Publications
Electric Load Influence on Performances of a Composite Plant for Hydrogen Production from RES and its Conversion in Electricity
Nov 2019
Publication
The analysis here presented investigates the influence of electrical load on the operational performances of a plant for hydrogen production from solar energy and its conversion in electricity via a fuel cell. The plant is an actual one currently under construction in Reggio Calabria (Italy) at the site of the Mediterranean university campus; it is composed of a Renewable Energy Source (RES) section (photovoltaic panels) a hydrogen production section and a fuel cell power section feeding the electrical energy demand of the load. Two different load configurations have been analysed and simulations have been carried out through HomerTM simulation code. Results allow interesting conclusions regarding the plant operation to be drawn. The study could have a remarkable role in supporting further research activities aimed at the assessment of the optimal configuration of this type of pioneering plants designed for feeding electrical loads possibly in a self-sufficient way.
Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry
Nov 2021
Publication
The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining “green hydrogen”. The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purification and/or desalinization of water before electrolysis. As a matter of fact we describe the energy efficiency issues with particular attention to the potential application in the steel industry. The fundamental aspects related to the choice of high-temperature or low-temperature technologies are analyzed.
Preliminary Design of a Self-Sufficient Electrical Storage System Based on Electrolytic Hydrogen for Power Supply in a Residential Application
Oct 2021
Publication
The use of renewable energy and hydrogen technology is a sustainable solution for the intermittent feature of renewable energies. Hence the aim of the present work is to design a self-sufficient system for a one-family house by coupling a solar photovoltaic array and an anion exchange membrane water electrolyzer (AEMWE). The first step is the selection of the photovoltaic panel by using PV-SYST 7.0 software. Then the hydrogen production system is calculated by coupling the electrolyzer and photovoltaic panel current–potential curves. A fuel cell is selected to use the hydrogen produced when solar energy is not available. Finally the hydrogen storage tank is also estimated to store hydrogen for a design basis of four consecutive cloudy days according to the hydrogen consumption of the fuel cell. The whole system is designed by a simple procedure for a specific location in Ciudad Real (Spain) for January which is known as the coldest month of the year. The simple procedure described in this work could be used elsewhere and demonstrated that the hydrogen production at low scale is a suitable technology to use renewable energy for self-energy supporting in a residential application without any connection to the grid.
Achieving Net Zero Electricity Sectors in G7 Members
Oct 2021
Publication
Achieving Net Zero Electricity Sectors in G7 Members is a new report by the International Energy Agency that provides a roadmap to driving down CO2 emissions from electricity generation to net zero by 2035 building on analysis in Net Zero by 2050: A Roadmap for the Global Energy Sector.
The new report was requested by the United Kingdom under its G7 Presidency and followed the G7 leaders’ commitment in June 2021 to reach “an overwhelmingly decarbonised” power system in the 2030s and net zero emissions across their economies no later than 2050. It is designed to inform policy makers industry investors and citizens in advance of the COP26 Climate Change Conference in Glasgow that begins at the end of October 2021.
Starting from recent progress and the current state of play of electricity in the G7 the report analyses the steps needed to achieve net zero emissions from electricity and considers the wider implications for energy security employment and affordability. It identifies key milestones emerging challenges and opportunities for innovation.
The report also underscores how G7 members can foster innovation through international collaboration and as first movers lower the cost of technologies for other countries while maintaining electricity security and placing people at the centre of clean energy transitions.
Link to their website
The new report was requested by the United Kingdom under its G7 Presidency and followed the G7 leaders’ commitment in June 2021 to reach “an overwhelmingly decarbonised” power system in the 2030s and net zero emissions across their economies no later than 2050. It is designed to inform policy makers industry investors and citizens in advance of the COP26 Climate Change Conference in Glasgow that begins at the end of October 2021.
Starting from recent progress and the current state of play of electricity in the G7 the report analyses the steps needed to achieve net zero emissions from electricity and considers the wider implications for energy security employment and affordability. It identifies key milestones emerging challenges and opportunities for innovation.
The report also underscores how G7 members can foster innovation through international collaboration and as first movers lower the cost of technologies for other countries while maintaining electricity security and placing people at the centre of clean energy transitions.
Link to their website
The Role of Advanced Demand-sector Technologies and Energy Demand Reduction in Achieving Ambitious Carbon Budgets
Jan 2019
Publication
Limiting cumulative carbon emissions to keep global temperature increase to well below 2°C (and as low as 1.5°C) is an extremely challenging task requiring rapid reduction in the carbon intensity of all sectors of the economy and with limited leeway for residual emissions. Addressing residual emissions in ‘challenging-to-decarbonise’ sectors such as the industrial and aviation sectors relies on the development and commercialization of innovative advanced technologies currently still in their infancy. The aim of this study was to (a) explore the role of advanced technologies in achieving deep decarbonisation of the energy system and (b) provide technology- specific details of how rapid and deep carbon intensity reductions can be achieved in the energy demand sectors. This was done using TIAM-Grantham – a linear cost optimization model of the global energy system with a detailed representation of demand-side technologies. We find that the inclusion of advanced technologies in the demand sectors together with energy demand reduction through behavioural changes enables the model to achieve the rapid and deep decarbonisation of the energy system associated with limiting global warming to below 2°C whilst at the same time reduces reliance on negative emissions technologies by up to ∼18% compared to the same scenario with a standard set of technologies. Realising such advanced technologies at commercial scales as well as achieving such significant reductions in energy demand represents a major challenge for policy makers businesses and civil society. There is an urgent need for continued R&D efforts in the demand sectors to ensure that advanced technologies become commercially available when we need them and to avoid the gamble of overreliance on negative emissions technologies to offset residual emissions.
Integration Design and Operation Strategy of Multi-Energy Hybrid System Including Renewable Energies, Batteries and Hydrogen
Oct 2020
Publication
In some areas the problem of wind and solar power curtailment is prominent. Hydrogen energy has the advantage of high storage density and a long storage time. Multi-energy hybrid systems including renewable energies batteries and hydrogen are designed to solve this problem. In order to reduce the power loss of the converter an AC-DC hybrid bus is proposed. A multi-energy experiment platform is established including a wind turbine photovoltaic panels a battery an electrolyzer a hydrogen storage tank a fuel cell and a load. The working characteristics of each subsystem are tested and analyzed. The multi-energy operation strategy is based on state monitoring and designed to enhance hydrogen utilization energy efficiency and reliability of the system. The hydrogen production is guaranteed preferentially and the load is reliably supplied. The system states are monitored such as the state of charge (SOC) and the hydrogen storage level. The rated and ramp powers of the battery and fuel cell and the pressure limit of the hydrogen storage tank are set as safety constraints. Eight different operation scenarios comprehensively evaluate the system’s performance and via physical experiments the proposed operation strategy of the multi-energy system is verified as effective and stable.
The Role of Renewable Hydrogen and Inter-seasonal Storage in Decarbonising Heat – Comprehensive Optimisation of Future Renewable Energy Value Chains
Nov 2018
Publication
Demands for space and water heating constitute a significant proportion of the total energy demands in Great Britain and are predominantly satisfied through natural gas which makes the heat sector a large emitter of carbon dioxide. Renewable hydrogen which can be injected into the gas grid or used directly in processes for generating heat and/or electricity is being considered as a low-carbon alternative energy carrier to natural gas because of its suitability for large-scale long- and short-term storage and low transportation losses all of which help to overcome the intermittency and seasonal variations in renewables. This requires new infrastructures for production storage transport and utilisation of renewable hydrogen – a hydrogen value chain – the design of which involves many interdependent decisions such as: where to locate wind turbines; where to locate electrolysers close to wind generation or close to demands; whether to transport energy as electricity or hydrogen and how; where to locate storage facilities; etc. This paper presents the Value Web Model a novel and comprehensive spatio-temporal mixed-integer linear programming model that can simultaneously optimise the design planning and operation of integrated energy value chains accounting for short-term dynamics inter-seasonal storage and investments out to 2050. It was coupled with GIS modelling to identify candidate sites for wind generation and used to optimise a number of scenarios for the production of hydrogen from onshore and offshore wind turbines in order to satisfy heat demands. The results show that over a wide range of scenarios the optimal pathway to heat is roughly 20% hydrogen and 80% electricity. Hydrogen storage both in underground caverns and pressurised tanks is a key enabling technology.
Future Electricity Series Part 1 - Power from Fossil Fuels
Apr 2013
Publication
Power from Fossil Fuels analyses the role of coal and gas power generation in the UK's future power generation mix. It is the first of three reports in Carbon Connect's 2013 research inquiry the Future Electricity Series which examines what role fossil fuels renewables and nuclear can play in providing secure sustainable and affordable electricity in the UK. The report finds that significantly decarbonising the power sector by 2030 will prove the most successful strategy on energy sustainability security and affordability grounds and that switching the UK’s reliance on coal to gas generation - while using fossil fuel power stations increasingly for backup purposes - will be the most viable method of achieving this. The independent report chaired by former energy minister Charles Hendry MP and Opposition Energy and Climate Change Spokesperson in the House of Lords Baroness Worthington was compiled between January and April 2013 and received contributions from over 30 experts in academia industry Parliament and Government and was launched in Parliament on the 22nd April 2013. This independent inquiry was sponsored by the Institution of Gas Engineers and Managers
Hydrogen Production Technologies: Current State and Future Developments
Mar 2013
Publication
Hydrogen (H2) is currently used mainly in the chemical industry for the production of ammonia and methanol. Nevertheless in the near future hydrogen is expected to become a significant fuel that will largely contribute to the quality of atmospheric air. Hydrogen as a chemical element (H) is the most widespread one on the earth and as molecular dihydrogen (H2) can be obtained from a number of sources both renewable and nonrenewable by various processes. Hydrogen global production has so far been dominated by fossil fuels with the most significant contemporary technologies being the steam reforming of hydrocarbons (e.g. natural gas). Pure hydrogen is also produced by electrolysis of water an energy demanding process. This work reviews the current technologies used for hydrogen (H2) production from both fossil and renewable biomass resources including reforming (steam partial oxidation autothermal plasma and aqueous phase) and pyrolysis. In addition other methods for generating hydrogen (e.g. electrolysis of water) and purification methods such as desulfurization and water-gas shift reactions are discussed.
The Role of Electrification and Hydrogen in Breaking the Biomass Bottleneck of the Renewable Energy System – A Study on the Danish Energy System
Jun 2020
Publication
The aim of this study is to identify the technical solution space for future fully renewable energy systems that stays within a sustainable biomass demand. In the transition towards non-fossil energy and material systems biomass is an attractive source of carbon for those demands that also in the non-fossil systems depend on high density carbon containing fuels and feedstocks. However extensive land use is already a sustainability challenge and an increase in future demands threat to exceed global sustainable biomass potentials which according to an international expert consensus is around 10 – 30 GJ/person/year in 2050. Our analytical review of 16 scenarios from 8 independent studies of fully renewable energy system designs and synthesis of 9 generic system designs reveals the significance of the role of electrification and hydrogen integration for building a fully renewable energy system which respects the global biomass limitations. The biomass demand of different fully renewable energy system designs was found to lie in the range of 0 GJ/person/year for highly integrated electrified pure electro-fuel scenarios with up to 25 GJ/person/year of hydrogen to above 200 GJ/person/year for poorly integrated full bioenergy scenarios with no electrification or hydrogen integration. It was found that a high degree of system electrification and hydrogen integration of at least 15 GJ/person/year is required to stay within sustainable biomass limits.
Oxygen Carriers for Chemical-looping Water Splitting to Hydrogen Production: A Critical Review
Oct 2021
Publication
Chemical looping water splitting (CLWS) process using metal oxides or perovskites as oxygen carriers (OCs) is capable of producing pure H2 in an efficient simple and flexible way. The OCs are first reduced by hydrocarbon fuels and then oxidized by steam in a cyclic way. After the condensation of the gaseous mixture of steam and H2 from the oxidation step pure H2 is obtained. In recent years great efforts for CLWS have been made to improve the redox activity and stability of OCs. In this paper the development of the OCs for hydrogen production from CLWS were discussed. Effects of supports and additives on the performances of OCs were compared based on redox reactions in CLWS. Fe-based OCs with CeO2 Al2O3 ZrO2 CuO MoO3 Rh etc. are very attractive for the CLWS process. Issues and challenges for the development of OCs were analyzed.
Techno-economic Assessment of a Hybrid Off-grid DC System for Combined Heat and Power Generation in Remote Islands
Mar 2019
Publication
Hybrid renewable energy systems that combine heat and electricity generation is an achievable option for remote areas where grid is uneconomical to extend. In this study a renewable-based system was designed to satisfy the electrical and thermal demands of a remote household in an off-grid Greek island. A hybrid DC system consisted of a combination of photovoltaic modules wind turbine electrolyzer-hydrogen tank fuel cell and batteries were analysed using HOMER Pro software. Based on the optimal obtained system it is found that such a system can satisfy both electrical and thermal load demand throughout the year in a reliable manner.
Optimization of Hydrogen Cost and Transport Technology in France and Germany for Various Production and Demand Scenarios
Jan 2021
Publication
Green hydrogen for mobility represents an alternative to conventional fuel to decarbonize the transportation sector. Nevertheless the thermodynamic properties make the transport and the storage of this energy carrier at standard conditions inefficient. Therefore this study deploys a georeferenced optimal transport infrastructure for four base case scenarios in France and Germany that differs by production distribution based on wind power potential and demand capacities for the mobility sector at different penetration shares for 2030 and 2050. The restrained transport network to the road infrastructure allows focusing on the optimum combination of trucks operating at different states of aggregations and storage technologies and its impact on the annual cost and hydrogen flow using linear programming. Furthermore four other scenarios with production cost investigate the impact of upstream supply chain cost and eight scenarios with daily transport and storage optimization analyse the modeling method sensitivity. The results show that compressed hydrogen gas at a high presser level around 500 bar was on average a better option. However at an early stage of hydrogen fuel penetration substituting compressed gas at low to medium pressure levels by liquid organic hydrogen carrier minimizes the transport and storage costs. Finally in France hydrogen production matches population distribution in contrast to Germany which suffers from supply and demand disparity.
Biological Hydrogen Methanation Systems – An Overview of Design and Efficiency
Oct 2019
Publication
The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen – produced during electrolysis – with carbon dioxide in biogas to produce methane (4H2 + CO2 = CH4 + 2H2) typically increasing the methane output of the biogas system by 70%. In this paper several BHM systems were researched and a compilation of such systems was synthesized facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified
Comprehensive Analysis of the Combustion of Low Carbon Fuels (Hydrogen, Methane and Coke Oven Gas) in a Spark Ignition Engine through CFD Modeling
Nov 2021
Publication
The use of low carbon fuels (LCFs) in internal combustion engines is a promising alternative to reduce pollution while achieving high performance through the conversion of the high energy content of the fuels into mechanical energy. However optimizing the engine design requires deep knowledge of the complex phenomena involved in combustion that depend on the operating conditions and the fuel employed. In this work computational fluid dynamics (CFD) simulation tools have been used to get insight into the performance of a Volkswagen Polo 1.4L port-fuel injection spark ignition engine that has been fueled with three different LCFs coke oven gas (COG) a gaseous by-product of coke manufacture H2 and CH4. The comparison is made in terms of power pressure temperature heat release flame growth speed emissions and volumetric efficiency. Simulations in Ansys® Forte® were validated with experiments at the same operating conditions with optimal spark advance wide open throttle a wide range of engine speed (2000–5000 rpm) and air-fuel ratio (λ) between 1 and 2. A sensitivity analysis of spark timing has been added to assess its impact on combustion variables. COG with intermediate flame growth speed produced the greatest power values but with lower pressure and temperature values at λ = 1.5 reducing the emissions of NO and the wall heat transfer. The useful energy released with COG was up to 16.5% and 5.1% higher than CH4 and H2 respectively. At richer and leaner mixtures (λ = 1 and λ = 2) similar performances were obtained compared to CH4 and H2 combining advantages of both pure fuels and widening the λ operation range without abnormal combustion. Therefore suitable management of the operating conditions maximizes the conversion of the waste stream fuel energy into useful energy while limiting emissions.
Challenges and Prospects of Renewable Hydrogen-based Strategies for Full Decarbonization of Stationary Power Applications
Oct 2021
Publication
The exponentially growing contribution of renewable energy sources in the electricity mix requires large systems for energy storage to tackle resources intermittency. In this context the technologies for hydrogen production offer a clean and versatile alternative to boost renewables penetration and energy security. Hydrogen production as a strategy for the decarbonization of the energy sources mix has been investigated since the beginning of the 1990s. The stationary sector i.e. all parts of the economy excluding the transportation sector accounts for almost three-quarters of greenhouse gases (GHG) emissions (mass of CO2-eq) in the world associated with power generation. While several publications focus on the hybridization of renewables with traditional energy storage systems or in different pathways of hydrogen use (mainly power-to-gas) this study provides an insightful analysis of the state of art and evolution of renewable hydrogen-based systems (RHS) to power the stationary sector. The analysis started with a thorough review of RHS deployments for power-to-power stationary applications such as in power generation industry residence commercial building and critical infrastructure. Then a detailed evaluation of relevant techno-economic parameters such as levelized cost of energy (LCOE) hydrogen roundtrip efficiency (HRE) loss of power supply probability (LPSP) self-sufficiency ratio (SSR) or renewable fraction (fRES) is provided. Subsequently lab-scale plants and pilot projects together with current market trends and commercial uptake of RHS and fuel cell systems are examined. Finally the future techno-economic barriers and challenges for short and medium-term deployment of RHS are identified and discussed.
Transitioning Remote Arctic Settlements to Renewable Energy Systems – A Modelling Study of Longyearbyen, Svalbard
Nov 2019
Publication
As transitioning away from fossil fuels to renewable energy sources comes on the agenda for a range of energy systems energy modelling tools can provide useful insights. If large parts of the energy system turns out to be based on variable renewables an accurate representation of their short-term variability in such models is crucial. In this paper we have developed a stochastic long-term energy model and applied it to an isolated Arctic settlement as a challenging and realistic test case. Our findings suggest that the stochastic modelling approach is critical in particular for studies of remote Arctic energy systems. Furthermore the results from a case study of the Norwegian settlement of Longyearbyen suggest that transitioning to a system based on renewable energy sources is feasible. We recommend that a solution based mainly on renewable power generation but also including energy storage import of hydrogen and adequate back-up capacity is taken into consideration when planning the future of remote Arctic settlements.
Optimal Day-ahead Dispatch of an Alkaline Electrolyser System Concerning Thermal–electric Properties and State-transitional Dynamics
Oct 2021
Publication
Green hydrogen is viewed as a promising energy carrier for sustainable development goals. However it has suffered from high costs hindering its implementation. For a stakeholder who considers both renewable energy and electrolysis units it is important to exploit the flexibility of such portfolios to maximize system operational revenues. To this end an electrolyser model that can characterize its dynamic behavior is required in both electric and thermal aspects. In this paper we develop a comprehensive alkaline electrolyser model that is capable of describing its hydrogen production properties temperature variations and state transitions (among production stand-by and off states). This model is further used to study the optimal dispatch of an electrolyser based on a real-world hybrid wind/electrolyser system. The results show the model can effectively capture the coupling between thermal–electric dynamics and on–off performance of an electrolyser. The flexible operation strategy based on this model is proven to significantly increase daily revenues under different spot price conditions for electricity. Comparing the model with the ones derived from conventional modeling methods reveals this model offers more operating details and highlights several operational features such as the preference for working at partial load conditions although at the expense of more computing resources. It is suggested to use this model in studies related to energy integration operation planning and control scheme development in which the multi-domain dynamic properties of electrolysers in electricity/gas/heat need to be properly characterized. A sensitivity analysis on key parameters of such electrolyser system is also introduced to connect the daily operation with long-term planning.
Energy Management Strategies for a Zero-emission Hybrid Domestic Ferry
Oct 2021
Publication
The paper presents three approaches for the sizing and control of a maritime hybrid power-plant equipped with proton exchange membrane fuel cells and batteries. The study focuses on three different power-plant configurations including the energy management strategy and the power-plant component sizing. The components sizing is performed following the definition of the energy management strategy using the sequential optimization approach. These configurations are tested using a dynamic model developed in Simulink. The simulations are carried out to validate the technical feasibility of each configuration for maritime use. Each energy management strategy is developed to allow for the optimization of a chosen set of parameters such as hydrogen consumption and fuel cell degradation. It is observed that in the hybrid power-plant optimization there are always trade-offs and the optimization should be carried out by prioritizing primary factors the ship owner considers most important for day-to-day operations.
Performance of Hydrogen Storage Tanks of Type IV in a Fire: Effect of the State of Charge
Sep 2021
Publication
The use of hydrogen storage tanks at 100% of nominal working pressure (NWP) is expected only after refuelling. Driving between refuellings is characterised by the state of charge SoC <100%. There is experimental evidence that Type IV tanks tested in a fire at initial pressures below 1/3 NWP leaked without rupture. This paper aims at understanding this phenomenon. The numerical research has demonstrated that the heat transfer from fire through the composite overwrap at storage pressures below NWP/3 is sufficient to melt the polymer liner. This melting initiates hydrogen microleaks through the composite before it loses the load-bearing ability. The fire-resistance rating (FRR) is defined as the time to rupture in a fire of a tank without or with blocked thermally activated pressure relief device. The dependence of a FRR on the SoC is demonstrated for the tanks with defined material properties and volumes in the range of 36–244 L. A composite wall thickness variation is shown to cause a safety issue by reducing the tank’s FRR and is suggested to be addressed by tank manufacturers and OEMs. The effect of a tank’s burst pressure ratio on the FRR is investigated. Thermal parameters of the composite wall i.e. decomposition heat and temperatures are shown in simulations of a tank failure in a fire to play an important role in its FRR.
No more items...