Publications
Alternative Energy Technologies as a Cultural Endeavor: A Case Study of Hydrogen and Fuel Cell Development in Germany
Feb 2012
Publication
Background: The wider background to this article is the shift in the energy paradigm from fossil energy sources to renewable sources which should occur in the twenty-first century. This transformation requires the development of alternative energy technologies that enable the deployment of renewable energy sources in transportation heating and electricity. Among others hydrogen and fuel cell technologies have the potential to fulfill this requirement and to contribute to a sustainable and emission-free transport and energy system. However whether they will ever reach broad societal acceptance will not only depend on technical issues alone. The aim of our study is to reveal the importance of nontechnical issues. Therefore the article at hand presents a case study of hydrogen and fuel cells in Germany and aims at highlighting the cultural context that affects their development.<br/>Methods: Our results were obtained from a rich pool of data generated in various research projects through more than 30 in-depth interviews direct observations and document analyses.<br/>Results: We found that individual and collective actors developed five specific supportive practices which they deploy in five diverse arenas of meaning in order to attach certain values to hydrogen and fuel cell technologies.<br/>Conclusions: Based on the results we drew more general conclusions and deducted an overall model for the analysis of culture in technological innovations that is outlined at the end of the article. It constitutes our contribution to the interdisciplinary collaboration required for tackling the shift in this energy paradigm.
A Flammability Limit Model for Hydrogen-air-diluent Mixtures Based on Heat Transfer Characteristics in Flame Propagation
May 2019
Publication
Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for H2-air mixtures up to 300 C and H2-air-He mixtures up to 50 vol % helium concentration. Therefore the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.
Hydrogen Fuel and Electricity Generation from a New Hybrid Energy System Based on Wind and Solar Energies and Alkaline Fuel Cell
Apr 2021
Publication
Excessive consumption of fossil fuels has led to depletion of reserves and environmental crises. Therefore turning to clean energy sources is essential. However these energy sources are intermittent in nature and have problems meeting long-term energy demand. The option suggested by the researchers is to use hybrid energy systems. The aim of this paper is provide the conceptual configuration of a novel energy cycle based on clean energy resources. The novel energy cycle is composed of a wind turbine solar photovoltaic field (PV) an alkaline fuel cell (AFC) a Stirling engine and an electrolyzer. Solar PV and wind turbine convert solar light energy and wind kinetic energy into electricity respectively. Then the generated electricity is fed to water electrolyzer. The electrolyzer decomposes water into oxygen and hydrogen gases by receiving electrical power. So the fuel cell inlets are provided. Next the AFC converts the chemical energy contained in hydrogen into electricity during electrochemical reactions with by-product (heat). The purpose of the introduced cycle is to generate electricity and hydrogen fuel. The relationships defined for the components of the proposed cycle are novel and is examined for the first time. Results showed that the output of the introduced cycle is 10.5 kW of electricity and its electrical efficiency is 56.9%. In addition the electrolyzer uses 9.9 kW of electricity to produce 221.3 grams per hour of hydrogen fuel. The share of the Stirling engine in the output power of the cycle is 9.85% (1033.7 W) which is obtained from the dissipated heat of the fuel cell. In addition wind turbine is capable of generating an average of 4.1 kW of electricity. However 238.6 kW of cycle exergy is destroyed. Two different scenarios are presented for solar field design.
How to Give a renewed Chance to Natural Gas as Feed for the Production of Hydrogen: Electric MSR Coupled with CO2 Mineralization
Sep 2021
Publication
Recent years have seen a growing interest in water electrolysis as a way to store renewable electric energy into chemical energy through hydrogen production. However today the share of renewable energy is still limited and there is the need to have a continuous use of H2 for industrial chemicals applications. Firstly the paper discusses the use of electrolysis - connected to a conventional grid - for a continuous H2 production in terms of associated CO2 emissions and compares such emissions with conventional methane steam reforming (MSR). Therefore it explores the possibility to use electrical methane steam reforming (eMSR) as a way to reduce the CO2 emissions. As a way to have zero emissions carbon mineralization of CO2 is coupled - instead of in-situ carbon capture and storage technology (CCS) - to eMSR; associated relevant cost of production is evaluated for different scenarios. It appears that to minimize such production cost carbonate minerals must be reused in the making of other industrial products since the amount of carbonates generated by the process is quite significant.
The Membrane-assisted Chemical Looping Reforming Concept for Efficient H2 Production with Inherent CO2 Capture: Experimental Demonstration and Model Validation
Feb 2018
Publication
In this work a novel reactor concept referred to as Membrane-Assisted Chemical Looping Reforming (MA-CLR) has been demonstrated at lab scale under different operating conditions for a total working time of about 100 h. This reactor combines the advantages of Chemical Looping such as CO2 capture and good thermal integration with membrane technology for a better process integration and direct product separation in a single unit which in its turn leads to increased efficiencies and important benefits compared to conventional technologies for H2 production. The effect of different operating conditions (i.e. temperature steam-to-carbon ratio or oxygen feed in the reactor) has been evaluated in a continuous chemical looping reactor and methane conversions above 90% have been measured with (ultra-pure) hydrogen recovery from the membranes. For all the cases a maximum recovery factor of around 30% has been measured which could be increased by operating the concept at higher pressures and with more membranes. The optimum conditions have been found at temperatures around 600°C for a steam-to-carbon ratio of 3 and diluted air in the air reactor (5% O2). The complete demonstration has been carried out feeding up to 1 L/min of CH4 (corresponding to 0.6 kW of thermal input) while up to 1.15 L/min of H2 was recovered. Simultaneously a phenomenological model has been developed and validated with the experimental results. In general good agreement is observed with overall deviations below 10% in terms of methane conversion H2 recovery and separation factor. The model allows better understanding of the behavior of the MA-CLR concept and the optimization and design of scaled-up versions of the concept.
A Flexible Analytical Model for Operational Investigation of Solar Hydrogen Plants
Nov 2021
Publication
Hydrogen will become a dominant energy carrier in the future and the efficiency and lifetime cost of its production through water electrolysis is a major research focus. Alongside efforts to offer optimum solutions through plant design and sizing it is also necessary to develop a flexible virtualised replica of renewable hydrogen plants that not only models compatibility with the “plug-and-play” nature of many facilities but that also identifies key elements for optimisation of system operation. This study presents a model for a renewable hydrogen production plant based on real-time historical and present-day datasets of PV connected to a virtualised grid-connected AC microgrid comprising different technologies of batteries electrolysers and fuel cells. Mathematical models for each technology were developed from chemical and physical metrics of the plant. The virtualised replica is the first step toward the implementation of a digital twin of the system and accurate validation of the system behaviour when updated with real-time data. As a case study a solar hydrogen pilot plant consisting of a 60 kW Solar PV a 40 kW PEM electrolyser a 15 kW LIB battery and a 5 kW PEM fuel cell were simulated and analysed. Two effective operational factors on the plant's performance are defined: (i) electrolyser power settings to determine appropriate hydrogen production over twilight periods and/or overnight and (ii) a user-defined minimum threshold for battery state of charge to prevent charge depletion overnight if the electrolyser load is higher than its capacity. The objective of this modelling is to maximise hydrogen yield while both loss of power supply probability (LPSP) and microgrid excess power are minimised. This analysis determined: (i) a hydrogen yield of 38e39% from solar DC energy to hydrogen energy produced (ii) an LPSP <2.6 104 and (iii) < 2% renewable energy lost to the grid as excess electricity for the case study.
A Chicken and Egg Situation: Enhancing Emergency Service Workers' Knowledge of Hydrogen
Sep 2021
Publication
This paper reports on the results of interviews conducted with 21 representatives from emergency services organisations within Australia and New Zealand. With a relative emergent industry such as future fuels a chicken and egg situation does emerge with regards to how much training needs to be in place in advance of large-scale industry development or not. These respondents were employed in a variety of roles being directly involved in research and training of emerging technologies frontline operational managers and other senior roles across the emergency services sector. Participants' responses to a series of questions were able to provide insights into the state of knowledge and training requirements within their organisations in relation to hydrogen and other future fuels. The findings suggest that formal and informal processes currently exist to support the knowledge development and transferal around the adoption of hydrogen and other future fuels. From the interviews it became clear that there are a number of processes that have emerged from the experiences gained through the implementation of rooftop solar PV and battery storage that provide some background context for advancing future fuels information across the sector. Because safety is a critical component for securing a social licence to operate engagement and knowledge sharing with any representatives from across this sector will only help to build confidence in the industry. Similarly because interviewees were very keen to access information they expressed a clear willingness to learn more through more formalised relationships rather than an ad hoc information seeking that has been employed to date. The presentation will identify key recommendations and also highlight the importance of QR Codes in the emergency responder landscape. Implications for industry and policy makers are discussed.
Production Costs for Synthetic Methane in 2030 and 2050 of an Optimized Power-to-Gas Plant with Intermediate Hydrogen Storage
Aug 2019
Publication
The publication gives an overview of the production costs of synthetic methane in a Power-to-Gas process. The production costs depend in particularly on the electricity price and the full load hours of the plant sub-systems electrolysis and methanation. The full-load hours of electrolysis are given by the electricity supply concept. In order to increase the full-load hours of methanation the size of the intermediate hydrogen storage tank and the size of the methanation are optimised on the basis of the availability of hydrogen. The calculation of the production costs for synthetic methane are done with economics for 2030 and 2050 and the expenditures are calculated for one year of operation. The sources of volume of purchased electricity are the short-term market long-term contracts direct-coupled renewable energy sources or seasonal use of surpluses. Gas sales are either traded on the short-term market or guaranteed by long-term contracts. The calculations show that an intermediate storage tank for hydrogen adjustment of the methanation size and operating electrolysis and methanation separately increase the workload of the sub-system methanation. The gas production costs can be significantly reduced. With the future expected development of capital expenditures operational expenditure electricity prices gas costs and efficiencies an economic production of synthetic natural gas for the years 2030 especially for 2050 is feasible. The results show that Power-to-Gas is an option for long-term large-scale seasonal storage of renewable energy. Especially the cases with high operating hours for the sub-system methanation and low electricity prices show gas production costs below the expected market prices for synthetic gas and biogas.
Few-atom Cluster Model Systems for a Hydrogen Economy
Apr 2020
Publication
To increase the share of renewable zero-emission energy sources such as wind and solar power in our energy supply the problem of their intermittency needs to be addressed. One way to do so is by buffering excess renewable energy via the production of hydrogen which can be stored for later use after re-electrification. Such a clean renewable energy cycle based on hydrogen is commonly referred to as the hydrogen economy. This review deals with cluster model systems of the three main components of the hydrogen economy i.e. hydrogen generation hydrogen storage and hydrogen re-electrification and their basic physical principles. We then present examples of contemporary research on few atom clusters both in the gas phase and deposited to show that by studying these clusters as simplified models a mechanistic understanding of the underlying physical and chemical processes can be obtained. Such an understanding will inspire and enable the design of novel materials needed for advancing the hydrogen economy.
The Use of Strontium Ferrite in Chemical Looping Systems
May 2020
Publication
This work reports a detailed chemical looping investigation of strontium ferrite (SrFeO3−δ) a material with the perovskite structure type able to donate oxygen and stay in a nonstoichiometric form over a broad range of oxygen partial pressures starting at temperatures as low as 250°C (reduction in CO measured in TGA). SrFeO3−δ is an economically attractive simple but remarkably stable material that can withstand repeated phase transitions during redox cycling. Mechanical mixing and calcination of iron oxide and strontium carbonate was evaluated as an effective way to obtain pure SrFeO3−δ. In–situ XRD was performed to analyse structure transformations during reduction and reoxidation. Our work reports that much deeper reduction from SrFeO3−δ to SrO and Fe is reversible and results in oxygen release at a chemical potential suitable for hydrogen production. Thermogravimetric experiments with different gas compositions were applied to characterize the material and evaluate its available oxygen capacity. In both TGA and in-situ XRD experiments the material was reduced below δ=0.5 followed by reoxidation either with CO2 or air to study phase segregation and reversibility of crystal structure transitions. As revealed by in-situ XRD even deeply reduced material regenerates at 900°C to SrFeO3−δ with a cubic structure. To investigate the catalytic behaviour of SrFeO3−δ in methane combustion experiments were performed in a fluidized bed rig. These showed SrFeO3−δ donates O2 into the gas phase but also assists with CH4 combustion by supplying lattice oxygen. To test the material for combustion and hydrogen production long cycling experiments in a fluidized bed rig were also performed. SrFeO3−δ showed stability over 30 redox cycles both in experiments with a 2-step oxidation performed in CO2 followed by air as well as a single step oxidation in CO2 alone. Finally the influence of CO/CO2 mixtures on material performance was tested; a fast and deep reduction in elevated pCO2 makes the material susceptible to carbonation but the process can be reversed by increasing the temperature or lowering pCO2.
Alkaline Water Electrolysis Powered by Renewable Energy: A Review
Feb 2020
Publication
Alkaline water electrolysis is a key technology for large-scale hydrogen production powered by renewable energy. As conventional electrolyzers are designed for operation at fixed process conditions the implementation of fluctuating and highly intermittent renewable energy is challenging. This contribution shows the recent state of system descriptions for alkaline water electrolysis and renewable energies such as solar and wind power. Each component of a hydrogen energy system needs to be optimized to increase the operation time and system efficiency. Only in this way can hydrogen produced by electrolysis processes be competitive with the conventional path based on fossil energy sources. Conventional alkaline water electrolyzers show a limited part-load range due to an increased gas impurity at low power availability. As explosive mixtures of hydrogen and oxygen must be prevented a safety shutdown is performed when reaching specific gas contamination. Furthermore the cell voltage should be optimized to maintain a high efficiency. While photovoltaic panels can be directly coupled to alkaline water electrolyzers wind turbines require suitable converters with additional losses. By combining alkaline water electrolysis with hydrogen storage tanks and fuel cells power grid stabilization can be performed. As a consequence the conventional spinning reserve can be reduced which additionally lowers the carbon dioxide emissions.
Power-to-gas in Electricity Markets Dominated by Renewables
Oct 2018
Publication
This paper analyses the feasibility of power-to-gas in electricity markets dominated by renewables. The business case of a power-to-gas plant that is producing hydrogen is evaluated by determining the willingness to pay for electricity and by comparing this to the level and volatility of electricity prices in a number of European day-ahead markets. The short-term willingness to pay for electricity depends on the marginal costs and revenues of the plant while the long-term willingness to pay for electricity also takes into account investment and yearly fixed operational costs and therefore depends on the expected number of operating hours. The latter ultimately determines whether or not large-scale investments in the power-to-gas technology will take place.<br/>We find that power-to-gas plants are not profitable under current market conditions: even under the most optimistic assumptions for the cost and revenue parameters power-to-gas plants need to run for many hours during the year at very low prices (i.e. the long-term willingness to pay for electricity is very low) that do not currently exist in Europe. In an optimistic future scenario regarding investment costs efficiency and revenues of power-to-gas however the long-term willingness to pay for electricity is higher than the lowest recently observed day-ahead electricity prices. When prices remain at this low level investments in power-to-gas can thus become profitable.
Hydrogen Production in Methane Decomposition Reactor Using Solar Thermal Energy
Nov 2021
Publication
This study investigates the decomposition of methane using solar thermal energy as a heat source. Instead of the direct thermal decomposition of the methane at a temperature of 1200 ◦C or higher a catalyst coated with carbon black on a metal foam was used to lower the temperature and activation energy required for the reaction and to increase the yield. To supply solar heat during the reaction a reactor suitable for a solar concentrating system was developed. In this process a direct heating type reactor with quartz was initially applied and a number of problems were identified. An indirect heating type reactor with an insulated cavity and a rotating part was subsequently developed followed by a thermal barrier coating application. Methane decomposition experiments were conducted in a 40 kW solar furnace at the Korea Institute of Energy Research. Conversion rates of 96.7% and 82.6% were achieved when the methane flow rate was 20 L/min and 40 L/min respectively.
Safety Planning and Management in EU Hydrogen and Fuel Cells Projects - Guidance Document
Sep 2021
Publication
The document provides information on safety planning implementation and reporting for projects involving hydrogen and/or fuel cell technologies. It does not intend to replace or contradict existing regulations which prevail under all circumstances. Neither is it meant to conflict with relevant international or national standards or to replace existing company safety policies codes and procedures. Instead this guidance document aims to assist projects and project partners in identifying hazards and associated risks in prevention and/or mitigation of them through a proper safety plan in implementing the safety plan and reporting safety related events. This shall help in safely delivering the project and ultimately producing inherently safer systems processes and infrastructure.
Improving Carbon Efficiency and Profitability of the Biomass to Liquid Process with Hydrogen from Renewable Power
Aug 2018
Publication
A process where power and biomass are converted to Fischer-Tropsch liquid fuels (PBtL) is compared to a conventional Biomass-to-Liquid (BtL) process concept. Based on detailed process models it is demonstrated that the carbon efficiency of a conventional Biomass to Liquid process can be increased from 38 to more than 90% by adding hydrogen from renewable energy sources. This means that the amount of fuel can be increased by a factor of 2.4 with the same amount of biomass. Electrical power is applied to split water/steam at high temperature over solid oxide electrolysis cells (SOEC). This technology is selected because part of the required energy can be replaced by available heat. The required electrical power for the extra production is estimated to be 11.6 kWh per liter syncrude (C ) 5+ . By operating the SOEC iso-thermally close to 850 °C the electric energy may be reduced to 9.5 kWh per liter which is close to the energy density of jet fuel. A techno-economic analysis is performed where the total investments and operating costs are compared for the BtL and PBtL. With an electrical power price of 0.05 $/kWh and with SOEC investment cost of the 1000 $/kW(el) the levelized cost of producing advanced biofuel with the PBtL concept is 1.7 $/liter which is approximately 30% lower than for the conventional BtL. Converting excess renewable electric power to advanced biofuel in a PBtL plant is a sensible way of storing energy as a fuel with a relatively high energy density.
Seasonal Storage and Alternative Carriers: A Flexible Hydrogen Supply Chain Model
May 2017
Publication
A viable hydrogen infrastructure is one of the main challenges for fuel cells in mobile applications. Several studies have investigated the most cost-efficient hydrogen supply chain structure with a focus on hydrogen transportation. However supply chain models based on hydrogen produced by electrolysis require additional seasonal hydrogen storage capacity to close the gap between fluctuation in renewable generation from surplus electricity and fuelling station demand. To address this issue we developed a model that draws on and extends approaches in the literature with respect to long-term storage. Thus we analyse Liquid Organic Hydrogen Carriers (LOHC) and show their potential impact on future hydrogen mobility. We demonstrate that LOHC-based pathways are highly promising especially for smaller-scale hydrogen demand and if storage in salt caverns remains uncompetitive but emit more greenhouse gases (GHG) than other gaseous or hydrogen ones. Liquid hydrogen as a seasonal storage medium offers no advantage compared to LOHC or cavern storage since lower electricity prices for flexible operation cannot balance the investment costs of liquefaction plants. A well-to-wheel analysis indicates that all investigated pathways have less than 30% GHG-emissions compared to conventional fossil fuel pathways within a European framework.
The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals
Sep 2020
Publication
This research qualitatively reviews literature regarding energy system modeling in Japan specific to the future hydrogen economy leveraging quantitative model outcomes to establish the potential future deployment of hydrogen in Japan. The analysis focuses on the four key sectors of storage supplementing the gas grid power generation and transportation detailing the potential range of hydrogen technologies which are expected to penetrate Japanese energy markets up to 2050 and beyond. Alongside key model outcomes the appropriate policy settings governance and market mechanisms are described which underpin the potential hydrogen economy future for Japan. We find that transportation gas grid supplementation and storage end-uses may emerge in significant quantities due to policies which encourage ambitious implementation targets investment in technologies and research and development and the emergence of a future carbon pricing regime. On the other hand for Japan which will initially be dependent on imported hydrogen the cost of imports appears critical to the emergence of broad hydrogen usage particularly in the power generation sector. Further the consideration of demographics in Japan recognizing the aging shrinking population and peoples’ energy use preferences will likely be instrumental in realizing a smooth transition toward a hydrogen economy.
Demand Side Management Based Power-to-Heat and Power-to-Gas Optimization Strategies for PV and Wind Self-Consumption in a Residential Building Cluster
Oct 2021
Publication
The volatility of renewable energy sources (RES) poses a growing problem for operation of electricity grids. In contrary the necessary decarbonisation of sectors such as heat supply and transport requires a rapid expansion of RES. Load management in the context of power-to-heat systems can help to simultaneously couple the electricity and heat sectors and stabilise the electricity grid thus enabling a higher share of RES. In addition power-to-hydrogen offers the possibility of long-term energy storage options. Within this work we present a novel optimization approach for heat pump operation with the aim to counteract the volatility and enable a higher usage of RES. For this purpose a detailed simulation model of buildings and their energy supply systems is created calibrated and validated based on a plus energy settlement. Subsequently the potential of optimized operation is determined with regard to PV and small wind turbine self-consumption. In addition the potential of seasonal hydrogen storage is examined. The results show that on a daily basis a 33% reduction of electricity demand from grid is possible. However the average optimization potential is reduced significantly by prediction inaccuracy. The addition of a hydrogen system for seasonal energy storage basically eliminates the carbon dioxide emissions of the cluster. However this comes at high carbon dioxide prevention costs of 1.76 e kg−1 .
Hydrogen Energy: a New Dimension for the Energy Cooperation in the Northeast Asian Region
Nov 2020
Publication
The Northeast Asian Region is a home for the major world’s energy importers and Russia – the top energy exporter. Due to the depletion of national fossil energy resources the industrialised East Asian economies are facing serious energy security issues. The snapshot of the intraregional energy trade in 2019 was analysed in terms of development potential. Japan Korea and China are at the frontline of hydrogen energy technologies commercialisation and hydrogen energy infrastructure development. The drivers for such endeavours are listed and national institutions for hydrogen energy development are characterised. The priorities related to regional cooperation on hydrogen energy in Northeast Asia were derived on the basis of hydrogen production cost estimations. These priorities include steady development of international natural gas and power infrastructure. The shared process will lead to the synergy of regional fossil and renewable resources within combined power and hydrogen infrastructure.
Electrification and Sustainable Fuels: Competing for Wind and Sun (complement to the Policy brief)
May 2021
Publication
This study seeks to answer a simple question: will we have enough renewable electricity to meet all of the EU's decarbonisation objectives and if not what should be the priorities and how to address the remaining needs for energy towards carbon neutrality? Indeed if not the policy push for green hydrogen would not be covered by enough green electricity to match the “energy efficiency and electrification first” approach outlined in the system integration communication and a prioritization of green electricity uses complemented by other solutions (import of green electricity or sustainable fuels CCS...) would be advisable [1]. On one hand we show that the principle “Energy efficiency and electrification first” results in an electricity demand which will be very difficult to satisfy domestically with renewable energy. On the other hand green hydrogen and other sustainable fuels will be needed for a carbon neutral industry for the replacement of the fuel for aviation and navigation and as strategic green energy reserves. The detailed modelling of these interactions is challenging given the large uncertainties on technology and infrastructure development. Therefore we offer a “15 minutes” decarbonization scenario based on general and transparent technical considerations and very straightforward “back-of-envelope” calculations. This working paper contains the calculations and assumptions in support of the accompanying policy brief with the same title which focuses instead on the main take-aways.
No more items...