Publications
Operating Characteristics Analysis and Capacity Configuration Optimization of Wind-Solar-Hydrogen Hybrid Multi-energy Complementary System
Dec 2023
Publication
Wind and solar energy are the important renewable energy sources while their inherent natures of random and intermittent also exert negative effect on the electrical grid connection. As one of multiple energy complementary route by adopting the electrolysis technology the wind-solar-hydrogen hybrid system contributes to improving green power utilization and reducing its fluctuation. Therefore the moving average method and the hybrid energy storage module are proposed which can smooth the wind-solar power generation and enhance the system energy management. Moreover the optimization of system capacity configuration and the sensitive analysis are implemented by the MATLAB program platform. The results indicate that the 10-min grid-connected volatility is reduced by 38.7% based on the smoothing strategy and the internal investment return rate can reach 13.67% when the electricity price is 0.04 $/kWh. In addition the annual coordinated power and cycle proportion of the hybrid energy storage module are 80.5% and 90% respectively. The developed hybrid energy storage module can well meet the annual coordination requirements and has lower levelized cost of electricity. This method provides reasonable reference for designing and optimizing the wind-solar-hydrogen complementary system.
Split Injection Strategies for a High-pressure Hydrogen Direct Injection in a Small-bore Dual-fuel Diesel Engine
Jan 2024
Publication
Hydrogen-diesel dual direct-injection (H2DDI) engines present a promising pathway towards cleaner and more efficient transportation. In this study hydrogen split injection strategies were explored in an automotive-size single-cylinder compression ignition (CI) engine with a focus on varying the injection timings and energy fractions. The engine was operated at an intermediate load with fixed combustion phasing through adjustments of pilot diesel injection timing. An energy substitution principle guided the variation in energy fraction between the two hydrogen injections and then diesel injection while keeping the total energy input constant. The findings demonstrate that early first hydrogen injection timings lead to characteristics indicative of premixed combustion reflecting a high homogeneity of the hydrogen-air mixture. In contrast hydrogen stratification levels were predominantly influenced by later second injection timings with mixing-controlled combustion behaviour apparent for very late injections near top dead centre or when the second hydrogen injection held high energy fractions which led to decreased nitrogen oxides (NOx: NO and NO2) emissions. The carbon dioxide (CO2) emissions did not show high sensitivity to the hydrogen split injection strategies exhibiting about 77 % reduction compared to the diesel baseline due primarily to increased hydrogen energy fraction of up to 90 %
Green Hydrogen as a Clean Energy Resource and Its Applications as an Engine Fuel
Jan 2024
Publication
The world’s economy heavily depends on the energy resources used by various countries. India is one of the promising developing nations with very low crude reserves actively looking for new renewable energy resources to power its economy. Higher energy consumption and environmental pollution are two big global challenges for our sustainable development. The world is currently facing a dual problem of an energy crisis as well as environmental degradation. So there is a strong need to reduce our dependency on fossil fuels and greenhouse gas emissions. This can be achieved to a great extent by universally adopting clean fuels for all daily life uses like ethanol or liquified natural gas (LNG) as these burn very clean and do not emit many pollutants. Nowadays green hydrogen has emerged as a new clean energy source which is abundantly available and does not pollute much. This article explores the various benefits of green hydrogen with respect to fossil fuels various techniques of producing it and its possible use in different sectors such as industry transport and aviation as well as in day-to-day life. Finally it explores the use of green hydrogen as fuel in automobile engines its blending with CNG gas and its benefits in reducing emissions compared to fossil fuels. On combustion green hydrogen produces only water vapours and is thus a highly clean fuel. Thus it can potentially help humanity preserve the environment due to its ultra-low emissions and can be a consistent and reliable source of energy for generations to come thereby ending the clean energy security debate forever.
Recent Advances in Sustainable and Safe Marine Engine Operation with Alternative Fuels
Nov 2022
Publication
Pursuing net-zero emission operations in the shipping industry are quintessential for this sector to mitigate the environmental impact caused by hydrocarbon fuel combustion. Significant contributions to this are expected from the substitution of conventional marine fuels by alternative emission-free fuels with lower emission footprints. This study aims to conduct a comprehensive literature review for delineating the main characteristics of the considered alternative fuels specifically focusing on hydrogen methanol and ammonia which have recently attracted attention from both industry and academia. This study comparatively assesses the potential of using these fuels in marine engines and their subsequent performance characteristics as well as the associated environmental benefits. In addition the required storage conditions space as well as the associated costs are reviewed. Special attention is given to the safety characteristics and requirements for each alternative fuel. The results of this study demonstrate that the environmental benefits gained from alternative fuel use are pronounced only when renewable energy is considerably exploited for their production whereas the feasibility of each fuel depends on the vessel type used and pertinent storage constraints. Hydrogen ammonia and methanol are considered best-fit solutions for small scale shipping requiring minimal on-board storage. In addition the need for comparative assessments between diesel and alternative fuels is highlighted and sheds light on marine engines’ operational characteristics. Moreover using combinations of alternative and diesel fuels is identified as a direction towards decarbonisation of the maritime sector; intensifying the need for optimisation studies on marine engine design and operation. This study concludes with recommendations for future research directions thus contributing to fuel research concepts that can facilitate the shipboard use of alternative fuels.
A Multi-energy Multi-microgrid System Planning Model for Decarbonisation and Decontamination of Isolated Systems
May 2023
Publication
Decarbonising and decontaminating remote regions in the world presents several challenges. Many of these regions feature isolation dispersed demand in large areas and a lack of economic resources that impede the development of robust and sustainable networks. Furthermore isolated systems in the developing world are mostly based on diesel generation for electricity and firewood and liquefied petroleum gas for heating as these options do not require a significant infrastructure cost. In this context we present a stochastic multi-energy multi-microgrid system planning model that integrates electricity heat and hydrogen networks in isolated systems. The model is stochastic to capture uncertainty in renewable generation outputs particularly hydro and wind and thus design a multi-energy system proved secured against such uncertainty. The model also features two distinct constraints to limit the emissions of CO2 (for decarbonisation) and particulate matter (for decontamination) and incorporates firewood as a heating source. Moreover given that the focus is on low-voltage networks we introduce a fully linear AC power flow equations set allowing the planning model to remain tractable. The model is applied to a real-world case study to design a multi-energy multi-microgrid system in an isolated region in Chilean Patagonia. In a case with a zero limit over direct CO2 emissions the total system’s cost increases by 34% with respect to an unconstrained case. In a case with a zero limit over particulate matter emissions the total system’s cost increases by 189%. Finally although an absolute zero limit over both particulate matter and direct CO2 emissions leads to a total system’s cost increase of 650% important benefits in terms of decarbonisation and decontamination can be achieved at marginal cost increments.
An Energy Systems Model of a Large Commercial Liquid Hydrogen Aircraft in a Low-carbon Future
Apr 2023
Publication
Liquid hydrogen (LH2) aircraft have the potential to achieve carbon neutrality. However if the hydrogen is produced using electricity grids that utilise fossil fuel they have a non-zero carbon dioxide (CO2) emission associated with their well-to-wing pathway. To assess the potential of LH2 in aviation decarbonisation an energy systems comparison of large commercial LH2 liquified natural gas (LNG) conventional Jet-A and LH2 dual-fuel aircraft is presented. The performance of each aircraft is compared towards 2050 over which three system changes occur: (1) LH2 aircraft technology develops; (2) both world average and region-specific grid electricity which is used to produce the hydrogen decarbonises; and (3) the International Air Transportation Association (IATA) emissions targets which are used to restrict the passenger-range performance of each aircraft tighten. In 2050 the emissions of all aircraft are thus constrained to 0.063 kg-CO2/p-km relative to 0.110 kg-CO2/p-km for the unconstrained Jet A fuelled Boeing 787-8. It is estimated that in this year an LH2 aircraft powered by fuel cells and sourcing world average electricity can travel 6000 km 20% further than the conventional Jet A aircraft that is also constrained to meet the IATA targets but not as far as the LNG aircraft. At its maximum range the LH2 aircraft carries 84% of the Jet A passenger demand. Analysis using region-specific hydrogen indicates that LH2 aircraft can travel further than LNG aircraft in North America only accounting for 17% of the global demand. 1.59 times the current aviation energy consumption is required if all conventional aircraft are replaced with LH2 designs. Under stricter emissions constraints than those outlined by the IATA LH2 outperforms LNG in Europe and the Americas accounting for 41% of the global demand. Also in these regions the range energy consumption and passenger capacity of LH2 aircraft can be improved upon by combining the advantages of LH2 with LNG in dual-fuel aircraft concepts. The use of LH2 is therefore advantageous within several prominent niches of a future decarbonising aviation system.
Challenges of Industrial-Scale Testing Infrastructure for Green Hydrogen Technologies
Apr 2023
Publication
Green hydrogen is set to become the energy carrier of the future provided that production technologies such as electrolysis and solar water splitting can be scaled to global dimensions. Testing these hydrogen technologies on the MW scale requires the development of dedicated new test facilities for which there is no precedent. This perspective highlights the challenges to be met on the path to implementing a test facility for large-scale water electrolysis photoelectrochemical and photocatalytic water splitting and aims to serve as a much-needed blueprint for future test facilities based on the authors’ own experience in establishing the Hydrogen Lab Leuna. Key aspects to be considered are the electricity and utility requirements of the devices under testing the analysis of the produced H2 and O2 and the safety regulations for handling large quantities of H2 . Choosing the right location is crucial not only for meeting these device requirements but also for improving financial viability through supplying affordable electricity and providing a remunerated H2 sink to offset the testing costs. Due to their lower TRL and requirement for a light source large-scale photocatalysis and photoelectrochemistry testing are less developed and the requirements are currently less predictable.
Alkaline Electrolysis for Hydrogen Production at Sea: Perspectives on Economic Performance
May 2023
Publication
Alkaline electrolysis is already a proven technology on land with a high maturity level and good economic performance. However at sea little is known about its economic performance toward hydrogen production. Alkaline electrolysis units operate with purified water to split its molecules into hydrogen and oxygen. Purified water and especially that sourced from the sea has a variable cost that ultimately depends on its quality. However the impurities present in that purified water have a deleterious effect on the electrolyte of alkaline electrolysis units that cause them to drop their energy efficiency. This in turn implies a source of economic losses resulting from the cost of electricity. In addition at sea there are various options regarding the electrolyte management of which the cost depends on various factors. All these factors ultimately impact on the levelized cost of the produced hydrogen. This article aims to shed some light on the economic performance of alkaline electrolysis units operating under sea conditions highlighting the knowledge gaps in the literature and initiating a debate in the field.
Research Progress and Application Prospects of Solid-State Hydrogen Storage Technology
Apr 2024
Publication
Solid-state hydrogen storage technology has emerged as a disruptive solution to the “last mile” challenge in large-scale hydrogen energy applications garnering significant global research attention. This paper systematically reviews the Chinese research progress in solid-state hydrogen storage material systems thermodynamic mechanisms and system integration. It also quantitatively assesses the market potential of solid-state hydrogen storage across four major application scenarios: on-board hydrogen storage hydrogen refueling stations backup power supplies and power grid peak shaving. Furthermore it analyzes the bottlenecks and challenges in industrialization related to key materials testing standards and innovation platforms. While acknowledging that the cost and performance of solid-state hydrogen storage are not yet fully competitive the paper highlights its unique advantages of high safety energy density and potentially lower costs showing promise in new energy vehicles and distributed energy fields. Breakthroughs in new hydrogen storage materials like magnesium-based and vanadium-based materials coupled with improved standards specifications and innovation mechanisms are expected to propel solid-state hydrogen storage into a mainstream technology within 10–15 years with a market scale exceeding USD 14.3 billion. To accelerate the leapfrog development of China’s solid-state hydrogen storage industry increased investment in basic research focused efforts on key core technologies and streamlining the industry chain from materials to systems are recommended. This includes addressing challenges in passenger vehicles commercial vehicles and hydrogen refueling stations and building a collaborative innovation ecosystem involving government industry academia research finance and intermediary entities to support the achievement of carbon peak and neutrality goals and foster a clean low-carbon safe and efficient modern energy system.
Impact of Fuel Production Technologies on Energy Consumption and GHG Emissions from Diesel and Electric–Hydrogen Hybrid Buses in Rio de Janeiro, Brazil
Apr 2023
Publication
In view of the GHG reduction targets to be met Brazilian researchers are looking for cleaner alternatives to energy sources. These alternatives are primarily to be applied in the transport sector which presents high energy consumption as well as high CO2 emissions. In this sense this research developed an LCI study considering two bus alternatives for the city of Rio de Janeiro: diesel-powered internal combustion buses (ICEB) and a hydrogen-powered polymer fuel cell hybrid bus (FCHB). For the FCHB three hydrogen production methods were also included: water electrolysis (WE) ethanol steam reforming (ESR) and natural gas steam reforming (NGSR). The research was aimed at estimating energy consumption including the percentage of energy that is renewable as well as CO2 emissions. The results show diesel as the energy source with the highest emissions as well as the highest fossil energy consumption. Regarding the alternatives for hydrogen production water electrolysis stood out with the lowest emissions.
An Integrated Demand Response Dispatch Strategy for Low-carbon Energy Supply Park Considering Electricity-Hydrogen-Carbon Coordination
Apr 2023
Publication
Driven by the goal of ‘carbon peak carbon neutrality’ an integrated demand response strategy for integrated electricity– hydrogen energy systems is proposed for low-carbon energy supply parks considering the multi-level and multi-energy characteristics of campus-based microgrids. Firstly considering the spatial and temporal complementary nature of wind and photovoltaic generation and energy utilization the energy flow framework of the park is built based on the electricity and hydrogen energy carriers. Clean energy is employed as the main energy supply and power heat cooling and gas loads are considered energy consumption. Secondly the operation mechanism of coupled hydrogen storage hydrogen fuel cell and carbon capture equipment is analyzed in the two-stage power-to-gas conversion process. Thirdly considering the operating costs and environmental costs of the park an integrated demand response dispatch model is constructed for the coupled electricity– hydrogen–carbon system while satisfying the system equipment constraints network constraints and energy balance constraints of the park system. Finally Case study in an energy supply park system is implemented. The dispatch results of the integrated demand response with customer participation in the conventional electricity–hydrogen and electricity–hydrogen–carbon modes are compared to verify the effectiveness of the proposed strategy in renewable accommodation environmental protection and economic benefits.
Review of the Planning and Distribution Methodologies to Locate Hydrogen Infrastructure in the Territory
Jan 2024
Publication
The member countries of the European Union (EU) have prioritized the incorporation of hydrogen as a key component of their energy objectives. As the world moves towards reducing its dependence on fossil fuels alternative sources of energy have gained prominence. With the growing development of Fuel Cell Electric Vehicles (FCEVs) the establishment of an infrastructure for hydrogen production and the creation of a network of service stations have become essential. This article’s purpose is to conduct a methodical review of literature regarding the use of green hydrogen for transportation and the planning of imperative infrastructure in the territory of the EU specifically Hydrogen Refueling Stations (HRS). In order to increase the acceptance of fuel cell vehicles a comprehensive network of hydrogen refueling stations (HRS) must be built that enable drivers to refuel their vehicles quickly and easily similar to gasoline or diesel vehicles. The literature review on this topic was conducted using the Web of Science database (WOS) with a variety of search terms proposed to cover all the key components of green hydrogen production and refueling infrastructure. The implementation of HRS powered by renewable energy sources is an important step in the adoption of fuel cell vehicles and overcoming the obstacles that come with their implementation will require cooperation and innovation from governments private businesses and other stakeholders.
On the Design and Optimization of Distributed Energy Resources for Sustainable Grid-integrated Microgrid in Ethiopia
Apr 2023
Publication
This paper presents a study that focuses on alleviating the impacts of grid outages in Ethiopia. To deal with grid outages most industrial customers utilize backup diesel generators (DG) which are environmentally unfriendly and economically not viable. Grid integration of hybrid renewable energy systems (HRES) might be a possible solution to enhance grid reliability and reduce environmental and economic impacts of utilizing DG. In this study an optimization of grid integrated HRES is carried out for different dispatch and control strategies. The optimal power supply option is determined by performing comparative analysis of the different configurations of grid integrated HRES. The result of the study shows that grid integrated HRES consisting of photovoltaic and wind turbine as renewable energy sources and battery and hydrogen as hybrid energy storage systems is found to be the optimal system to supply the load demand. From the hydrogen produced on-site the FC generator and FCEVs consume 143 620 kg/yr of hydrogen which is equivalent to 394 955 kg/yr gasoline fuel consumption. This corresponds to saving 1 184 865 kg/yr of CO2 emissions and 605 703 $/yr revenue. Besides this system yields 547 035.4 $/yr revenue by injecting excess electricity to the grid. The study clearly shows the economic and environmental viability of this new technology for implementation.
Hydrogen Supply Chain and Refuelling Network Design: Assessment of Alternative Scenarios for the Long-haul Road Freight in the UK
Mar 2023
Publication
Shifting from fossil fuels to clean alternative fuel options such as hydrogen is an essential step in decarbonising the road freight transport sector and facilitating an efficient transition towards zero-emissions goods distribution of the future. Designing an economically viable and competitive Hydrogen Supply Chain (HSC) to support and accelerate the widespread adoption of hydrogen powered Heavy Goods Vehicles (H2-HGVs) is however significantly hindered by the lack of the infrastructure required for producing storing transporting and distributing the required hydrogen. This paper focuses on a bespoke design of a hydrogen supply chain and distribution network for the long-haul road freight transportation in the UK and develops an improved end-to-end and spatially-explicit optimisation tool to perform scenario analysis and provide important first-hand managerial and policy making insights. The proposed methodology improves over existing grid-based methodologies by incorporating spatially-explicit locations of Hydrogen Refuelling Stations (HRSs) and allowing further flexibility and accuracy. Another distinctive feature of the method and the analyses carried out in the paper pertains to the inclusion of bulk geographically agnostic as well as geological underground hydrogen storage options and reporting on significant cost saving opportunities. Finally the curve for H2-HGVs penetration levels safety stock period decisions and the transport mode capacity against hydrogen levelized cost at pump have been generated as important policy making tools to provide decision support and insights into cost resilience and reliability of the HSC.
Low-carbon Planning for Park-level Integrated Energy System Considering Optimal Construction Time Sequence and Hydrogen Energy Facility
Apr 2023
Publication
With the increasing concern about global energy crisis and environmental pollution the integrated renewable energy system has gradually become one of the most important ways to achieve energy transition. In the context of the rapid development of hydrogen energy industry the proportion of hydrogen energy in the energy system has gradually increased. The conversion between various energy sources has also become more complicated which poses challenges to the planning and construction of park-level integrated energy systems (PIES). To solve this problem we propose a bi-level planning model for an integrated energy system with hydrogen energy considering multi-stage investment and carbon trading mechanism. First the mathematical models of each energy source and energy storage in the park are established respectively and the independent operation of the equipment is analyzed. Second considering the operation state of multi-energy coordination a bi-level planning optimization model is established. The upper level is the capacity configuration model considering the variable installation time of energy facilities while the lower level is the operation optimization model considering several typical daily operations. Third considering the coupling relationship between upper and lower models the bi-level model is transformed into a solvable single-level mixed integer linear programming (MILP) model by using Karush–Kuhn–Tucker (KKT) condition and big-M method. Finally the proposed model and solution methods are verified by comprehensive case studies. Simulation results show that the proposed model can reduce the operational cost and carbon emission of PIES in the planning horizon and provide insights for the multi-stage investment of PIES.
2021 EU and National Policies Report
Jul 2021
Publication
Purpose: The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. https://www.fchobservatory.eu/observatory/policy-and-rcs/eu-policies https://www.fchobservatory.eu/index.php/observatory/policy-and-rcs/nationalpolicies Scope: While FCHO covers 38 entities around the world due to the unavailability of some data at the time of writing this report covers 34 entities. The report reflects data collected January 2021 – May 2021. Key Findings: Hydrogen policies are relatively commonplace among European countries but with large differences between Member States. EU hydrogen leaders do not lag behind global outliers such as South Korea or Japan.
Two-Layer Optimization Planning Model for Integrated Energy Systems in Hydrogen Refueling Original Station
May 2023
Publication
With the aggravation of global environmental pollution problems and the need for energy restructuring hydrogen energy as a highly clean resource has gradually become a hot spot for research in countries around the world. Facing the requirement of distributed hydrogen in refueling the original station for hydrogen transportation and other usage this paper proposes a comprehensive energy system planning model for hydrogen refueling stations to obtain the necessary devices construction the devices’ capacity decisions and the optimal operation behaviors of each device. Comparing to traditional single hydrogen producing technics in the traditional planning model the proposed model in this paper integrates both water-electrolysis-based and methanol-based manufacturing technics. A two-level optimization model is designed for this comprehensive system. The result of the numerical study shows that the proposed model can achieve a better optimal solution for distributed hydrogen production. Also it considers the single producing situation when price of one primary resource is sufficient higher than the other.
2021 Standards Report
Jul 2021
Publication
Purpose: The standards module of the FCHO presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized per application enhancing ease of access and findability. The development of sector-relevant standards facilitate and enhance economies of scale interoperability comparability safety and many other issues. https://www.fchobservatory.eu/observatory/Policy-and-RCS/Standards Scope: This report presents the developments in European and international standards for the year 2020.Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. Key Findings: The development of sector relevant standards on an international level continued to grow in 2020; on a European level many standards are still in the process of being drafted. In 2020 12 new standards have been published mainly on the subject of fuel cell technologies. The recently established committee CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin. Previous Reports The first report was published in September 2020. This report is the 2nd Annual report.
Lessons Learned from Large Scale Hydrogen Production Project
Sep 2023
Publication
In August 2022 Shell started construction of Holland Hydrogen I (HH I) a 200 MW electrolyser plant in the port of Rotterdam’s industrial zone on Maasvlakte II in the Netherlands. HH I will produce up to 60000 kg of renewable hydrogen per day. The development and demonstration of a safe layout and plant design had been challenging due to ambitious HH I project premises many technical novelties common uncertainties in hydrogen leak effect prediction a lack of large-scale water electrolyzer operating history and limited standardization in this industry sector. This paper provides an industry perspective of the major challenges in commercial electrolyzer plant HSSE risk assessment and risk mitigation work processes required to develop and demonstrate a safe design and it describes lessons learned in this area during the HH I project. Furthermore the paper lists major common gaps in relevant knowledge engineering tools standards and OEM deliverables that need closure to enable future commercial electrolyzer plant projects to develop an economically viable and plant design and layout more efficiently and cost-effectively.
Influence of Natural Gas and Hydrogen Properties on Internal Combustion Engine Performance, Combustion, and Emissions: A Review
Jan 2024
Publication
This paper provides a comprehensive overview of the physical properties and applications of natural gas (NG) and hydrogen as fuels in internal combustion (IC) engines. The paper also meticulously examines the use of both NG and hydrogen as a fuel in vehicles their production physical characteristics and combustion properties. It reviews the current experimental studies in the literature and investigates the results of using both fuels. It further covers the challenges associated with injectors needle valves lubrication spark plugs and safety requirements for both fuels. Finally the challenges related to the storage production and safety of both fuels are also discussed. The literature review reveals that NG in spark ignition (SI) engines has a clear and direct positive impact on fuel economy and certain emissions notably reducing CO2 and non-methane hydrocarbons. However its effect on other emissions such as unburnt hydrocarbons (UHC) nitrogen oxides (NOx) and carbon monoxide (CO) is less clear. NG which is primarily methane has a lower carbon-to-hydrogen ratio than diesel fuel resulting in lower CO2 emissions per unit of energy released. In contrast hydrogen is particularly well-suited for use in gasoline engines due to its high self-ignition temperature. While increasing the hydrogen content of NG engines reduces torque and power output higher hydrogen input results in reduced fuel consumption and the mitigation of toxic exhaust emissions. Due to its high ignition temperature hydrogen is not inherently suitable for direct use in diesel engines necessitating the exploration of alternative methods for hydrogen introduction into the cylinder. The literature review suggests that hydrogen in diesel engines has shown a reduction in specific exhaust emissions and fuel consumption and an increase in NOx emissions. Overall the paper provides a valuable and informative overview of the challenges and opportunities associated with using hydrogen and NG as fuels in IC engines. It highlights the need for further research and development to address the remaining challenges such as the development of more efficient combustion chambers and the reduction of NOx emissions.
Flashback Propensity due to Hydrogen Blending in Natural Gas: Sensitivity to Operating and Geometrical Parameters
Jan 2024
Publication
Hydrogen has emerged as a promising option for promoting decarbonization in various sectors by serving as a replacement for natural gas while retaining the combustion-based conversion system. However its higher reactivity compared to natural gas introduces a significant risk of flashback. This study investigates the impact of operating and geometry parameters on flashback phenomena in multi-slit burners fed with hydrogenmethane-air mixtures. For this purpose transient numerical simulations which take into account conjugate heat transfer between the fluid and the solid walls are coupled with stochastic sensitivity analysis based on Generalized Polynomial Chaos. This allows deriving comprehensive maps of flashback velocities and burner temperatures within the parameter space of hydrogen content equivalence ratio and slit width using a limited number of numerical simulations. Moreover we assess the influence of different parameters and their interactions on flashback propensity. The ranges we investigate encompass highly H2 -enriched lean mixtures ranging from 80% to 100% H2 by volume with equivalence ratios ranging from 0.5 to 1.0. We also consider slit widths that are typically encountered in burners for end-user devices ranging from 0.5 mm to 1.2 mm. The study highlights the dominant role of preferential diffusion in affecting flashback physics and propensity as parameters vary including significant enrichment close to the burner plate due to the Soret effect. These findings hold promise for driving the design and optimization of perforated burners enabling their safe and efficient operation in practical end-user applications.
Outlook and Challenges for Hydrogen Storage in Nanoporous Materials
Feb 2016
Publication
Darren P. Broom,
Colin Webb,
Katherine Hurst,
P. A. Parilla,
Thomas Gennett,
C. M. Brown,
Renju Zacharia,
E. Tylianakis,
E. Klontzas,
George E. Froudakis,
Th. A. Steriotis,
Pantelis N. Trikalitis,
Donald L. Anton,
B. Hardy,
David A. Tamburello,
Claudio Corgnale,
B. A. van Hassel,
D. Cossement,
Richard Chahine and
Michael Hirscher
Considerable progress has been made recently in the use of nanoporous materials for hydrogen storage. In this article the current status of the field and future challenges are discussed ranging from important open fundamental questions such as the density and volume of the adsorbed phase and its relationship to overall storage capacity to the development of new functional materials and complete storage system design. With regard to fundamentals the use of neutron scattering to study adsorbed H2 suitable adsorption isotherm equations and the accurate computational modelling and simulation of H2 adsorption are discussed. The new materials covered include flexible metal–organic frameworks core–shell materials and porous organic cage compounds. The article concludes with a discussion of the experimental investigation of real adsorptive hydrogen storage tanks the improvement in the thermal conductivity of storage beds and new storage system concepts and designs.
A Perspective on the Overarching Role of Hydrogen, Ammonia, and Methanol Carbon-Neutral Fuels towards Net Zero Emission in the Next Three Decades
Dec 2022
Publication
Arguably one of the most important issues the world is facing currently is climate change. At the current rate of fossil fuel consumption the world is heading towards extreme levels of global temperature rise if immediate actions are not taken. Transforming the current energy system from one largely based on fossil fuels to a carbon-neutral one requires unprecedented speed. Based on the current state of development direct electrification of the future energy system alone is technically challenging and not enough especially in hard-to-abate sectors like heavy industry road trucking international shipping and aviation. This leaves a considerable demand for alternative carbon-neutral fuels such as green ammonia and hydrogen and renewable methanol. From this perspective we discuss the overarching roles of each fuel in reaching net zero emission within the next three decades. The challenges and future directions associated with the fuels conclude the current perspective paper.
Towards Climate-neutral Aviation: Assessment of Maintenance Requirements for Airborne Hydrogen Storage and Distribution Systems
Apr 2023
Publication
Airlines are faced with the challenge of reducing their environmental footprint in an effort to push for climate-neutral initiatives that comply with international regulations. In the past the aviation industry has followed the approach of incremental improvement of fuel efficiency while simultaneously experiencing significant growth in annual air traffic. With the increase in air traffic negating any reduction in Greenhouse Gas (GHG) emissions more disruptive technologies such as hydrogen-based onboard power generation are required to reduce the environmental impact of airline operations. However despite initial euphoria and first conceptual studies for hydrogen-powered aircraft several decades ago there still has been no mass adoption to this day. Besides the challenges of a suitable ground infrastructure this can partly be attributed to uncertainties with the associated maintenance requirements and the expected operating costs to demonstrate the economic viability of this technology. With this study we address this knowledge gap by estimating changes towards scheduled maintenance activities for an airborne hydrogen storage and distribution system. In particular we develop a detailed system design for a hydrogen-powered fuel-cell-based auxiliary power generation and perform a comparative analysis with an Airbus A320 legacy system. That analysis allows us to (a) identify changes for the expected maintenance effort to enhance subsequent techno-economic assessments (b) identify implications of specific design assumptions with corresponding maintenance activities while ensuring regulatory compliance and (c) describe the impact on the resulting task execution. The thoroughly examined interactions between system design and subsequent maintenance requirements of this study can support practitioners in the development of prospective hydrogen-powered aircraft. In particular it allows the inclusion of maintenance implications in early design stages of corresponding system architectures. Furthermore since the presented methodology is transferable to different design solutions it provides a blueprint for alternative operating concepts such as the complete substitution of kerosene by hydrogen to power the main engines.
Impact of Climate and Geological Storage Potential on Feasibility of Hydrogen Fuels
Apr 2023
Publication
Electrofuels including hydrogen methane and ammonia have been suggested as one pathway in achieving net-zero greenhouse gas energy systems. They can play a role in providing an energy storage and fuel or feedstock to hard-to-abate sectors. In future energy systems their role is often studied in case studies adhering to specific region. In this study we study their role by defining multiple archetypal energy systems which represent approximations of real systems in different regions. Comparing the role of electrofuels across the cost-optimized systems relying only on renewable energy in power generation we found that hydrogen was a significant energy vector in all systems with its annual quantity approaching the classic electricity demand. The role of renewable methane was very limited. Electrofuel storages were needed in all systems and their capacity was the highest in the northern Hemiboreal system. Absence of cavern storage potential did not hamper the significance of electrofuels but increased the role of ammonia and led to average 5.5 % systemic cost increase. Systems where reservoir hydropower was scarce or level of electricity consumption was high needed more fuel storages. The findings of this study can help for better understanding of what kind of storage and generation technologies will be most useful in future carbon-neutral systems in different types of regions.
Hydrogen Consumption and Durability Assessment of Fuel Cell Vehicles in Realistic Driving
Jan 2024
Publication
This study proposes a predictive equivalent consumption minimization strategy (P-ECMS) that utilizes velocity prediction and considers various dynamic constraints to mitigate fuel cell degradation assessed using a dedicated sub-model. The objective is to reduce fuel consumption in real-world conditions without prior knowledge of the driving mission. The P-ECMS incorporates a velocity prediction layer into the Energy Management System. Comparative evaluations with a conventional adaptive-ECMS (A-ECMS) a standard ECMS with a well-tuned constant equivalence factor and a rule-based strategy (RBS) are conducted across two driving cycles and three fuel cell dynamic restrictions (|∕| ≤ 0.1 0.01 and 0.001 A∕cm2 ). The proposed strategy achieves H2 consumption reductions ranging from 1.4% to 3.0% compared to A-ECMS and fuel consumption reductions of up to 6.1% when compared to RBS. Increasing dynamic limitations lead to increased H2 consumption and durability by up to 200% for all tested strategies.
A Flexible Techno-economic Analysis Tool for Regional Hydrogen Hubs - A Case Study for Ireland
Apr 2023
Publication
The increasing urgency with which climate change must be addressed has led to an unprecedented level of interest in hydrogen as a clean energy carrier. Much of the analysis of hydrogen until this point has focused predominantly on hydrogen production. This paper aims to address this by developing a flexible techno-economic analysis (TEA) tool that can be used to evaluate the potential of future scenarios where hydrogen is produced stored and distributed within a region. The tool takes a full year of hourly data for renewables availability and dispatch down (the sum of curtailment and constraint) wholesale electricity market prices and hydrogen demand as well as other user-defined inputs and sizes electrolyser capacity in order to minimise cost. The model is applied to a number of case studies on the island of Ireland which includes Ireland and Northern Ireland. For the scenarios analysed the overall LCOH ranges from V2.75e3.95/kgH2. Higher costs for scenarios without access to geological storage indicate the importance of cost-effective storage to allow flexible hydrogen production to reduce electricity costs whilst consistently meeting a set demand.
Analysis of CO2 Emissions Reduction on the Future Hydrogen Supply Chain Network for Dubai Buses
Apr 2023
Publication
There is an impetus to decarbonize transportation sector and mitigate climate change. This study examines the effect of adopting hydrogen (H2) as a fuel for Dubai Buses at different penetration scales on carbon dioxide (CO2) emissions reduction. A H2 supply-chain system dynamics model is developed to conduct life cycle cost and environmental analysis and evaluate the efficacy of different carbon prices and subsidies. Gray green and mixed H2 production scenarios were considered. The results show that gray hydrogen reduces 7.1 million tons of CO2 which is half of green hydrogen buses. Replacing diesel fleet at end of lifetime with mixed hydrogen bus fleet was the optimal approach to promote green hydrogen at pump reaching $4/kg in a decade. This gradual transition reduces 62% of the well-to-wheel CO2 emissions of the new bus fleet and creates mass for economies of scale as carbon prices and subsidies cannot promote green hydrogen alone.
Is Greece Ready for a Hydrogen Energy Transition?—Quantifying Relative Costs in Hard to Abate Industries
Apr 2024
Publication
During the past few years hydrogen use has come to be considered as an alternative energy carrier in a future decarbonized world. Many developed nations are undergoing a shift towards low-carbon energy sources driven by the excessive reliance on fossil fuels and the detrimental effects of climate change. This study aims to investigate the potential for hydrogen deployment in the Greek energy market during the next few decades. In this context green hydrogen’s potential application in the Greek market is being assessed employing an integrated techno-economic model grounded in worldwide trends and localized expenses. The forthcoming years will see an analysis of both the challenges and opportunities surrounding the integration and implementation of hydrogen in new and existing processes within Greece. Many alternative ways to produce hydrogen in Greece are investigated contemplating different production paths. We evaluate how fluctuations in hydrogen oil and carbon prices affect the economics of green hydrogen adoption in oil refining as is detailed in the draft of the European Union delegated act published in May 2022. The Levelized Cost of Hydrogen (LCOH) for different scenarios is calculated for the time frame up until 2050. A sensitivity analysis reveals that investment costs electricity prices electrolyzer efficiency and carbon taxes significantly influence the LCOH ultimately impacting the economic competitiveness of hydrogen production. These findings underscore the importance of aligning public–private partnership agendas in hydrogen production to create optimal conditions for investment attraction and development.
Synthetic Fuels in the German Industry Sector Depending on Climate Protection Level
Aug 2021
Publication
Especially the electrification of the industry sector is highly complex and challenging mainly due to process-specific requirements. In this context there are several industrial processes where the direct and indirect use of electricity is subject to technical restrictions. In order to achieve the national climate goals the fossil energy consumption remaining after the implementation of efficiency and sufficiency measures as well as direct electrification has to be substituted through hydrogen and synthetic gaseous liquid and solid hydrocarbons. As the main research object the role of synthetic fuels in industrial transformation paths is investigated and analyzed by combining individual greenhouse gas abatement measures within the Sector Model Industry. Sector Model Industry is an energy consumption model that performs discrete deterministic energy and emission dynamic calculations with a time horizon up to 2050 at macroeconomic level. The results indicate that the use of synthetic fuels can be expected with a high level of climate protection. The industrial CO2 target in the model makes it necessary to replace CO2 -intensive fossil with renewable fuels. The model uses a total of 163 TWh of synthetic fuels in the climate protection scenario and thus achieves an 88% decrease in CO2 emissions in 2050 compared to 1990. This means that the GHG abatement achieved in industry is within the range of the targeted CO2 mitigation of the overall system in Germany of between 80 and 95% in 2050 compared to 1990. Due to technical restrictions the model mainly uses synthetic methane instead of hydrogen (134 TWh). The results show that despite high costs synthetic fuels are crucial for defossilization as a fall back option in the industrial scenario considering high climate ambition. The scenario does not include hydrogen technologies for heat supply. Accordingly the climate protection scenario uses hydrogen only in the steel industry for the direct reduction of iron (21 TWh). 8 TWh of synthetic oil substitute the same amount of fossil oil in the climate protection scenario. A further analysis conducted on the basis of the model results shows that transformation in the energy system and the use of smart ideas concepts and technologies are a basic prerequisite for enabling the holistic defossilisation of industry. The findings in the research can contribute to the cost-efficient use of synthetic fuels in industry and thus serve as a basis for political decision making. Moreover the results may have a practical relevance not only serving as a solid comparison base for the outcome of other studies but also as input data for further simulation of energy system transformation paths.
The Role of Hydrogen for the Defossilization of the German Chemical Industry
Apr 2023
Publication
Within the European Green Deal the European industry is summoned to transform towards a green and circular economy to reduce CO2-emissions and reach climate goals. Special focus is on the chemical industry to boost recycling processes for plastics exploit resource efficiency potentials and switch to a completely renewable feedstock (defossilization). Despite common understanding that drastic changes have to take place it is yet unknown how the industrial transformation should be accomplished. This work explains how a cost-optimal defossilization of the chemical industry in the context of national greenhouse gas (GHG) mitigation strategies look like. The central part of this investigation is based on a national energy system model to optimize the future energy system design of Germany as a case study for a highly industrialized country. A replacement of fossil-based feedstocks by renewable feedstocks leads to a significant increase in hydrogen demand by þ40% compared to a reference scenario. The resulting demand of hydrogen-based energy carriers including the demand for renewable raw materials must be produced domestically or imported. This leads to cumulative additional costs of the transformation that are 32% higher than those of a reference scenario without defossilization of the industry. Fischer-Tropsch synthesis and the methanol-to-olefins route can be identified as key technologies for the defossilization of the chemical industry.
Renewable Heating and Cooling Pathways - Towards Full Decarbonisation by 2050
Feb 2023
Publication
With the adoption of the EU Climate Law in 2021 the EU has set itself a binding target to achieve climate neutrality by 2050 and to reduce greenhouse gas emissions by 55 percent compared to 1990 levels by 2030. To support the increased ambition the EU Commission adopted proposals for revising the key directives and regulations addressing energy efficiency renewable energies and greenhouse gas emissions in the Fit for 55 package. The heating and cooling (H&C) sector plays a key role for reaching the EU energy and climate targets. H&C accounts for about 50 percent of the final energy consumption in the EU and the sector is largely based on fossil fuels. In 2021 the share of renewable energies in H&C reached 23%.
Hydrogen Related Accidents and Lesson Learned from Events Reported in the East Continental Asia
Sep 2023
Publication
Hydrogen as an energy carrier plays an important role in carbon neutrality and energy transition. Hydrogen is the lightest element with a density of only 0.08375 kg/m3 in gaseous form at standard temperature and pressure (STP); as a result hydrogen is usually stored and transported in a highly compressed form. It is prone to leakage and has a very low ignition energy of 0.017 mJ. Safety remains a challenge in the use of hydrogen as an energy source. This paper examines approximately 20 hydrogen-related accidents in China over a 20-year period focusing on the root causes consequences of the accidents and responses to them. These accidents occurred in the production storage transport and application of hydrogen with different causes in different locations and resulting in losses at different scales. Some statistical evaluations were conducted to learn lessons from the accidents. The main objective of this paper is (i) to retrieve a set of hydrogen related incidents from a region which is under-represented in incident repositories (ii) to contribute to a generalised lesson learned from them and (iii) to assist the definition of realistic scenarios for commonly occurring hydrogen accidents.
Fracture Toughness Assessment of Pipeline Steels Under Hydrogen Exposure for Blended Gas Applications
Jan 2025
Publication
Hydrogen embrittlement (HE) is a critical concern for pipeline steels particularly as the energy sector explores the feasibility of blending hydrogen with natural gas to reduce carbon emissions. Various mechanical testing methods assess HE with fracture toughness testing offering a quantitative measure of defect impacts on structural safety particularly for cracks arising during manufacturing fabrication or in-service conditions. This study focuses on assessing the fracture toughness of two pipeline steels from an existing natural gas network under varying hydrogen concentrations using double cantilever beam (DCB) fracture tests. A vintage API X52 steel with a ferritic–pearlitic microstructure and a modern API X65 steel with polygonal ferrite and elongated pearlite colonies were selected to represent old and new pipeline materials. Electrochemical hydrogen charging was employed to simulate hydrogen exposure with the charging parameters derived from hydrogen permeation tests. The results highlight the differing impacts of hydrogen on the fracture toughness and crack growth in vintage and modern pipeline steels. These findings are essential for ensuring the safety and integrity of pipelines carrying hydrogen–natural gas blends.
What Does the Public Know About Technological Solutions for Achieving Carbon Neutrality? Citizens' Knowledge of Energy Transition and the Role of Media
Aug 2023
Publication
The present study explores the relation between media use and knowledge in the context of the energy transition. To identify relevant knowledge categories we relied on the expertise of an interdisciplinary research team. Based on this expertise we identified awareness-knowledge of changes in the energy system and principles-knowledge of hydrogen as important knowledge categories. With data obtained from a nationwide online survey of the German-speaking population (n = 2025) conducted in August 2021 we examined the level of knowledge concerning both categories in the German population. Furthermore we studied its associations with exposure to journalistic media and direct communication from non-media actors (e.g. scientists). Our results revealed a considerable lack of knowledge for both categories. Considering the media variables we found only weak and in some cases even negative relations with the use of journalistic media or other actors that spread information online. However we found comparably strong associations between both knowledge categories and the control variables of sex education and personal interest. We use these results to open up a general discussion of the role of the media in knowledge acquisition processes.
On the Cost of Zero Carbon Hydrogen: A Techno-economic Analysis of Steam Methane Reforming with Carbon Capture and Storage
May 2023
Publication
This article challenges the view that zero carbon hydrogen from steam methane reforming (SMR) is prohibitively expensive and that the cost of CO2 capture increases exponentially as residual emissions approach zero; a flawed narrative often eliminating SMR produced hydrogen as a route to net zero. We show that the capture and geological storage of 100% of the fossil CO2 produced in a SMR is achievable with commercially available post-combustion capture technology and an open art solvent. The Levelised Cost of Hydrogen (LCOH) of 69£/MWhth HHV (2.7£/kg) for UK production remains competitive to other forms of low carbon hydrogen but retains a hydrogen lifecycle carbon intensity of 5 gCO2e/MJ (LHV) due to natural gas supply chain and embodied greenhouse gas (GHG) emissions. Compensating for the remaining lifecycle GHG emissions via Direct Air Capture with geological CO2 Storage (DACCS) increases the LCOH to 71–86 £/MWhth HHV (+3–25%) for a cost estimate of 100–1000 £/tCO2 for DACCS and the 2022 UK natural gas supply chain methane emission rates. Finally we put in perspective the cost of CO2 avoidance of fuel switching from natural gas to hydrogen with long term price estimates for natural gas use and DACCS and hydrogen produced from electrolysis.
Low Carbon Optimal Operation of Integrated Energy Systems Considering Air Pollution Emissions
Apr 2023
Publication
To reduce carbon sulfur dioxide (SO2) and nitrogen oxide (NOX) emissions from the integrated energy system (IES) a low carbon optimization strategy for the IES is proposed taking into account carbon SO2 and NOX emissions. Firstly hydrogen production storage and use equipment such as methane reactor electrolysis tank hydrogen fuel cell and hydrogen energy storage are added to the traditional IES to build a multi-energy complementary system of electricity gas cooling thermal and hydrogen. Then this paper introduces a stepped carbon trading mechanism and the model of the emissions of SO2 and NOX. Finally to further reduce its pollutant emissions the model of combined heat and power units and hydrogen fuel cells with adjustable thermoelectric ratio is built. To compare and account for the impact of air pollutant emissions on the optimal low-carbon operation of IES this paper construsted three scenarios with the lowest cost of carbon trading the lowest penalty cost for SO2 and NOX emissions and total operation cost as objective functions respectively The results show that the strategy is effective in reducing air pollutant emissions from integrated energy systems and the outputs of CHP and HFC with adjustable thermoelectric ratios are more flexible and can effectively achieve carbon reduction and pollutant emission reduction.
The Fuel Flexibility of Gas Turbines: A Review and Retrospective Outlook
May 2023
Publication
Land-based gas turbines (GTs) are continuous-flow engines that run with permanent flames once started and at stationary pressure temperature and flows at stabilized load. Combustors operate without any moving parts and their substantial air excess enables complete combustion. These features provide significant space for designing efficient and versatile combustion systems. In particular as heavy-duty gas turbines have moderate compression ratios and ample stall margins they can burn not only high- and medium-BTU fuels but also low-BTU ones. As a result these machines have gained remarkable fuel flexibility. Dry Low Emissions combustors which were initially confined to burning standard natural gas have been gradually adapted to an increasing number of alternative gaseous fuels. The paper first delivers essential technical considerations that underlie this important fuel portfolio. It then reviews the spectrum of alternative GT fuels which currently extends from lean gases (coal bed coke oven blast furnace gases . . . ) to rich refinery streams (LPG olefins) and from volatile liquids (naphtha) to heavy hydrocarbons. This “fuel diet” also includes biogenic products (biogas biodiesel and ethanol) and especially blended and pure hydrogen the fuel of the future. The paper also outlines how historically land-based GTs have gradually gained new fuel territories thanks to continuous engineering work lab testing experience extrapolation and validation on the field.
Dispersion, Ignition and Combustion Characteristics of Low-pressure Hydrogen-Methane Blends
Sep 2023
Publication
In this paper we study the dispersion ignition and flame characteristics of blended jets of hydrogen and methane (as a proxy for natural gas) at near-atmospheric pressure for a fixed volumetric flow rate which mimics the scenario of a small-scale unintended leak. A reduction in flame height is observed with increasing hydrogen concentration. A laser is tightly focused to generate a spark with sufficient energy to ignite the fuel. The light-up boundary defined as the delineating location at which a spark ignites into a jet flame or extinguishes is determined as a contour. The light-up boundary increases in both width and length as the hydrogen content increases up to 75% hydrogen at which point the axial ignition boundary decreases slightly for pure hydrogen relative to 75% hydrogen. Ignition probability a key parameter regarding safety is computed at various axial locations and is also shown to be higher near the nozzle as well as non-zero at further downstream locations as the hydrogen content in the blend increases. Planar laser Raman scattering is used in separate experiments to determine the concentration of both fuel species. Mean fuel concentrations well below the lower flammability limit are both within the light-up boundary and have non-zero ignition probabilities.
Performance and Cost Analysis of Hydrogen Production from Steam Reforming and Dehydrogenation of Ethanol
Aug 2020
Publication
Mitigation of carbon dioxide (CO2) emission has been a worldwide concern. Decreasing CO2 emission by converting it into higher value products such as methanol can be a promising way. However hydrogen (H2) cost and availability are one of key barriers to CO2 conversion. Ethanol can be a sustainable source for H2 due to its renewable nature and easy conversion to H2-rich gas mixtures through ethanol steam reforming process. Nevertheless steam reforming of ethanol generates CO2. Hence this research is focused on different methods of H2 productions about a 1665.47 t/y from ethanol for supplying to methanol plants was performed using Aspen PLUS V10. The ethanol steam reforming process required the lowest required ethanol feed for a certain amount of H2. In contrast the ethanol steam reforming process presented significant amount of CO2 emission from reaction and electricity consumption. But the ethanol dehydrogenation of ethanol not only generates H2 without CO2 emission from the reaction but also ethyl acetate or acetaldehyde which are value chemicals. However ethanol dehydrogenation processes in case II and III presented relatively higher cost because by-products (ethyl acetate or acetaldehyde) were rather difficult to be separated.
AMHYCO Project - Advances in H2/CO Combustion, Recombination and Containment Modelling
Sep 2023
Publication
During a severe accident in a nuclear power plant one of the potential threats to the containment is the occurrence of energetic combustion events. In modern plants Severe Accident Management Guidelines (SAMG) as well as dedicated mitigation hardware are in place to minimize/mitigate this combustion risk and thus avoid the release of radioactive material into the environment. Advancements in SAMGs are in the focus of AMHYCO an EU-funded Horizon 2020 project officially launched on October 1st 2020. The project consortium consists of 12 organizations (from six European countries and one from Canada) and is coordinated by the Universidad Politécnica de Madrid (UPM). The progress made in the first two years of the AMHYCO project is here presented. A comprehensive bibliographic review has been conducted providing a common foundation to build the knowledge gained during the project. After an extensive set of accident transients simulated both for phases occurring inside and outside the reactor pressure vessel a set of challenging sequences from the combustion risk perspective for different power plant types were identified. At the same time three generic containment models for the three considered reactor designs have been created to provide the full containment analysis simulations with lumped parameter models 3-dimensional containment codes and CFD codes. In order to further consolidate the model base combustion experiments and performance tests on passive auto-catalytic recombiners under explosion prone H2/CO atmospheres were performed at CNRS (France) and FZJ (Germany). Finally it is worth saying that the experimental data and engineering models generated from the AMHYCO project are useful for other industries outside the nuclear one.
Hydrogen Trapping and Embrittlement in Metals - A Review
Apr 2024
Publication
Hydrogen embrittlement in metals (HE) is a serious challenge for the use of high strength materials in engineering practice and a major barrier to the use of hydrogen for global decarbonization. Here we describe the factors and variables that determine HE susceptibility and provide an overview of the latest understanding of HE mechanisms. We discuss hydrogen uptake and how it can be managed. We summarize hydrogen trapping and the techniques used for its characterization. We also review literature that argues that hydrogen trapping can be used to decrease HE susceptibility. We discuss the future research that is required to advance the understanding of HE and hydrogen trapping and to develop HE-resistant alloys.
Assessment of the Green Hydrogen Value Chain in Cases of the Local Industry in Chile Applying an Optimization Model
May 2024
Publication
This study assessed the feasibility of integrating a green hydrogen value chain into the local industry examining two case studies by comparing four scenarios. The optimization focused on generating electricity from stationary renewable sources such as solar or through Power Purchase Agreements to produce sufficient hydrogen in electrolyzers. Current demand profiles renewable participation targets electricity supply sources levelized costs of energy and hydrogen and technology options were considered. The most cost-effective scenario showed a levelized cost of energy of 0.032 and 0.05 US$/kWh and a hydrogen cost below 1.0 US$/kgH2 for cases 1 and 2 respectively. A sensitivity analysis highlighted the critical influence of fuel cell technology on cost modification underscoring the importance of focusing cost reduction strategies on these technologies to enhance the economic viability of the green hydrogen value chain. Specifically a high sensitivity towards reducing the levelized costs of energy and hydrogen in the port sector with adjustments in fuel cell technology costs was identified indicating the need for specific policies and supports to facilitate their adoption.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Risk Assessment of a Hydrogen Refueling Station in an Urban Area
May 2023
Publication
After the Paris Agreement was signed in 2015 many countries worldwide focused on the hydrogen economy aiming for eco-friendly and renewable energy by moving away from the existing carbon economy which has been the primary source of global warming. Hydrogen is the most common element on Earth. As a light substance hydrogen can diffuse quickly; however it also has a small risk of explosion. Representative explosion accidents have included the Muskingum River Power Plant Vapor Cloud Explosion accident in 2007 and the Silver Eagle Refinery Vapor Cloud Explosion accident in 2009. In addition there was an explosion in a hydrogen tank in Gangneung Korea in May 2019 and a hydrogen refueling station (HRS) in Norway exploded in 2018. Despite this risk Korea is promoting the establishment of HRSs in major urban centers including downtown areas and public buildings by using the Regulatory Sandbox to install HRSs. This paper employed the Hydrogen Risk Assessment Model (HyRAM) of Sandia National Laboratories (SNL) a quantitative risk assessment (QRA) program specialized in hydrogen energy for HRSs installed in major urban hubs. A feasibility evaluation of the site conditions of an HRS was conducted using the French land use planning method based on the results obtained through evaluation using the HyRAM and the overpressure results of PHAST 8.0. After a risk assessment we confirmed that an HRS would be considered safe even if it was installed in the city center within a radius of influence of jet fires and overpressure.
Navigating Turbulence: Hydrogen's Role in the Decarbonization of the Aviation Sector
Jan 2024
Publication
This paper offers a comprehensive analysis of the historical evolution and the current state of the aviation industry with a particular emphasis on the critical need for this sector to decarbonize. It delves into emerging propulsion technologies such as battery electric and hydrogen-based systems assessing their potential impact on sustainability within the aviation sector. Special attention is devoted to the global regulatory framework notably carbon offsetting and emission reduction scheme for international aviation which encapsulates initiatives such as lower carbon aviation fuels and sustainable aviation fuels. Examining the environmental challenges facing aviation the paper underscores the necessity for a balanced and comprehensive strategy that integrates various approaches to achieve sustainable solutions. By addressing both the historical context and contemporary advances the paper aims to provide a nuanced understanding of the complexities surrounding aviation's decarbonization journey acknowledging the industry's strides while recognizing the ongoing challenges in the pursuit of sustainability.
Hydrogen for Harvesting the Potential of Offshore Wind: A North Sea Case Study
Dec 2023
Publication
Economical offshore wind developments depend on alternatives for cost-efficient transmission of the generated energy to connecting markets. Distance to shore availability of an offshore power grid and scale of the wind farm may impede export through power cables. Conversion to H2 through offshore electrolysis may for certain offshore wind assets be a future option to enable energy export. Here we analyse the cost sensitivity of offshore electrolysis for harvesting offshore wind in the North Sea using a technology-detailed multi-carrier energy system modelling framework for analysis of energy export. We include multiple investment options for electric power and hydrogen export including HVDC cables new hydrogen pipelines tie-in to existing pipelines and pipelines with linepacking. Existing hydropower is included in the modelling and the effect on offshore electrolysis from increased pumping capacity in the hydropower system is analysed. Considering the lack of empirical cost data on offshore electrolysis as well as the high uncertainty in future electricity and H2 prices we analyse the cost sensitivity of offshore electrolysis in the North Sea by comparing costs relative to onshore electrolysis and energy prices relative to a nominal scenario. Offshore electrolysis is shown to be particularly sensitive to the electricity price and an electricity price of 1.5 times the baseline assumption was needed to provide sufficient offshore energy for any significant offshore electrolysis investments. On the other hand too high electricity prices would have a negative impact on offshore electrolysis because the energy is more valuable as electricity even at the cost of increased wind power curtailment. This shows that there is a window-of-opportunity in terms of onshore electricity where offshore electrolysis can play a significant role in the production of H2 . Pumped hydropower increases the maximum installed offshore electrolysis at the optimal electricity and H2 prices and makes offshore electrolysis more competitive at low electricity prices. Linepacking can make offshore electrolysis investments more robust against low H2 and high electricity prices as it allow for more variable H2 production through storing excess energy from offshore. The increased electrolysis capacity needed for variable electrolyser operation and linepacking is installed onshore due to its lower CAPEX compared to offshore installations.
Prediction of Freezing Time During Hydrogen Fueling Using Machine Learning
Nov 2024
Publication
This study presents a method for predicting nozzle surface temperature and the timing of frost formation during hydrogen refueling using machine learning. A continuous refueling system was implemented based on a simulation model that was developed and validated in previous research. Data were collected under various boundary conditions and eight regression models were trained and evaluated for their predictive performance. Hyperparameter optimization was performed using random search to enhance model performance. The final models were validated by applying boundary conditions not used during model development and comparing the predicted values with simulation results. The comparison revealed that the maximum error rate occurred after the second refueling with a value of approximately 4.79%. Currently nitrogen and heating air are used for defrosting and frost reduction which can be costly. The developed machine learning models are expected to enable prediction of both frost formation and defrosting timings potentially allowing for more cost-effective management of defrosting and frost reduction strategies.
Conversion of a Small-Size Passenger Car to Hydrogen Fueling: 0D/1D Simulation of EGR and Related Flow Limitations
Jan 2024
Publication
Hydrogen is seen as a prime choice for complete replacement of gasoline so as to achieve zero-emissions energy and mobility. Combining the use of this alternative fuel with a circular economy approach for giving new life to the existing fleet of passenger cars ensures further benefits in terms of cost competitiveness. Transforming spark ignition (SI) engines to H2 power requires relatively minor changes and limited added components. Within this framework the conversion of a small-size passenger car to hydrogen fueling was evaluated based on 0D/1D simulation. One of the methods to improve efficiency is to apply exhaust gas recirculation (EGR) which also lowers NOx emissions. Therefore the previous version of the quasi-dimensional model was modified to include EGR and its effects on combustion. A dedicated laminar flame speed model was implemented for the specific properties of hydrogen and a purpose-built sub-routine was implemented to correctly model the effects of residual gas at the start of combustion. Simulations were performed in several operating points representative of urban and highway driving. One of the main conclusions was that highpressure recirculation was severely limited by the minimum flow requirements of the compressor. Low-pressure EGR ensured wider applicability and significant improvement of efficiency especially during partial-load operation specific to urban use. Another benefit of recirculation was that pressure rise rates were predicted to be more contained and closer to the values expected for gasoline fueling. This was possible due to the high tolerance of H2 to the presence of residual gas.
Enhancing Waste-to-Energy and Hydrogen Production through Urban–Industrial Symbiosis: A Multi-Objective Optimisation Model Incorporating a Bayesian Best-Worst Method
Feb 2024
Publication
A surging demand for sustainable energy and the urgency to lower greenhouse gas emissions is driving industrial systems towards more eco-friendly and cost-effective models. Biogas from agricultural and municipal organic waste is gaining momentum as a renewable energy source. Concurrently the European Hydrogen Strategy focuses on green hydrogen for decarbonising the industrial and transportation sectors. This paper presents a multi-objective network design model for urban–industrial symbiosis incorporating anaerobic digestion cogeneration photovoltaic and hydrogen production technologies. Additionally a Bayesian best-worst method is used to evaluate the weights of the sustainability aspects by decision-makers integrating these into the mathematical model. The model optimises industrial plant locations considering economic environmental and social parameters including the net present value energy consumption and carbon footprint. The model’s functionalities are demonstrated through a real-world case study based in Emilia Romagna Italy. It is subject to sensitivity analysis to evaluate how changes in the inputs affect the outcomes and highlights feasible trade-offs through the exploration of the ϵ-constraint. The findings demonstrate that the model substantially boosts energy and hydrogen production. It is not only economically viable but also reduces the carbon footprint associated with fossil fuels and landfilling. Additionally it contributes to job creation. This research has significant implications with potential future studies intended to focus on system resilience plant location optimisation and sustainability assessment.
No more items...