order to reduce CO2 emissions and fuel consumption and to respect current environmental norms the reduction of vehicles weight is a primary target of the automotive industry. Advanced High Strength Steels (AHSS) and Ultra High Strength Steel (UHSS) which present excellent mechanical properties are consequently increasingly used in vehicle manufacturing. The increased strength to mass ratio compensates the higher cost per kg and AHSS and UHSS are proving to be cost-effective solutions for the body-in-white of mass market products.
In particular aluminized boron steel can be formed in complex shapes with press hardening processes acquiring high strength without distortion and increasing protection from crashes. On the other hand its characteristic martensitic microstructure is sensitive to hydrogen delayed fracture phenomena and at the same time the dew point in the furnace can produce hydrogen consequently to the high temperature reaction between water and aluminum. The high temperature also promotes hydrogen diffusion through the metal lattice under the aluminum-silicon coating thus increasing the diffusible hydrogen content. However after cooling the coating acts as a strong barrier preventing the hydrogen from going out of the microstructure. This increases the probability of delayed fracture. As this failure brings to the rejection of the component during production or even worse to the failure in its operation diffusible hydrogen absorbed in the component needs to be monitored during the production process.
For fast and simple measurements of the response to diffusible hydrogen of aluminized boron steel one of the HELIOS innovative instruments was used HELIOS II. Unlike the Devanathan cell that is based on a double electrochemical cell HELIOS II is based on a single cell coupled with a solid-state sensor. The instrument is able to give an immediate measure of diffusible hydrogen content in sheet steels semi-products or products avoiding time-consuming specimen palladium coating with a guided procedure that requires virtually zero training.
Two examples of diffusible hydrogen analyses are given for Usibor®1500-AS one before hot stamping/ quenching and one after hot stamping suggesting that the increase in the number of dislocations during hot stamping could be the main responsible for the lower apparent diffusivity of hydrogen.
In particular aluminized boron steel can be formed in complex shapes with press hardening processes acquiring high strength without distortion and increasing protection from crashes. On the other hand its characteristic martensitic microstructure is sensitive to hydrogen delayed fracture phenomena and at the same time the dew point in the furnace can produce hydrogen consequently to the high temperature reaction between water and aluminum. The high temperature also promotes hydrogen diffusion through the metal lattice under the aluminum-silicon coating thus increasing the diffusible hydrogen content. However after cooling the coating acts as a strong barrier preventing the hydrogen from going out of the microstructure. This increases the probability of delayed fracture. As this failure brings to the rejection of the component during production or even worse to the failure in its operation diffusible hydrogen absorbed in the component needs to be monitored during the production process.
For fast and simple measurements of the response to diffusible hydrogen of aluminized boron steel one of the HELIOS innovative instruments was used HELIOS II. Unlike the Devanathan cell that is based on a double electrochemical cell HELIOS II is based on a single cell coupled with a solid-state sensor. The instrument is able to give an immediate measure of diffusible hydrogen content in sheet steels semi-products or products avoiding time-consuming specimen palladium coating with a guided procedure that requires virtually zero training.
Two examples of diffusible hydrogen analyses are given for Usibor®1500-AS one before hot stamping/ quenching and one after hot stamping suggesting that the increase in the number of dislocations during hot stamping could be the main responsible for the lower apparent diffusivity of hydrogen.
Direct Numerical Simulation of Hydrogen Combustion at Auto-ignitive Conditions Ignition, Stability and Turbulent Reaction-front Velocity
Mar 2021
Publication
Direct Numerical Simulations (DNS) are performed to investigate the process of spontaneous ignition of hydrogen flames at laminar turbulent adiabatic and non-adiabatic conditions. Mixtures of hydrogen and vitiated air at temperatures representing gas-turbine reheat combustion are considered. Adiabatic spontaneous ignition processes are investigated first providing a quantitative characterization of stable and unstable flames. Results indicate that in hydrogen reheat combustion compressibility effects play a key role in flame stability and that unstable ignition and combustion are consistently encountered for reactant temperatures close to the mixture’s characteristic crossover temperature. Furthermore it is also found that the characterization of the adiabatic processes is also valid in the presence of non-adiabaticity due to wall heat-loss. Finally a quantitative characterization of the instantaneous fuel consumption rate within the reaction front is obtained and of its ability at auto-ignitive conditions to advance against the approaching turbulent flow of the reactants for a range of different turbulence intensities temperatures and pressure levels.
Analyzing the Necessity of Hydrogen Imports for Net-zero Emission Scenarios in Japan
Jun 2021
Publication
With Japan’s current plans to reach a fully decarbonized society by 2050 and establish a hydrogen society substantial changes to its energy system need to be made. Due to the limited land availability in Japan significant amounts of hydrogen are planned to be imported to reach both targets. In this paper a novel stochastic version of the open-source multi-sectoral Global Energy System Model in conjunction with a power system dispatch model is used to analyze the impacts of both availability and price of hydrogen imports on the transformation of the Japanese energy system considering a net-zero emission target. This analysis highlights that hydrogen poses a valuable resource in specific sectors of the energy system. Therefore importing hydrogen can indeed positively impact energy system developments although up to 19mt of hydrogen will be imported in the case with the cheapest available hydrogen. In contrast without any hydrogen imports power demand nearly doubles in 2050 compared to 2019 due to extensive electrification in non-electricity sectors. However hydrogen imports are not necessarily required to reach net-zero emissions. In all cases however large-scale investments into renewable energy sources need to be made.
Enhanced Hydrogen Storage of Alanates: Recent Progress and Future Perspectives
Feb 2021
Publication
The global energy crisis and environmental pollution have caused great concern. Hydrogen is a renewable and environmentally friendly source of energy and has potential to be a major alternative energy carrier in the future. Due to its high capacity and relatively low cost of raw materials alanate has been considered as one of the most promising candidates for hydrogen storage. Among them LiAlH4 and NaAlH4 as two representative metal alanates have attracted extensive attention. Unfortunately the high desorption temperature and sluggish kinetics restrict its practical application. In this paper the basic physical and chemical properties as well as the hydrogenation/dehydrogenation reaction mechanism of LiAlH4 and NaAlH4 are briefly reviewed. The recent progress on strategic optimizations toward tuning the thermodynamics and kinetics of the alanate including nanoscaling doping catalysts and compositing modification are emphatically discussed. Finally the coming challenges and the development prospects are also proposed in this review.
Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives
Jan 2021
Publication
Fuel cells as clean power sources are very attractive for the maritime sector which is committed to sustainability and reducing greenhouse gas and atmospheric pollutant emissions from ships. This paper presents a technological review on fuel cell power systems for maritime applications from the past two decades. The available fuels including hydrogen ammonia renewable methane and methanol for fuel cells under the context of sustainable maritime transportation and their pre-processing technologies are analyzed. Proton exchange membrane molten carbonate and solid oxide fuel cells are found to be the most promising options for maritime applications once energy efficiency power capacity and sensitivity to fuel impurities are considered. The types layouts and characteristics of fuel cell modules are summarized based on the existing applications in particular industrial or residential sectors. The various research and demonstration projects of fuel cell power systems in the maritime industry are reviewed and the challenges with regard to power capacity safety reliability durability operability and costs are analyzed. Currently power capacity costs and lifetime of the fuel cell stack are the primary barriers. Coupling with batteries modularization mass production and optimized operating and control strategies are all important pathways to improve the performance of fuel cell power systems.
Investigation of the Hydrogen Embrittlement Susceptibility of T24 Boiler Tubing in the Context of Stress Corrosion Cracking of its Welds
Dec 2018
Publication
For the membrane and spiral walls of the new USC boilers the advanced T24 material was developed. In 2010 however extensive T24 tube weld cracking during the commissioning phase of several newly built boilers was observed. As the dominant root cause Hydrogen Induced - Stress Corrosion Cracking was reported. An investigation into the interaction of the T24 material with hydrogen was launched in order to compare its hydrogen embrittlement susceptibility with that of the T12 steel commonly used for older boiler evaporators. Both base materials and simulated Heat Affected Zone (HAZ) microstructures were tested. Total and diffusible hydrogen in the materials after electrochemical charging were measured. Thermo Desorption Spectrometry was used to gain insights into the trapping behaviour and the apparent diffusion coefficient at room temperature was determined. Based on the hardness and the diffusible hydrogen pick-up capacity of the materials it was concluded that T12 is less susceptible to hydrogen embrittlement than T24 as base material as well as in the HAZ condition and that the HAZ of T24 is more susceptible to hydrogen embrittlement than the base material both in the as welded and in the Post Weld Heat Treated (PWHT) condition. However based on the results of this investigation it could not be determined if the T24 HAZ is less susceptible to hydrogen embrittlement after PWHT.
Accelerating to Net Zero with Hydrogen Blending Standards Development in the UK, Canada and the US - Part 2
Mar 2021
Publication
Hydrogen is expected to play a critical role in the move to a net-zero economy. However large-scale deployment is still in its infancy and there is still much to be done before we can blend hydrogen in large volumes into gas networks and ramp up the production that is required to meet demands of the energy transport and industry sectors. KTN Global Alliance will host two webinars to explore these challenges and opportunities in hydrogen blending on the 2nd and 3rd March 2021.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter.
Part 1 Highlights and Perspectives from the UK can be found here.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter.
Part 1 Highlights and Perspectives from the UK can be found here.
Ultrasonic-assisted Catalytic Transfer Hydrogenation for Upgrading Pyrolysis-oil
Feb 2021
Publication
Recent interest in biomass-based fuel blendstocks and chemical compounds has stimulated research efforts on conversion and upgrading pathways which are considered as critical commercialization drivers. Existing pre-/post-conversion pathways are energy intense (e.g. pyrolysis and hydrogenation) and economically unsustainable thus more efficient process solutions can result in supporting the renewable fuels and green chemicals industry. This study proposes a process including biomass conversion and bio-oil upgrading using mixed fast and slow pyrolysis conversion pathway as well as sono-catalytic transfer hydrogenation (SCTH) treatment process. The proposed SCTH treatment employs ammonium formate as a hydrogen transfer additive and palladium supported on carbon as the catalyst. Utilizing SCTH bio-oil molecular bonds were broken and restructured via the phenomena of cavitation rarefaction and hydrogenation with the resulting product composition investigated using ultimate analysis and spectroscopy. Additionally an in-line characterization approach is proposed using near-infrared spectroscopy calibrated by multivariate analysis and modelling. The results indicate the potentiality of ultrasonic cavitation catalytic transfer hydrogenation and SCTH for incorporating hydrogen into the organic phase of bio-oil. It is concluded that the integration of pyrolysis with SCTH can improve bio-oil for enabling the production of fuel blendstocks and chemical compounds from lignocellulosic biomass.
Detection, Characterization and Sizing of Hydrogen Induced Cracking in Pressure Vessels Using Phased Array Ultrasonic Data Processing
Jul 2016
Publication
Pressure vessels operating in sour service conditions in refinery environments can be subject to the risk of H₂S cracking resulting from the hydrogen entering into the material. This risk which is related to the specific working conditions and to the quality of the steel used shall be properly managed in order to maintain the highest safety at a cost-effective level.<br/>Nowadays the typical management strategy is based on a risk based inspection (RBI) evaluation to define the inspection plan used in conjunction with a fitness for service (FFS) approach in defining if the vessel although presenting dangerous defects such as cracks can still be considered “fit for purpose” for a given time window based on specific fracture mechanics analysis.<br/>These vessels are periodically subject to non-destructive evaluation typically ultrasonic testing. Phased Array (PA) ultrasonic is the latest technology more and more used for this type of application.<br/>This paper presents the design and development of an optimized Phased Array ultrasonic inspection technique for the detection and sizing of hydrogen induced cracking (HIC) type flaws used as reference for comparison. Materials used containing natural operational defects were inspected in “as-service” conditions.<br/>Samples have then been inspected by means of a “full matrix capture” (FMC) acquisition process followed by “total focusing method” (TFM) data post processing. FCM-TFM data have been further post-processed and then used to create a 3D geometrical reconstruction of the volume inspected. Results obtained show the significant improvement that FMC/TFM has over traditional PA inspection techniques both in terms of sensitivity and resolution for this specific type of defect. Moreover since the FMC allows for the complete time domain signal to be captured from every element of a linear array probe the full set of data is available for post-processing.<br/>Finally the possibility to reconstruct the geometry of the component from the scans including the defects present in its volume represents the ideal solution for a reliable data transferring process to the engineering function for the subsequent FFS analysis.
Options for Producing Low-carbon Hydrogen at Scale
Feb 2018
Publication
Low-carbon hydrogen has the potential to play a significant role in tackling climate change and poor air quality. This policy briefing considers how hydrogen could be produced at a useful scale to power vehicles heat homes and supply industrial processes.
Four groups of hydrogen production technologies are examined:
Thermochemical Routes to Hydrogen
These methods typically use heat and fossil fuels. Steam methane reforming is the dominant commercial technology and currently produces hydrogen on a large scale but is not currently low carbon. Carbon capture is therefore essential with this process. Innovative technology developments may also help and research is underway. Alternative thermal methods of creating hydrogen indicate biomass gasification has potential. Other techniques at a low technology readiness level include separation of hydrogen from hydrocarbons using microwaves.
Electrolytic Routes to Hydrogen
Electrolytic hydrogen production also known as electrolysis splits water into hydrogen and oxygen using electricity in an electrolysis cell. Electrolysis produces pure hydrogen which is ideal for low temperature fuel cells for example in electric vehicles. Commercial electrolysers are on the market and have been in use for many years. Further technology developments will enable new generation electrolysers to be commercially competitive when used at scale with fluctuating renewable energy sources.
Biological Routes to Hydrogen
Biological routes usually involve the conversion of biomass to hydrogen and other valuable end products using microbial processes. Methods such as anaerobic digestion are feasible now at a laboratory and small pilot scale. This technology may prove to have additional or greater impact and value as route for the production of high value chemicals within a biorefinery concept.
Solar to Fuels Routes to Hydrogen
A number of experimental techniques have been reported the most developed of which is ‘solar to fuels’ - a suite of technologies that typically split water into hydrogen and oxygen using solar energy. These methods have close parallels with the process of photosynthesis and are often referred to as ‘artificial photosynthesis’ processes. The research is promising though views are divided on its ultimate utility. Competition for space will always limit the scale up of solar to fuels.
The briefing concludes that steam methane reforming and electrolysis are the most likely technologies to be deployed to produce low-carbon hydrogen at volume in the near to mid-term providing that the challenges of high levels of carbon capture (for steam methane reforming) and cost reduction and renewable energy sources (for electrolysis) can be overcome.
Four groups of hydrogen production technologies are examined:
Thermochemical Routes to Hydrogen
These methods typically use heat and fossil fuels. Steam methane reforming is the dominant commercial technology and currently produces hydrogen on a large scale but is not currently low carbon. Carbon capture is therefore essential with this process. Innovative technology developments may also help and research is underway. Alternative thermal methods of creating hydrogen indicate biomass gasification has potential. Other techniques at a low technology readiness level include separation of hydrogen from hydrocarbons using microwaves.
Electrolytic Routes to Hydrogen
Electrolytic hydrogen production also known as electrolysis splits water into hydrogen and oxygen using electricity in an electrolysis cell. Electrolysis produces pure hydrogen which is ideal for low temperature fuel cells for example in electric vehicles. Commercial electrolysers are on the market and have been in use for many years. Further technology developments will enable new generation electrolysers to be commercially competitive when used at scale with fluctuating renewable energy sources.
Biological Routes to Hydrogen
Biological routes usually involve the conversion of biomass to hydrogen and other valuable end products using microbial processes. Methods such as anaerobic digestion are feasible now at a laboratory and small pilot scale. This technology may prove to have additional or greater impact and value as route for the production of high value chemicals within a biorefinery concept.
Solar to Fuels Routes to Hydrogen
A number of experimental techniques have been reported the most developed of which is ‘solar to fuels’ - a suite of technologies that typically split water into hydrogen and oxygen using solar energy. These methods have close parallels with the process of photosynthesis and are often referred to as ‘artificial photosynthesis’ processes. The research is promising though views are divided on its ultimate utility. Competition for space will always limit the scale up of solar to fuels.
The briefing concludes that steam methane reforming and electrolysis are the most likely technologies to be deployed to produce low-carbon hydrogen at volume in the near to mid-term providing that the challenges of high levels of carbon capture (for steam methane reforming) and cost reduction and renewable energy sources (for electrolysis) can be overcome.
Water Photo-Electrooxidation Using Mats of TiO2 Nanorods, Surface Sensitized by a Metal–Organic Framework of Nickel and 1,2-Benzene Dicarboxylic Acid
Apr 2021
Publication
Photoanodes comprising a transparent glass substrate coated with a thin conductive film of fluorine-doped tin oxide (FTO) and a thin layer of a photoactive phase have been fabricated and tested with regard to the photo-electro-oxidation of water into molecular oxygen. The photoactive layer was made of a mat of TiO2 nanorods (TDNRs) of micrometric thickness. Individual nanorods were successfully photosensitized with nanoparticles of a metal–organic framework (MOF) of nickel and 12-benzene dicarboxylic acid (BDCA). Detailed microstructural information was obtained from SEM and TEM analysis. The chemical composition of the active layer was determined by XRD XPS and FTIR analysis. Optical properties were determined by UV–Vis spectroscopy. The water photooxidation activity was evaluated by linear sweep voltammetry and the robustness was assessed by chrono-amperometry. The OER (oxygen evolution reaction) photo-activity of these photoelectrodes was found to be directly related to the amount of MOF deposited on the TiO2 nanorods and was therefore maximized by adjusting the MOF content. The microscopic reaction mechanism which controls the photoactivity of these photoelectrodes was analyzed by photo-electrochemical impedance spectroscopy. Microscopic rate parameters are reported. These results contribute to the development and characterization of MOF-sensitized OER photoanodes.
Energy Transition: Measurement Needs Within the Hydrogen Industry
Dec 2017
Publication
Hydrogen in the UK is beginning to shift from hypothetical debates to practical demonstration projects. An ever-growing evidence base has showcased how the costs of hydrogen and its barriers to entry are reducing such that it now has practical potential to contribute to the decarbonisation of the UK's energy sector.
Despite this hydrogen has yet to have wide commercial uptake due in part to a number of barriers where measurement plays a critical role. To accelerate the shift towards the hydrogen economy these challenges have been identified and prioritised by NPL.
The report Energy transition: Measurement needs within the hydrogen industry outlines the challenges identified. The highest priority issues are:
This Document can be downloaded from their website
Despite this hydrogen has yet to have wide commercial uptake due in part to a number of barriers where measurement plays a critical role. To accelerate the shift towards the hydrogen economy these challenges have been identified and prioritised by NPL.
The report Energy transition: Measurement needs within the hydrogen industry outlines the challenges identified. The highest priority issues are:
- Material development for fuel cells and electrolysers to reduce costs and assess critical degradation mechanisms – extending lifetime and durability is key to the commercialisation of these technologies.
- Impact assessment of added odorant to hydrogen to aid leak detection. Measurement of its impact during pipeline transportation and on the end-use application (particularly fuel cell technology) will be important to provide assurance that it will not affect lifetime and durability.
- Determination of the blend ratio when hydrogen is mixed with natural gas in the gas grid. Accurate flow rate measurement and validated metering methods are needed to ensure accurate billing of the consumer.
- Measurement of the combustion properties of hydrogen including flame detection and propagation temperature and nitrogen oxides (NOx) emissions should it be used for heat applications to ensure existing and new appliances are suitable for hydrogen.
- Assessment of the suitability of existing gas infrastructure and materials for hydrogen transportation. Building an understanding of what adaptations might need to be made to avoid for example air permeation metal embrittlement and hydrogen leakage.
- Validated techniques for hydrogen storage which will require measurement of the efficiency and capacity of each mechanism through robust metering leakage detection and purity analysis to ensure they are optimised for the storage of hydrogen gas.
This Document can be downloaded from their website
Criticality and Life-Cycle Assessment of Materials Used in Fuel-Cell and Hydrogen Technologies
Mar 2021
Publication
The purpose of this paper is to obtain relevant data on materials that are the most commonly used in fuel-cell and hydrogen technologies. The focus is on polymer-electrolyte-membrane fuel cells solid-oxide fuel cells polymer-electrolyte-membrane water electrolysers and alkaline water electrolysers. An innovative methodological approach was developed for a preliminary material assessment of the four technologies. This methodological approach leads to a more rapid identification of the most influential or critical materials that substantially increase the environmental impact of fuel-cell and hydrogen technologies. The approach also assisted in amassing the life-cycle inventories—the emphasis here is on the solid-oxide fuel-cell technology because it is still in its early development stage and thus has a deficient materials’ database—that were used in a life-cycle assessment for an in-depth material-criticality analysis. All the listed materials—that either are or could potentially be used in these technologies—were analysed to give important information for the fuel-cell and hydrogen industries the recycling industry the hydrogen economy as well as policymakers. The main conclusion from the life-cycle assessment is that the polymer-electrolyte membrane water electrolysers have the highest environmental impacts; lower impacts are seen in polymer-electrolyte-membrane fuel cells and solid-oxide fuel cells while the lowest impacts are observed in alkaline water electrolysers. The results of the material assessment are presented together for all the considered materials but also separately for each observed technology.
Controllable H2 Generation by Formic Acid Decomposition on a Novel Pd/Templated Carbon Catalyst
Nov 2020
Publication
A novel Pd/templated carbon catalyst (Pd/TC) was developed characterized and tested in the dehydrogenation of formic acid (FA) under mild conditions with the possibility to control the H2 generation rate in the absence or presence of HCOONa (SF) by adjusting the Pd:FA and/or FA:SF ratios. The characterization results of the templated carbon obtained by the chemical vapor deposition of acetylene on NaY zeolite revealed different structural and morphological properties compared to other C-based supports. Therefore it was expected to induce a different catalytic behavior for the Pd/TC catalyst. Indeed the TC-supported Pd catalyst exhibited superior activity in the decomposition of FA even at room temperature with turnover frequencies (TOFs) of up to 143.7 and 218.8 h−1 at 60 °C. The H2 generation rate increased with an increasing temperature while the H2 yield increased with a decreasing FA concentration. Constant generation of gaseous flow (H2 + CO2) was achieved for 11 days by the complete dehydrogenation of FA at room temperature using a 2 M FA solution and Pd:FA = 1:2100. The presence of SF in the reaction medium significantly enhanced the H2 generation rate (535 h−1 for FA:SF = 3:1 and 60 °C).
Improve Hydrogen Economy for Vehicular Fuel Cell System via Investigation and Control of Optimal Operating Oxygen Excess Ratio
Apr 2022
Publication
This study investigates and controls the optimal operating oxygen excess ratio (OER) for PEMFC which effectively prevents oxygen starvation and improves the hydrogen economy of proton exchange membrane fuel cells (PEMFC). Firstly the PEMFC output characteristic model and the five-order nonlinear air supply system model are established. Moreover an adaptive algebraic observer was developed to observe the partial pressure of gas in PEMFC and further reconstruct OER. Secondly to achieve the minimum hydrogen consumption under the required power the reference OER is determined by analyzing the PEMFC system output power with its minimum current. Finally the super-twisting algorithm is adopted to track reference OER. Simulation results show that the average absolute observation errors of oxygen nitrogen and cathode pressures under the Highway Fuel Economy Test are 1351.1 Pa (5.1%) 1724.2 Pa (0.9%) and 409.9 Pa (1.6%) respectively. The OER adjust average absolute error is 0.03. Compared with the commonly used fixed OER (e.g. OER of 1.5 and 2.3) the optimal OER strategy can reduce the hydrogen consumption of the PEMFC system by 5.2% and 1.8% respectively. Besides a DSP hardware in loop test is conducted to show the real-time performance of the proposed optimal method.
Life Cycle Assessment of Fuel Cell Vehicles Considering the Detailed Vehicle Components: Comparison and Scenario Analysis in China Based on Different Hydrogen Production Schemes
Aug 2019
Publication
Numerous studies concerning the life cycle assessment of fuel cell vehicles (FCVs) have been conducted. However little attention has been paid to the life cycle assessment of an FCV from the perspective of the detailed vehicle components. This work conducts the life cycle assessment of Toyota Mirai with all major components considered in a Chinese context. Both the vehicle cycle and the fuel cycle are included. Both comprehensive resources and energy consumption and comprehensive environmental emissions of the life cycles are investigated. Potential environmental impacts are further explored based on CML 2001 method. Then different hydrogen production schemes are compared to obtain the most favorable solution. To explore the potential of the electrolysis the scenario analysis of the power structure is conducted. The results show that the most mineral resources are consumed in the raw material acquisition stage the most fossil energy is consumed in the use stage and global warming potential (GWP) value is fairly high in all life cycle stages of Toyota Mirai using electrolyzed hydrogen. For hydrogen production schemes the scenario analysis indicates that simply by optimizing the power structure the environmental impact of the electrolysis remains higher than other schemes. When using the electricity from hydropower or wind power the best choice will be the electrolysis.
A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium—Palladium Nanoparticles
Jun 2021
Publication
The present study investigates a process for the selective production of hydrogen from the catalytic decomposition of formic acid in the presence of iridium and iridium–palladium nanoparticles under various conditions. It was found that a loading of 1 wt.% of 2% palladium in the presence of 1% iridium over activated charcoal led to a 43% conversion of formic acid to hydrogen at room temperature after 4 h. Increasing the temperature to 60 °C led to further decomposition and an improvement in conversion yield to 63%. Dilution of formic acid from 0.5 to 0.2 M improved the decomposition reaching conversion to 81%. The reported process could potentially be used in commercial applications.
Enhanced Hydrogen Generation Efficiency of Methanol using Dielectric Barrier Discharge Plasma Methodology and Conducting Sea Water as an Electrode
Aug 2020
Publication
In this work methanol decomposition method has been discussed for the production of hydrogen gas with the application of plasma. A simple dielectric barrier discharge (DBD) plasma reactor was designed for this purpose with two types of electrode. The DBD plasma reactor was experimented by substituting one of the metal electrodes with feebly conducting sea water which yielded better efficiency in producing hydrogen gas. Experimental parameters such as; discharge voltage and time were varied by maintaining a discharge gap of 1.5 mm and the plasma discharge characteristics were studied. Filamentary type micro-discharges were found to be formed which was observed as numerous streamer clusters in the current waveform. Gas chromatographic study confirmed the production of hydrogen gas with residence time around 3.6 min. Although the concentration (%) of H2 was high (98.1 %) and consistent with copper electrode assembly the rate of formation and concentration was found to be the highest (98.7 %) for water electrode for specific discharge voltage. The energy efficiency was found to be 0.5 mol H2/kWh and 1.2 mol H2/kWh for metal (Cu) and water electrodes respectively. The electrode material significantly affects the plasma condition and hence the rate of hydrogen production. Compositional analysis of the water used as electrode showed a minimal change in the composition even after the completion of the experiment as compared to the untreated water. Methanol degradation study shows the presence of untreated methanol in the residue of the plasma reactor which has been confirmed from the absorption spectra.
Instantaneous Hydrogen Production from Ammonia by Non-thermal Arc Plasma Combining with Catalyst
Jul 2021
Publication
Owing to the storage and transportation problems of hydrogen fuel exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature electron density the hydrogen production rate and energy efficiency were investigated. Experimental results show that the optical emission spectrum of NTAP working with pure ammonia medium was dominated by the atom spectrum of Hα Hβ and molecular spectrum of NH component. Under the optimum experimental condition of plasma discharge the highest energy efficiency of hydrogen production reached 783.4 L/kW·h at NH3 gas flow rate of 30 SLM. When the catalyst was added and heated by the NTAP simultaneously the energy efficiency further increased to 1080.0 L/kW·h.
Hydrogeochemical Modeling to Identify Potential Risks of Underground Hydrogen Storage in Depleted Gas Fields
Nov 2018
Publication
Underground hydrogen storage is a potential way to balance seasonal fluctuations in energy production from renewable energies. The risks of hydrogen storage in depleted gas fields include the conversion of hydrogen to CH4(g) and H2S(g) due to microbial activity gas–water–rock interactions in the reservoir and cap rock which are connected with porosity changes and the loss of aqueous hydrogen by diffusion through the cap rock brine. These risks lead to loss of hydrogen and thus to a loss of energy. A hydrogeochemical modeling approach is developed to analyze these risks and to understand the basic hydrogeochemical mechanisms of hydrogen storage over storage times at the reservoir scale. The one-dimensional diffusive mass transport model is based on equilibrium reactions for gas–water–rock interactions and kinetic reactions for sulfate reduction and methanogenesis. The modeling code is PHREEQC (pH-REdox-EQuilibrium written in the C programming language). The parameters that influence the hydrogen loss are identified. Crucial parameters are the amount of available electron acceptors the storage time and the kinetic rate constants. Hydrogen storage causes a slight decrease in porosity of the reservoir rock. Loss of aqueous hydrogen by diffusion is minimal. A wide range of conditions for optimized hydrogen storage in depleted gas fields is identified.
Techno-Economics Optimization of H2 and CO2 Compression for Renewable Energy Storage and Power-to-Gas Applications
Nov 2021
Publication
The decarbonization of the industrial sector is imperative to achieve a sustainable future. Carbon capture and storage technologies are the leading options but lately the use of CO2 is also being considered as a very attractive alternative that approaches a circular economy. In this regard power to gas is a promising option to take advantage of renewable H2 by converting it together with the captured CO2 into renewable gases in particular renewable methane. As renewable energy production or the mismatch between renewable production and consumption is not constant it is essential to store renewable H2 or CO2 to properly run a methanation installation and produce renewable gas. This work analyses and optimizes the system layout and storage pressure and presents an annual cost (including CAPEX and OPEX) minimization. Results show the proper compression stages need to achieve the storage pressure that minimizes the system cost. This pressure is just below the supercritical pressure for CO2 and at lower pressures for H2 around 67 bar. This last quantity is in agreement with the usual pressures to store and distribute natural gas. Moreover the H2 storage costs are higher than that of CO2 even with lower mass quantities; this is due to the lower H2 density compared with CO2 . Finally it is concluded that the compressor costs are the most relevant costs for CO2 compression but the storage tank costs are the most relevant in the case of H2.
Hydrogen Stress Cracking Behaviour in Dissimilar Welded Joints of Duplex Stainless Steel and Carbon Steel
Jun 2021
Publication
As the need for duplex stainless steel (DSS) increases it is necessary to evaluate hydrogen stress cracking (HSC) in dissimilar welded joints (WJs) of DSS and carbon steel. This study aims to investigate the effect of the weld microstructure on the HSC behaviour of dissimilar gas-tungsten arc welds of DSS and carbon steel. In situ slow-strain rate testing (SSRT) with hydrogen charging was conducted for transverse WJs which fractured in the softened heat-affected zone of the carbon steel under hydrogen-free conditions. However HSC occurred at the martensite band and the interface of the austenite and martensite bands in the type-II boundary. The band acted as an HSC initiation site because of the presence of a large amount of trapped hydrogen and a high strain concentration during the SSRT with hydrogen charging. Even though some weld microstructures such as the austenite and martensite bands in type-II boundaries were harmless under normal hydrogen-free conditions they had a negative effect in a hydrogen atmosphere resulting in the premature rupture of the weld. Eventually a premature fracture occurred during the in situ SSRT in the type-II boundary because of the hydrogen-enhanced strain-induced void (HESIV) and hydrogen-enhanced localised plasticity (HELP) mechanisms.
Hydrogen: Untapped Energy?
Jan 2012
Publication
Hydrogen has potential applications across our future energy systems due particularly to its relatively high energy weight ratio and because it is emission-free at the point of use. Hydrogen is also abundant and versatile in the sense that it could be produced from a variety of primary energy sources and chemical substances including water and used to deliver power in a variety of applications including fuel cell combined heat and power technologies. As a chemical feedstock hydrogen has been used for several decades and such expertise could be fed back into the relatively new areas of utilising hydrogen to meet growing energy demands.<br/>The UK interest in hydrogen is also growing with various industrial academic and governmental organisations investigating how hydrogen could be part of a diverse portfolio of options for a low carbon future. While hydrogen as an alternative fuel is yet to command mass-appeal in the UK energy market IGEM believes hydrogen is capable of allowing us to use the wide range of primary energy sources at our disposal in a much greener and sustainable way.<br/>IGEM also sees hydrogen playing a small but key role in the gas industry whereby excess renewable energy is used to generate hydrogen which is then injected into the gas grid for widespread distribution and consumption. Various studies suggest admixtures containing up to 10 – 50%v/v hydrogen could be safely administered into the existing natural gas infrastructure. However IGEM understands that this would currently not be permissible under the Gas Safety (Management) Regulations (GS(M)R) for gas conveyance here in the UK. Also proper assessments of the risks associated with adding hydrogen to natural gas streams will need to be performed so that such systems can be managed effectively.<br/>IGEM has also identified a need for standards that cover the safety requirements of hydrogen technologies particularly those pertaining to installations in commercial or domestic environments. IGEM also recommend that the technical measures used to determine separation distances for hydrogen installations particularly refuelling stations are re-assessed through a systematic identification and control of potential sources of ignition.<br/>Hydrogen has the potential to be a significant fuel of the future and part of a diverse portfolio of energy options capable of meeting growing energy needs. This report therefore seeks to demonstrate how hydrogen could be a potential option for energy storage and power generation in a diverse energy system. It also aims to inform the readers on the current state of hydrogen here in the UK and abroad. This report has been assembled for IGEM members interested bodies and the general public.
Enhancing the Hydrogen Storage Properties of AxBy Intermetallic Compounds by Partial Substitution: A Short Review
Dec 2020
Publication
Solid-state hydrogen storage covers a broad range of materials praised for their gravimetric volumetric and kinetic properties as well as for the safety they confer compared to gaseous or liquid hydrogen storage methods. Among them AxBy intermetallics show outstanding performances notably for stationary storage applications. Elemental substitution whether on the A or B site of these alloys allows the effective tailoring of key properties such as gravimetric density equilibrium pressure hysteresis and cyclic stability for instance. In this review we present a brief overview of partial substitution in several AxBy alloys from the long-established AB5 and AB2-types to the recently attractive and extensively studied AB and AB3 alloys including the largely documented solid-solution alloy systems. We not only present classical and pioneering investigations but also report recent developments for each AxBy category. Special care is brought to the influence of composition engineering on desorption equilibrium pressure and hydrogen storage capacity. A simple overview of the AxBy operating conditions is provided hence giving a sense of the range of possible applications whether for low- or high-pressure systems.
Power to Gas Linking Electricity and Gas in a Decarbonising World
Oct 2018
Publication
Since the COP 21 meeting in Paris in December 2015 there has been a growing realisation that with the long-term objective that the energy system should be approaching carbon-neutrality by 2050 continuing to burn significant quantities of fossil-derived natural gas will not be sustainable. If existing natural gas infrastructure is to avoid becoming stranded assets plans to decarbonise the gas system need to be developed as a matter of urgency in the next three to five years given the typical life expectancy of such assets of 20 years or more. One of the options to decarbonise gas is “power-to-gas”: production of hydrogen or renewable methane via electrolysis using surplus renewable electricity. This Energy Insight reviews the status of power-to-gas and makes an assessment of potential future development pathways and the role which it could play in decarbonising the energy system.
Link to document on the OIES website
Link to document on the OIES website
Wittichenite Semiconductor of Cu3BiS3 Films for Efficient Hydrogen Evolution from Solar Driven Photoelectrochemical Water Splitting
Jun 2021
Publication
A highly efficient low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.
Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers
Mar 2017
Publication
Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS) respectively. The physical properties of the coatings are thoroughly characterized by scanning electron atomic force microscopies (SEM AFM); and X-ray diffraction photoelectron spectroscopies (XRD XPS). The Ti coating (50μm) protects the stainless steel substrate against corrosion while a 50- fold thinner layer of Nb decreases the contact resistance by almost one order of magnitude. The Nb/ Ti-coated stainless steel bipolar BPPs endure the harsh environment of the anode for more than 1000h of operation under nominal conditions showing a potential use in PEM electrolyzers for large-scale H2 production from renewables.
Internal Film Cooling with Discrete-Slot Injection Orifices in Hydrogen/Oxygen Engine Thrust Chambers
May 2022
Publication
In the present study a hydrogen and oxygen heat-sink engine thrust chamber and the corresponding injection faceplate with discrete slot orifices are devised to study the cooling performance near the faceplate region. Moreover a set of experiments and numerical simulations are conducted to evaluate the effects of various factors on combustion performance and film cooling efficiency. According to the obtained result the circumferential cooling efficiency has an M-shaped distribution in the near-injector region. Furthermore it has been discovered that when the film flow ratio increases so does the cooling efficiency. This is especially more pronounced in the range of 30–80 mm from the faceplate. The cooling efficiency is found to be proportional to the film flow rate ratio’s 0.4 power. Compared with the slot thickness the reduction in the slot width is more beneficial in improving the cooling efficiency and the advantage is more prominent for small film flow ratios. In addition when the amount of coolant is not enough the cooling effect of the discrete slot film orifice is better than that of the common cylindrical orifice. The present article demonstrates that setting the area ratio of the adjacent film orifices is an effective way to reduce the uneven circumferential distribution of the wall surface temperature.
Modelling of Ventilated Hydrogen Dispersion in Presence of Co-flow and Counter-flow
Sep 2021
Publication
In the framework of the EU-funded project HyTunnel-CS an inter-comparison among partners CFD simulations has been carried out. The simulations are based on experiments conducted within the project by Pro-Science and involve hydrogen release inside a safety vessel testing different ventilation configurations. The different ventilation configurations that were tested are co-flow counter-flow and cross-flow. In the current study co-flow and counter-flow tests along with the no ventilation test (m' = S g/s d = 4 mm ) are simulated with the aim to validate available and well-known CFD codes against such applications and to provide recommendations on modeling strategies. Special focus is given on modeling the velocity field produced by the fan during the experiments. The computational results are compared with the experimental results and a discussion follows regarding the efficiency of each ventilation configuration.
The Potential of Hydrogen Hydrate as a Future Hydrogen Storage Medium
Dec 2020
Publication
Hydrogen is recognized as the “future fuel” and the most promising alternative of fossil fuels due to its remarkable properties including exceptionally high energy content per unit mass (142 MJ/kg) low mass density and massive environmental and economical upsides. A wide spectrum of methods in H2 production especially carbon-free approaches H2purification and H2storage have been investigated to bring this energy source closer to the technological deployment. Hydrogen hydrates are among the most intriguing material paradigms for H2storage due to their appealing properties such as low energy consumption for charge and discharge safety cost-effectiveness and favorable environmental features. Here we comprehensively discuss the progress in understanding of hydrogen clathrate hydrates with an emphasis on charging/discharging rate of H2 (i.e. hydrate formation and dissociation rates) and the storage capacity. A thorough understanding on phase equilibrium of the hydrates and its variation through different materials is provided. The path toward ambient temperature and pressure hydrogen batteries with high storage capacity is elucidated. We suggest that the charging rate of H2 in this storage medium and long cyclic performance are more immediate challenges than storage capacity for technological translation of this storage medium. This review and provided outlook establish a groundwork for further innovation on hydrogen hydrate systems for promising future of hydrogen fuel.
No more items...